mirror of
https://github.com/NGSolve/netgen.git
synced 2025-01-26 12:50:34 +05:00
143 lines
3.9 KiB
C++
143 lines
3.9 KiB
C++
#ifndef FILE_OPTI
|
||
#define FILE_OPTI
|
||
|
||
/**************************************************************************/
|
||
/* File: opti.hpp */
|
||
/* Author: Joachim Schoeberl */
|
||
/* Date: 01. Jun. 95 */
|
||
/**************************************************************************/
|
||
|
||
|
||
|
||
namespace netgen
|
||
{
|
||
|
||
/**
|
||
Function to be minimized.
|
||
*/
|
||
class MinFunction
|
||
{
|
||
public:
|
||
///
|
||
virtual double Func (const Vector & x) const;
|
||
///
|
||
virtual void Grad (const Vector & x, Vector & g) const;
|
||
/// function and gradient
|
||
virtual double FuncGrad (const Vector & x, Vector & g) const;
|
||
/// directional derivative
|
||
virtual double FuncDeriv (const Vector & x, const Vector & dir, double & deriv) const;
|
||
/// if |g| < gradaccuray, then stop bfgs
|
||
virtual double GradStopping (const Vector & /* x */) const { return 0; }
|
||
|
||
///
|
||
virtual void ApproximateHesse (const Vector & /* x */,
|
||
DenseMatrix & /* hesse */) const;
|
||
};
|
||
|
||
|
||
class OptiParameters
|
||
{
|
||
public:
|
||
int maxit_linsearch;
|
||
int maxit_bfgs;
|
||
double typf;
|
||
double typx;
|
||
|
||
OptiParameters ()
|
||
{
|
||
maxit_linsearch = 100;
|
||
maxit_bfgs = 100;
|
||
typf = 1;
|
||
typx = 1;
|
||
}
|
||
};
|
||
|
||
|
||
/** Implementation of BFGS method.
|
||
Efficient method for non-linear minimiztion problems.
|
||
@param x initial value and solution
|
||
@param fun function to be minimized
|
||
*/
|
||
extern double BFGS (Vector & x, const MinFunction & fun,
|
||
const OptiParameters & par,
|
||
double eps = 1e-8);
|
||
|
||
/** Steepest descent method.
|
||
Simple method for non-linear minimization problems.
|
||
@param x initial value and solution
|
||
@param fun function to be minimized
|
||
*/
|
||
void SteepestDescent (Vector & x, const MinFunction & fun,
|
||
const OptiParameters & par);
|
||
|
||
|
||
extern void lines (
|
||
Vector & x, // i: Ausgangspunkt der Liniensuche
|
||
Vector & xneu, // o: Loesung der Liniensuche bei Erfolg
|
||
Vector & p, // i: Suchrichtung
|
||
double & f, // i: Funktionswert an der Stelle x
|
||
// o: Funktionswert an der Stelle xneu, falls ifail = 0
|
||
Vector & g, // i: Gradient an der Stelle x
|
||
// o: Gradient an der Stelle xneu, falls ifail = 0
|
||
|
||
const MinFunction & fun, // function to minmize
|
||
const OptiParameters & par, // parameters
|
||
double & alphahat, // i: Startwert f<>r alpha_hat
|
||
// o: Loesung falls ifail = 0
|
||
double fmin, // i: untere Schranke f<>r f
|
||
double mu1, // i: Parameter mu_1 aus Alg.2.1
|
||
double sigma, // i: Parameter sigma aus Alg.2.1
|
||
double xi1, // i: Parameter xi_1 aus Alg.2.1
|
||
double xi2, // i: Parameter xi_1 aus Alg.2.1
|
||
double tau, // i: Parameter tau aus Alg.2.1
|
||
double tau1, // i: Parameter tau_1 aus Alg.2.1
|
||
double tau2, // i: Parameter tau_2 aus Alg.2.1
|
||
int & ifail); // o: 0 bei erfolgreicher Liniensuche
|
||
// -1 bei Abbruch wegen Unterschreiten von fmin
|
||
// 1 bei Abbruch, aus sonstigen Gr<47>nden
|
||
|
||
|
||
|
||
|
||
/**
|
||
Solver for linear programming problem.
|
||
|
||
\begin{verbatim}
|
||
min c^t x
|
||
A x <= b
|
||
\end{verbatim}
|
||
*/
|
||
extern void LinearOptimize (const DenseMatrix & a, const Vector & b,
|
||
const Vector & c, Vector & x);
|
||
|
||
|
||
#ifdef NONE
|
||
|
||
/**
|
||
Simple projection iteration.
|
||
|
||
find $u = argmin_{v >= 0} 0.5 u A u - f u$
|
||
*/
|
||
extern void ApproxProject (const BaseMatrix & a, Vector & u,
|
||
const Vector & f,
|
||
double tau, int its);
|
||
|
||
|
||
/**
|
||
CG Algorithm for quadratic programming problem.
|
||
See: Dostal ...
|
||
|
||
d ... diag(A) ^{-1}
|
||
*/
|
||
extern void ApproxProjectCG (const BaseMatrix & a, Vector & x,
|
||
const Vector & b, const class DiagMatrix & d,
|
||
double gamma, int & steps, int & changes);
|
||
|
||
#endif
|
||
|
||
|
||
}
|
||
|
||
#endif
|
||
|