netgen/libsrc/occ/occgenmesh.cpp
2023-02-13 15:57:53 +01:00

823 lines
27 KiB
C++

#ifdef OCCGEOMETRY
#include <mystdlib.h>
#include <meshing.hpp>
#include "occgeom.hpp"
#include "occ_face.hpp"
#include "occmeshsurf.hpp"
#include <BRepAdaptor_Curve.hxx>
#include <BRepGProp.hxx>
#include <BRepLProp_CLProps.hxx>
#include <BRepLProp_SLProps.hxx>
#include <BRepMesh_IncrementalMesh.hxx>
#include <BRepTools.hxx>
#include <GProp_GProps.hxx>
#include <Quantity_Color.hxx>
#include <ShapeAnalysis.hxx>
#include <TopExp.hxx>
#include <TopTools_IndexedDataMapOfShapeListOfShape.hxx>
#include <TopoDS_Edge.hxx>
namespace netgen
{
#define TCL_OK 0
#define TCL_ERROR 1
#define DIVIDEEDGESECTIONS 10000 // better solution to come soon
#define IGNORECURVELENGTH 0
#define VSMALL 1e-10
DLL_HEADER bool merge_solids = false;
// can you please explain what you intend to compute here (JS) !!!
double Line :: Dist (Line l)
{
Vec<3> n = p1-p0;
Vec<3> q = l.p1-l.p0;
double nq = n*q;
Point<3> p = p0 + 0.5*n;
double lambda = (p-l.p0)*n / (nq + VSMALL);
if (lambda >= 0 && lambda <= 1)
{
double d = (p-l.p0-lambda*q).Length();
// if (d < 1e-3) d = 1e99;
return d;
}
else
return 1e99;
}
double ComputeH (double kappa, const MeshingParameters & mparam)
{
kappa *= mparam.curvaturesafety;
/*
double hret;
if (mparam.maxh * kappa < 1)
hret = mparam.maxh;
else
hret = 1 / (kappa + VSMALL);
if (mparam.maxh < hret)
hret = mparam.maxh;
return hret;
*/
// return min(mparam.maxh, 1/kappa);
return (mparam.maxh*kappa < 1) ? mparam.maxh : 1/kappa;
}
void RestrictHTriangle (gp_Pnt2d & par0, gp_Pnt2d & par1, gp_Pnt2d & par2,
BRepLProp_SLProps * prop, BRepLProp_SLProps * prop2, Mesh & mesh, int depth, double h, int layer, const MeshingParameters & mparam)
{
int ls = -1;
gp_Pnt pnt0,pnt1,pnt2;
prop->SetParameters (par0.X(), par0.Y());
pnt0 = prop->Value();
prop->SetParameters (par1.X(), par1.Y());
pnt1 = prop->Value();
prop->SetParameters (par2.X(), par2.Y());
pnt2 = prop->Value();
double aux;
double maxside = pnt0.Distance(pnt1);
ls = 2;
aux = pnt1.Distance(pnt2);
if(aux > maxside)
{
maxside = aux;
ls = 0;
}
aux = pnt2.Distance(pnt0);
if(aux > maxside)
{
maxside = aux;
ls = 1;
}
gp_Pnt2d parmid;
parmid.SetX( (par0.X()+par1.X()+par2.X()) / 3 );
parmid.SetY( (par0.Y()+par1.Y()+par2.Y()) / 3 );
if (depth%3 == 0)
{
double curvature = 0;
prop2->SetParameters (parmid.X(), parmid.Y());
if (!prop2->IsCurvatureDefined())
{
(*testout) << "curvature not defined!" << endl;
return;
}
curvature = max(fabs(prop2->MinCurvature()),
fabs(prop2->MaxCurvature()));
prop2->SetParameters (par0.X(), par0.Y());
if (!prop2->IsCurvatureDefined())
{
(*testout) << "curvature not defined!" << endl;
return;
}
curvature = max(curvature,max(fabs(prop2->MinCurvature()),
fabs(prop2->MaxCurvature())));
prop2->SetParameters (par1.X(), par1.Y());
if (!prop2->IsCurvatureDefined())
{
(*testout) << "curvature not defined!" << endl;
return;
}
curvature = max(curvature,max(fabs(prop2->MinCurvature()),
fabs(prop2->MaxCurvature())));
prop2->SetParameters (par2.X(), par2.Y());
if (!prop2->IsCurvatureDefined())
{
(*testout) << "curvature not defined!" << endl;
return;
}
curvature = max(curvature,max(fabs(prop2->MinCurvature()),
fabs(prop2->MaxCurvature())));
//(*testout) << "curvature " << curvature << endl;
if (curvature < 1e-3)
{
//(*testout) << "curvature too small (" << curvature << ")!" << endl;
return;
// return war bis 10.2.05 auskommentiert
}
h = ComputeH (curvature+1e-10, mparam);
if(h < 1e-4*maxside)
return;
// if (h > 30) return;
}
if (h < maxside && depth < 10)
{
//cout << "\r h " << h << flush;
gp_Pnt2d pm;
//cout << "h " << h << " maxside " << maxside << " depth " << depth << endl;
//cout << "par0 " << par0.X() << " " << par0.Y()
//<< " par1 " << par1.X() << " " << par1.Y()
// << " par2 " << par2.X() << " " << par2.Y()<< endl;
if(ls == 0)
{
pm.SetX(0.5*(par1.X()+par2.X())); pm.SetY(0.5*(par1.Y()+par2.Y()));
RestrictHTriangle(pm, par2, par0, prop, prop2, mesh, depth+1, h, layer, mparam);
RestrictHTriangle(pm, par0, par1, prop, prop2, mesh, depth+1, h, layer, mparam);
}
else if(ls == 1)
{
pm.SetX(0.5*(par0.X()+par2.X())); pm.SetY(0.5*(par0.Y()+par2.Y()));
RestrictHTriangle(pm, par1, par2, prop, prop2, mesh, depth+1, h, layer, mparam);
RestrictHTriangle(pm, par0, par1, prop, prop2, mesh, depth+1, h, layer, mparam);
}
else if(ls == 2)
{
pm.SetX(0.5*(par0.X()+par1.X())); pm.SetY(0.5*(par0.Y()+par1.Y()));
RestrictHTriangle(pm, par1, par2, prop, prop2, mesh, depth+1, h, layer, mparam);
RestrictHTriangle(pm, par2, par0, prop, prop2, mesh, depth+1, h, layer, mparam);
}
}
else
{
gp_Pnt pnt;
Point3d p3d;
prop->SetParameters (parmid.X(), parmid.Y());
pnt = prop->Value();
p3d = Point3d(pnt.X(), pnt.Y(), pnt.Z());
mesh.RestrictLocalH (p3d, h, layer);
p3d = Point3d(pnt0.X(), pnt0.Y(), pnt0.Z());
mesh.RestrictLocalH (p3d, h, layer);
p3d = Point3d(pnt1.X(), pnt1.Y(), pnt1.Z());
mesh.RestrictLocalH (p3d, h, layer);
p3d = Point3d(pnt2.X(), pnt2.Y(), pnt2.Z());
mesh.RestrictLocalH (p3d, h, layer);
//(*testout) << "p = " << p3d << ", h = " << h << ", maxside = " << maxside << endl;
}
}
bool OCCMeshFace (const OCCGeometry & geom, Mesh & mesh, FlatArray<int, PointIndex> glob2loc,
const MeshingParameters & mparam, int nr, int projecttype, bool delete_on_failure)
{
auto k = nr+1;
if(1==0 && !geom.fvispar[k-1].IsDrawable())
{
(*testout) << "ignoring face " << k << endl;
cout << "ignoring face " << k << endl;
return true;
}
// if(master_faces[k]!=k)
// continue;
(*testout) << "mesh face " << k << endl;
multithread.percent = 100 * k / (mesh.GetNFD() + VSMALL);
geom.facemeshstatus[k-1] = -1;
FaceDescriptor & fd = mesh.GetFaceDescriptor(k);
auto face = TopoDS::Face(geom.fmap(k));
const auto& occface = dynamic_cast<const OCCFace&>(geom.GetFace(k-1));
int oldnf = mesh.GetNSE();
Box<3> bb = geom.GetBoundingBox();
// int projecttype = PLANESPACE;
// int projecttype = PARAMETERSPACE;
static Timer tinit("init");
tinit.Start();
Meshing2OCCSurfaces meshing(geom, face, bb, projecttype, mparam);
tinit.Stop();
static Timer tprint("print");
tprint.Start();
if (meshing.GetProjectionType() == PLANESPACE)
PrintMessage (2, "Face ", k, " / ", geom.GetNFaces(), " (plane space projection)");
else
PrintMessage (2, "Face ", k, " / ", geom.GetNFaces(), " (parameter space projection)");
tprint.Stop();
// Meshing2OCCSurfaces meshing(f2, bb);
// meshing.SetStartTime (starttime);
//(*testout) << "Face " << k << endl << endl;
auto segments = geom.GetFace(k-1).GetBoundary(mesh);
if (meshing.GetProjectionType() == PLANESPACE)
{
static Timer t("MeshSurface: Find edges and points - Physical"); RegionTimer r(t);
int cntp = 0;
glob2loc = 0;
for (Segment & seg : segments)
// if (seg.si == k)
for (int j = 0; j < 2; j++)
{
PointIndex pi = seg[j];
if (glob2loc[pi] == 0)
{
meshing.AddPoint (mesh.Point(pi), pi);
cntp++;
glob2loc[pi] = cntp;
}
}
for(const auto& vert : geom.GetFaceVertices(geom.GetFace(k-1)))
{
PointIndex pi = vert->nr + 1;
if(glob2loc[pi] == 0)
{
auto gi = occface.Project(mesh[pi]);
MultiPointGeomInfo mgi;
mgi.AddPointGeomInfo(gi);
meshing.AddPoint(mesh[pi], pi, &mgi);
cntp++;
glob2loc[pi] = cntp;
}
}
/*
for (int i = 1; i <= mesh.GetNSeg(); i++)
{
Segment & seg = mesh.LineSegment(i);
*/
// for (Segment & seg : mesh.LineSegments())
for (Segment & seg : segments)
//if (seg.si == k)
{
PointGeomInfo gi0, gi1;
gi0.trignum = gi1.trignum = k;
gi0.u = seg.epgeominfo[0].u;
gi0.v = seg.epgeominfo[0].v;
gi1.u = seg.epgeominfo[1].u;
gi1.v = seg.epgeominfo[1].v;
//if(orientation & 1)
meshing.AddBoundaryElement (glob2loc[seg[0]], glob2loc[seg[1]], gi0, gi1);
}
}
else
{
static Timer t("MeshSurface: Find edges and points - Parameter"); RegionTimer r(t);
Array<PointGeomInfo> gis(2*segments.Size());
gis.SetSize (0);
glob2loc = 0;
int cntpt = 0;
Box<2> uv_box(Box<2>::EMPTY_BOX);
for(auto & seg : segments)
for(auto i : Range(2))
uv_box.Add( {seg.epgeominfo[i].u, seg.epgeominfo[i].v } );
BoxTree<2> uv_tree(uv_box);
double tol = 1e99;
for(auto& seg : segments)
{
Point<2> p1 = { seg.epgeominfo[0].u, seg.epgeominfo[0].v };
Point<2> p2 = { seg.epgeominfo[1].u, seg.epgeominfo[1].v };
tol = min2(tol, Dist(p1, p2));
}
uv_tree.SetTolerance(0.9 * tol);
Array<int> found_points;
for(auto & seg : segments)
{
PointGeomInfo gi[2];
gi[0].trignum = gi[1].trignum = k;
gi[0].u = seg.epgeominfo[0].u;
gi[0].v = seg.epgeominfo[0].v;
gi[1].u = seg.epgeominfo[1].u;
gi[1].v = seg.epgeominfo[1].v;
int locpnum[2] = {0, 0};
for (int j = 0; j < 2; j++)
{
Point<2> uv = {gi[j].u, gi[j].v};
uv_tree.GetIntersecting(uv, uv, found_points);
bool found = false;
for(auto& fp : found_points)
{
if(meshing.GetGlobalIndex(fp - 1) == seg[j])
{
locpnum[j] = fp;
found = true;
}
}
if(!found)
{
PointIndex pi = seg[j];
locpnum[j] = meshing.AddPoint (mesh.Point(pi), pi) + 1;
glob2loc[pi] = locpnum[j];
gis.Append (gi[j]);
uv_tree.Insert(uv, locpnum[j]);
}
}
meshing.AddBoundaryElement (locpnum[0], locpnum[1], gi[0], gi[1]);
}
for(const auto& vert : geom.GetFaceVertices(geom.GetFace(k-1)))
{
PointIndex pi = vert->nr + 1;
if(glob2loc[pi] == 0)
{
auto gi = occface.Project(mesh[pi]);
MultiPointGeomInfo mgi;
mgi.AddPointGeomInfo(gi);
glob2loc[pi] = meshing.AddPoint(mesh[pi], pi, &mgi) + 1;
gis.Append(gi);
Point<2> uv = { gi.u, gi.v };
uv_tree.Insert(uv, glob2loc[pi]);
}
}
}
// Philippose - 15/01/2009
auto& props = OCCGeometry::GetProperties(geom.fmap(k));
double maxh = min2(geom.face_maxh[k-1], props.maxh);
//double maxh = mparam.maxh;
// int noldpoints = mesh->GetNP();
int noldsurfel = mesh.GetNSE();
int layer = props.layer;
static Timer tsurfprop("surfprop");
tsurfprop.Start();
GProp_GProps sprops;
BRepGProp::SurfaceProperties(TopoDS::Face(geom.fmap(k)),sprops);
tsurfprop.Stop();
meshing.SetMaxArea(2.*sprops.Mass());
MESHING2_RESULT res;
// TODO: check overlap not correctly working here
MeshingParameters mparam_without_overlap = mparam;
mparam_without_overlap.checkoverlap = false;
try {
static Timer t("GenerateMesh"); RegionTimer reg(t);
res = meshing.GenerateMesh (mesh, mparam_without_overlap, maxh, k, layer);
}
catch (SingularMatrixException)
{
// (*myerr) << "Singular Matrix" << endl;
res = MESHING2_GIVEUP;
}
catch (UVBoundsException)
{
// (*myerr) << "UV bounds exceeded" << endl;
res = MESHING2_GIVEUP;
}
static Timer t1("rest of loop"); RegionTimer reg1(t1);
bool meshing_failed = res != MESHING2_OK;
if(meshing_failed && delete_on_failure)
{
for (SurfaceElementIndex sei = noldsurfel; sei < mesh.GetNSE(); sei++)
mesh.Delete(sei);
mesh.Compress();
}
for (SurfaceElementIndex sei = oldnf; sei < mesh.GetNSE(); sei++)
mesh[sei].SetIndex (k);
auto n_illegal_trigs = mesh.FindIllegalTrigs();
PrintMessage (3, n_illegal_trigs, " illegal triangles");
return meshing_failed;
}
void OCCSetLocalMeshSize(const OCCGeometry & geom, Mesh & mesh,
const MeshingParameters & mparam, const OCCParameters& occparam)
{
static Timer t1("OCCSetLocalMeshSize");
RegionTimer regt(t1);
mesh.SetGlobalH (mparam.maxh);
mesh.SetMinimalH (mparam.minh);
NgArray<double> maxhdom;
maxhdom.SetSize (geom.NrSolids());
maxhdom = mparam.maxh;
int maxlayer = 1;
int dom = 0;
for (TopExp_Explorer e(geom.GetShape(), TopAbs_SOLID); e.More(); e.Next(), dom++)
{
auto& props = OCCGeometry::GetProperties(e.Current());
maxhdom[dom] = min2(maxhdom[dom], props.maxh);
maxlayer = max2(maxlayer, props.layer);
}
mesh.SetMaxHDomain (maxhdom);
Box<3> bb = geom.GetBoundingBox();
bb.Increase (bb.Diam()/10);
if (mparam.uselocalh)
{
const char * savetask = multithread.task;
multithread.percent = 0;
for(auto layer : Range(1, maxlayer+1))
mesh.SetLocalH (bb.PMin(), bb.PMax(), mparam.grading, layer);
int nedges = geom.emap.Extent();
double mincurvelength = IGNORECURVELENGTH;
double maxedgelen = 0;
double minedgelen = 1e99;
if(occparam.resthminedgelenenable)
{
mincurvelength = occparam.resthminedgelen;
if(mincurvelength < IGNORECURVELENGTH) mincurvelength = IGNORECURVELENGTH;
}
multithread.task = "Setting local mesh size (elements per edge)";
// Philippose - 23/01/2009
// Find all the parent faces of a given edge
// and limit the mesh size of the edge based on the
// mesh size limit of the face
TopTools_IndexedDataMapOfShapeListOfShape edge_face_map;
edge_face_map.Clear();
TopExp::MapShapesAndAncestors(geom.shape, TopAbs_EDGE, TopAbs_FACE, edge_face_map);
// setting elements per edge
for (int i = 1; i <= nedges && !multithread.terminate; i++)
{
TopoDS_Edge e = TopoDS::Edge (geom.emap(i));
int layer = OCCGeometry::GetProperties(e).layer;
multithread.percent = 100 * (i-1)/double(nedges);
if (BRep_Tool::Degenerated(e)) continue;
double len = Mass(e);
if (len < mincurvelength)
{
(*testout) << "ignored" << endl;
continue;
}
bool is_identified_edge = false;
// TODO: change to use hash value
const auto& gedge = geom.GetEdge(e);
auto& v0 = gedge.GetStartVertex();
auto& v1 = gedge.GetEndVertex();
for(auto & ident : v0.identifications)
{
auto other = ident.from == &v0 ? ident.to : ident.from;
if(other->nr == v1.nr && ident.type == Identifications::CLOSESURFACES)
{
is_identified_edge = true;
break;
}
}
if(is_identified_edge)
continue;
double localh = len/mparam.segmentsperedge;
double s0, s1;
const TopTools_ListOfShape& parent_faces = edge_face_map.FindFromKey(e);
TopTools_ListIteratorOfListOfShape parent_face_list;
for(parent_face_list.Initialize(parent_faces); parent_face_list.More(); parent_face_list.Next())
{
TopoDS_Face parent_face = TopoDS::Face(parent_face_list.Value());
int face_index = geom.fmap.FindIndex(parent_face);
if(face_index >= 1) localh = min(localh,geom.face_maxh[face_index - 1]);
localh = min2(localh, OCCGeometry::GetProperties(parent_face).maxh);
}
Handle(Geom_Curve) c = BRep_Tool::Curve(e, s0, s1);
localh = min2(localh, OCCGeometry::GetProperties(e).maxh);
maxedgelen = max (maxedgelen, len);
minedgelen = min (minedgelen, len);
int maxj = max((int) ceil(len/localh)*2, 2);
for (int j = 0; j <= maxj; j++)
{
gp_Pnt pnt = c->Value (s0+double(j)/maxj*(s1-s0));
mesh.RestrictLocalH (Point3d(pnt.X(), pnt.Y(), pnt.Z()), localh, layer);
}
}
multithread.task = "Setting local mesh size (edge curvature)";
// setting edge curvature
int nsections = 20;
for (int i = 1; i <= nedges && !multithread.terminate; i++)
{
double maxcur = 0;
multithread.percent = 100 * (i-1)/double(nedges);
TopoDS_Edge edge = TopoDS::Edge (geom.emap(i));
int layer = OCCGeometry::GetProperties(edge).layer;
if (BRep_Tool::Degenerated(edge)) continue;
double s0, s1;
Handle(Geom_Curve) c = BRep_Tool::Curve(edge, s0, s1);
BRepAdaptor_Curve brepc(edge);
BRepLProp_CLProps prop(brepc, 2, 1e-5);
for (int j = 1; j <= nsections; j++)
{
double s = s0 + j/(double) nsections * (s1-s0);
prop.SetParameter (s);
double curvature = 0;
if(prop.IsTangentDefined())
curvature = prop.Curvature();
if(curvature> maxcur) maxcur = curvature;
if (curvature >= 1e99)
continue;
gp_Pnt pnt = c->Value (s);
mesh.RestrictLocalH (Point3d(pnt.X(), pnt.Y(), pnt.Z()), ComputeH (fabs(curvature), mparam), layer);
}
}
multithread.task = "Setting local mesh size (face curvature)";
// setting face curvature
int nfaces = geom.fmap.Extent();
for (int i = 1; i <= nfaces && !multithread.terminate; i++)
{
multithread.percent = 100 * (i-1)/double(nfaces);
TopoDS_Face face = TopoDS::Face(geom.fmap(i));
int layer = OCCGeometry::GetProperties(face).layer;
TopLoc_Location loc;
Handle(Geom_Surface) surf = BRep_Tool::Surface (face);
Handle(Poly_Triangulation) triangulation = BRep_Tool::Triangulation (face, loc);
if (triangulation.IsNull())
{
BRepTools::Clean (geom.shape);
BRepMesh_IncrementalMesh (geom.shape, 0.01, true);
triangulation = BRep_Tool::Triangulation (face, loc);
}
BRepAdaptor_Surface sf(face, Standard_True);
// one prop for evaluating and one for derivatives
BRepLProp_SLProps prop(sf, 0, 1e-5);
BRepLProp_SLProps prop2(sf, 2, 1e-5);
int ntriangles = triangulation -> NbTriangles();
for (int j = 1; j <= ntriangles; j++)
{
gp_Pnt p[3];
gp_Pnt2d par[3];
for (int k = 1; k <=3; k++)
{
// int n = triangulation->Triangles()(j)(k);
// p[k-1] = triangulation->Nodes()(n).Transformed(loc);
// par[k-1] = triangulation->UVNodes()(n);
// fix for OCC7.6.0-dev
int n = triangulation->Triangle(j)(k);
p[k-1] = triangulation->Node(n).Transformed(loc);
par[k-1] = triangulation->UVNode(n);
}
//double maxside = 0;
//maxside = max (maxside, p[0].Distance(p[1]));
//maxside = max (maxside, p[0].Distance(p[2]));
//maxside = max (maxside, p[1].Distance(p[2]));
//cout << "\rFace " << i << " pos11 ntriangles " << ntriangles << " maxside " << maxside << flush;
RestrictHTriangle (par[0], par[1], par[2], &prop, &prop2, mesh, 0, 0, layer, mparam);
//cout << "\rFace " << i << " pos12 ntriangles " << ntriangles << flush;
}
}
// setting close edges
if (mparam.closeedgefac.has_value())
{
multithread.task = "Setting local mesh size (close edges)";
int sections = 100;
NgArray<Line> lines(sections*nedges);
/*
BoxTree<3> * searchtree =
new BoxTree<3> (bb.PMin(), bb.PMax());
*/
BoxTree<3> searchtree(bb.PMin(), bb.PMax());
int nlines = 0;
Array<int> edgenumber;
for (int i = 1; i <= nedges && !multithread.terminate; i++)
{
TopoDS_Edge edge = TopoDS::Edge (geom.emap(i));
int layer = OCCGeometry::GetProperties(edge).layer;
if (BRep_Tool::Degenerated(edge)) continue;
double s0, s1;
Handle(Geom_Curve) c = BRep_Tool::Curve(edge, s0, s1);
BRepAdaptor_Curve brepc(edge);
BRepLProp_CLProps prop(brepc, 1, 1e-5);
prop.SetParameter (s0);
gp_Vec d0 = prop.D1().Normalized();
double s_start = s0;
int count = 0;
for (int j = 1; j <= sections; j++)
{
double s = s0 + (s1-s0)*(double)j/(double)sections;
prop.SetParameter (s);
gp_Vec d1 = prop.D1().Normalized();
double cosalpha = fabs(d0*d1);
if ((j == sections) || (cosalpha < cos(10.0/180.0*M_PI)))
{
count++;
gp_Pnt p0 = c->Value (s_start);
gp_Pnt p1 = c->Value (s);
lines[nlines].p0 = Point<3> (p0.X(), p0.Y(), p0.Z());
lines[nlines].p1 = Point<3> (p1.X(), p1.Y(), p1.Z());
lines[nlines].layer = layer;
Box3d box;
box.SetPoint (Point3d(lines[nlines].p0));
box.AddPoint (Point3d(lines[nlines].p1));
searchtree.Insert (box.PMin(), box.PMax(), nlines+1);
nlines++;
edgenumber.Append(i);
s_start = s;
d0 = d1;
}
}
}
NgArray<int> linenums;
auto is_identified_edge = [&](int e0, int e1) {
const auto& edge0 = geom.GetEdge(e0-1);
const auto& edge1 = geom.GetEdge(e1-1);
if(edge0.primary == edge1.primary)
return true;
Array<const GeometryVertex *> v0 = { &edge0.GetStartVertex(), &edge0.GetEndVertex() };
Array<const GeometryVertex *> v1 = { &edge1.GetStartVertex(), &edge1.GetEndVertex() };
for(auto i : Range(2))
for(auto j : Range(2))
if(v0[i]->primary == v1[j]->primary)
return true;
return false;
};
for (int i = 0; i < nlines; i++)
{
multithread.percent = (100*i)/double(nlines);
Line & line = lines[i];
Box3d box;
box.SetPoint (Point3d(line.p0));
box.AddPoint (Point3d(line.p1));
double maxhline = max (mesh.GetH(box.PMin(), line.layer),
mesh.GetH(box.PMax(), line.layer));
box.Increase(maxhline);
double mindist = 1e99;
linenums.SetSize(0);
searchtree.GetIntersecting(box.PMin(),box.PMax(),linenums);
for (int j = 0; j < linenums.Size(); j++)
{
int num = linenums[j]-1;
if (i == num) continue;
if (line.layer != lines[num].layer) continue;
if( is_identified_edge(edgenumber[i], edgenumber[num]) ) continue;
if ((line.p0-lines[num].p0).Length2() < 1e-15) continue;
if ((line.p0-lines[num].p1).Length2() < 1e-15) continue;
if ((line.p1-lines[num].p0).Length2() < 1e-15) continue;
if ((line.p1-lines[num].p1).Length2() < 1e-15) continue;
mindist = min (mindist, line.Dist(lines[num]));
}
mindist /= (*mparam.closeedgefac + VSMALL);
if (mindist < 1e-3 * bb.Diam())
{
(*testout) << "extremely small local h: " << mindist
<< " --> setting to " << 1e-3 * bb.Diam() << endl;
(*testout) << "somewhere near " << line.p0 << " - " << line.p1 << endl;
mindist = 1e-3 * bb.Diam();
}
mesh.RestrictLocalHLine(line.p0, line.p1, mindist, line.layer);
}
}
for (auto mspnt : mparam.meshsize_points)
mesh.RestrictLocalH(mspnt.pnt, mspnt.h, mspnt.layer);
multithread.task = savetask;
}
mesh.LoadLocalMeshSize (mparam.meshsizefilename);
}
}
#endif