mirror of
https://github.com/NGSolve/netgen.git
synced 2025-01-09 12:40:33 +05:00
b694b4667a
move fieldlines code to meshing dir move visualization function pointers to meshing directory DLL_HEADER -> NGGUI_API in visualization lib move soldata.hpp to meshing update occ, no freetype necessary anymore
810 lines
32 KiB
C++
810 lines
32 KiB
C++
#ifdef NG_PYTHON
|
||
|
||
#include "../general/ngpython.hpp"
|
||
#include "../core/python_ngcore.hpp"
|
||
#include "csg.hpp"
|
||
#include "../meshing/python_mesh.hpp"
|
||
#include "../general/gzstream.h"
|
||
|
||
|
||
using namespace netgen;
|
||
using namespace pybind11::literals;
|
||
|
||
namespace netgen
|
||
{
|
||
extern shared_ptr<NetgenGeometry> ng_geometry;
|
||
}
|
||
|
||
|
||
|
||
// a shadow solid tree using shared pointers.
|
||
|
||
class SPSolid
|
||
{
|
||
shared_ptr<SPSolid> s1, s2;
|
||
Solid * solid;
|
||
int bc = -1;
|
||
string bcname = "";
|
||
double maxh = -1;
|
||
string material;
|
||
bool owner;
|
||
double red = 0, green = 0, blue = 1;
|
||
bool transp = false;
|
||
public:
|
||
enum optyp { TERM, SECTION, UNION, SUB, EXISTING };
|
||
|
||
SPSolid (Solid * as) : solid(as), owner(true), op(TERM) { ; }
|
||
SPSolid (Solid * as, int /*dummy*/)
|
||
: solid(as), owner(false), op(EXISTING) { ; }
|
||
~SPSolid ()
|
||
{
|
||
; // if (owner) delete solid;
|
||
}
|
||
SPSolid (optyp aop, shared_ptr<SPSolid> as1, shared_ptr<SPSolid> as2)
|
||
: s1(as1), s2(as2), owner(true), op(aop)
|
||
{
|
||
if (aop == UNION)
|
||
solid = new Solid (Solid::UNION, s1->GetSolid(), s2->GetSolid());
|
||
else if (aop == SECTION)
|
||
solid = new Solid (Solid::SECTION, s1->GetSolid(), s2->GetSolid());
|
||
else if (aop == SUB)
|
||
solid = new Solid (Solid::SUB, s1->GetSolid()); // , s2->GetSolid());
|
||
}
|
||
|
||
Solid * GetSolid() { return solid; }
|
||
const Solid * GetSolid() const { return solid; }
|
||
|
||
void GiveUpOwner()
|
||
{
|
||
owner = false;
|
||
if (s1) s1 -> GiveUpOwner();
|
||
if (s2) s2 -> GiveUpOwner();
|
||
}
|
||
|
||
void AddSurfaces(CSGeometry & geom)
|
||
{
|
||
if (op == TERM)
|
||
geom.AddSurfaces (solid->GetPrimitive());
|
||
if (s1) s1 -> AddSurfaces (geom);
|
||
if (s2) s2 -> AddSurfaces (geom);
|
||
}
|
||
|
||
void SetMaterial (string mat) { material = mat; }
|
||
|
||
string GetMaterial ()
|
||
{
|
||
if (!material.empty()) return material;
|
||
if (s1)
|
||
{
|
||
string s1mat = s1->GetMaterial();
|
||
if (!s1mat.empty()) return s1mat;
|
||
}
|
||
if (s2)
|
||
{
|
||
string s2mat = s2->GetMaterial();
|
||
if (!s2mat.empty()) return s2mat;
|
||
}
|
||
return material;
|
||
}
|
||
|
||
void SetBC(int abc)
|
||
{
|
||
if (bc == -1)
|
||
{
|
||
bc = abc;
|
||
if (s1) s1 -> SetBC(bc);
|
||
if (s2) s2 -> SetBC(bc);
|
||
if (op == TERM)
|
||
{
|
||
Primitive * prim = solid -> GetPrimitive();
|
||
for (int i = 0; i < prim->GetNSurfaces(); i++)
|
||
prim->GetSurface(i).SetBCProperty (abc);
|
||
// cout << "set " << prim->GetNSurfaces() << " surfaces to bc " << bc << endl;
|
||
}
|
||
}
|
||
}
|
||
|
||
void SetBCName(string name)
|
||
{
|
||
if (bcname == "")
|
||
{
|
||
bcname = name;
|
||
if (s1) s1 -> SetBCName(name);
|
||
if (s2) s2 -> SetBCName(name);
|
||
if (op == TERM)
|
||
{
|
||
Primitive * prim = solid -> GetPrimitive();
|
||
for (int i = 0; i < prim->GetNSurfaces(); i++)
|
||
prim->GetSurface(i).SetBCName (name);
|
||
// cout << "set " << prim->GetNSurfaces() << " surfaces to bc " << bc << endl;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
void SetMaxH(double amaxh)
|
||
{
|
||
if (maxh == -1)
|
||
{
|
||
maxh = amaxh;
|
||
if (s1) s1 -> SetMaxH(maxh);
|
||
if (s2) s2 -> SetMaxH(maxh);
|
||
if (op == TERM)
|
||
{
|
||
Primitive * prim = solid -> GetPrimitive();
|
||
for (int i = 0; i < prim->GetNSurfaces(); i++)
|
||
prim->GetSurface(i).SetMaxH (maxh);
|
||
}
|
||
}
|
||
}
|
||
|
||
void SetColor(double ared, double agreen, double ablue)
|
||
{
|
||
red = ared;
|
||
green = agreen;
|
||
blue = ablue;
|
||
}
|
||
|
||
double GetRed() const { return red; }
|
||
double GetGreen() const { return green; }
|
||
double GetBlue() const { return blue; }
|
||
|
||
void SetTransparent() { transp = true; }
|
||
bool IsTransparent() { return transp; }
|
||
|
||
private:
|
||
optyp op;
|
||
};
|
||
|
||
inline ostream & operator<< (ostream & ost, const SPSolid & sol)
|
||
{
|
||
ost << *sol.GetSolid();
|
||
return ost;
|
||
}
|
||
|
||
namespace netgen
|
||
{
|
||
extern CSGeometry * ParseCSG (istream & istr, CSGeometry *instance=nullptr);
|
||
}
|
||
|
||
|
||
|
||
DLL_HEADER void ExportCSG(py::module &m)
|
||
{
|
||
py::class_<SplineGeometry<2>, shared_ptr<SplineGeometry<2>>>
|
||
(m, "SplineCurve2d")
|
||
.def(py::init<>())
|
||
.def ("AddPoint", FunctionPointer
|
||
([] (SplineGeometry<2> & self, double x, double y)
|
||
{
|
||
self.geompoints.Append (GeomPoint<2> (Point<2> (x,y)));
|
||
return self.geompoints.Size()-1;
|
||
}))
|
||
.def ("AddSegment", [] (SplineGeometry<2> & self, int i1, int i2,
|
||
string bcname, double maxh)
|
||
{
|
||
self.splines.Append (new LineSeg<2> (self.geompoints[i1], self.geompoints[i2], maxh, bcname));
|
||
}, "p1"_a, "p2"_a, "bcname"_a="default", "maxh"_a=1e99)
|
||
.def ("AddSegment", [] (SplineGeometry<2> & self, int i1, int i2,
|
||
int i3, string bcname, double maxh)
|
||
{
|
||
self.splines.Append (new SplineSeg3<2> (self.geompoints[i1], self.geompoints[i2], self.geompoints[i3], bcname, maxh));
|
||
}, "p1"_a, "p2"_a, "p3"_a, "bcname"_a="default", "maxh"_a=1e99)
|
||
;
|
||
|
||
py::class_<SplineGeometry<3>,shared_ptr<SplineGeometry<3>>> (m,"SplineCurve3d")
|
||
.def(py::init<>())
|
||
.def ("AddPoint", FunctionPointer
|
||
([] (SplineGeometry<3> & self, double x, double y, double z)
|
||
{
|
||
self.geompoints.Append (GeomPoint<3> (Point<3> (x,y,z)));
|
||
return self.geompoints.Size()-1;
|
||
}))
|
||
.def ("AddSegment", FunctionPointer
|
||
([] (SplineGeometry<3> & self, int i1, int i2)
|
||
{
|
||
self.splines.Append (new LineSeg<3> (self.geompoints[i1], self.geompoints[i2]));
|
||
}))
|
||
.def ("AddSegment", FunctionPointer
|
||
([] (SplineGeometry<3> & self, int i1, int i2, int i3)
|
||
{
|
||
self.splines.Append (new SplineSeg3<3> (self.geompoints[i1], self.geompoints[i2], self.geompoints[i3]));
|
||
}))
|
||
;
|
||
|
||
py::class_<SplineSurface, shared_ptr<SplineSurface>> (m, "SplineSurface",
|
||
"A surface for co dim 2 integrals on the splines")
|
||
.def(py::init([](shared_ptr<SPSolid> base, py::list cuts)
|
||
{
|
||
auto primitive = dynamic_cast<OneSurfacePrimitive*> (base->GetSolid()->GetPrimitive());
|
||
auto acuts = make_shared<NgArray<shared_ptr<OneSurfacePrimitive>>>();
|
||
for(int i = 0; i<py::len(cuts);i++)
|
||
{
|
||
py::extract<shared_ptr<SPSolid>> sps(cuts[i]);
|
||
if(!sps.check())
|
||
throw NgException("Cut must be SurfacePrimitive in constructor of SplineSurface!");
|
||
auto sp = dynamic_cast<OneSurfacePrimitive*>(sps()->GetSolid()->GetPrimitive());
|
||
if(sp)
|
||
acuts->Append(shared_ptr<OneSurfacePrimitive>(sp));
|
||
else
|
||
throw Exception("Cut must be SurfacePrimitive in constructor of SplineSurface!");
|
||
}
|
||
if(!primitive)
|
||
throw Exception("Base is not a SurfacePrimitive in constructor of SplineSurface!");
|
||
return make_shared<SplineSurface>(shared_ptr<OneSurfacePrimitive>(primitive),acuts);
|
||
}),py::arg("base"), py::arg("cuts")=py::list())
|
||
.def("AddPoint", FunctionPointer
|
||
([] (SplineSurface & self, double x, double y, double z, bool hpref)
|
||
{
|
||
self.AppendPoint(Point<3>(x,y,z),hpref);
|
||
return self.GetNP()-1;
|
||
}),
|
||
py::arg("x"),py::arg("y"),py::arg("z"),py::arg("hpref")=false)
|
||
.def("AddSegment", [] (SplineSurface & self, int i1, int i2, string bcname, double maxh)
|
||
{
|
||
auto seg = make_shared<LineSeg<3>>(self.GetPoint(i1),self.GetPoint(i2));
|
||
self.AppendSegment(seg,bcname,maxh);
|
||
},
|
||
py::arg("pnt1"),py::arg("pnt2"),py::arg("bcname")="default", py::arg("maxh")=-1.)
|
||
.def("AddSegment", [] (SplineSurface& self, int i1, int i2, int i3, string bcname, double maxh)
|
||
{
|
||
auto seg = make_shared<SplineSeg3<3>>(self.GetPoint(i1), self.GetPoint(i2), self.GetPoint(i3));
|
||
self.AppendSegment(seg, bcname, maxh);
|
||
}, py::arg("pnt1"),py::arg("pnt2"), py::arg("pnt3"),py::arg("bcname")="default", py::arg("maxh")=-1.)
|
||
;
|
||
|
||
py::class_<SPSolid, shared_ptr<SPSolid>> (m, "Solid")
|
||
.def ("__str__", &ToString<SPSolid>)
|
||
.def ("__add__", FunctionPointer( [] ( shared_ptr<SPSolid> self, shared_ptr<SPSolid> other) { return make_shared<SPSolid> (SPSolid::UNION, self, other); }))
|
||
.def ("__mul__", FunctionPointer( [] ( shared_ptr<SPSolid> self, shared_ptr<SPSolid> other) { return make_shared<SPSolid> (SPSolid::SECTION, self, other); }))
|
||
.def ("__sub__", FunctionPointer
|
||
([] ( shared_ptr<SPSolid> self, shared_ptr<SPSolid> other)
|
||
{ return make_shared<SPSolid> (SPSolid::SECTION, self,
|
||
make_shared<SPSolid> (SPSolid::SUB, other, nullptr)); }))
|
||
|
||
.def ("bc", FunctionPointer([](shared_ptr<SPSolid> & self, int nr) -> shared_ptr<SPSolid>
|
||
{ self->SetBC(nr); return self; }))
|
||
.def ("bc", FunctionPointer([](shared_ptr<SPSolid> & self, string name) -> shared_ptr<SPSolid>
|
||
{ self->SetBCName(name); return self; }))
|
||
.def ("maxh", FunctionPointer([](shared_ptr<SPSolid> & self, double maxh) -> shared_ptr<SPSolid>
|
||
{ self->SetMaxH(maxh); return self; }))
|
||
.def ("mat", FunctionPointer([](shared_ptr<SPSolid> & self, string mat) -> shared_ptr<SPSolid>
|
||
{ self->SetMaterial(mat); return self; }))
|
||
.def ("mat", &SPSolid::GetMaterial)
|
||
.def("col", FunctionPointer([](shared_ptr<SPSolid> & self, py::list rgb) -> shared_ptr<SPSolid>
|
||
{
|
||
py::extract<double> red(rgb[0]);
|
||
py::extract<double> green(rgb[1]);
|
||
py::extract<double> blue(rgb[2]);
|
||
self->SetColor(red(),green(),blue());
|
||
return self;
|
||
}))
|
||
.def("transp", FunctionPointer([](shared_ptr<SPSolid> & self)->shared_ptr < SPSolid > { self->SetTransparent(); return self; }))
|
||
;
|
||
|
||
m.def ("Sphere", FunctionPointer([](Point<3> c, double r)
|
||
{
|
||
Sphere * sp = new Sphere (c, r);
|
||
Solid * sol = new Solid (sp);
|
||
return make_shared<SPSolid> (sol);
|
||
}));
|
||
m.def ("Ellipsoid", FunctionPointer([](Point<3> m, Vec<3> a, Vec<3> b, Vec<3> c)
|
||
{
|
||
Ellipsoid * ell = new Ellipsoid (m, a, b, c);
|
||
Solid * sol = new Solid (ell);
|
||
return make_shared<SPSolid> (sol);
|
||
}));
|
||
m.def ("Plane", FunctionPointer([](Point<3> p, Vec<3> n)
|
||
{
|
||
Plane * sp = new Plane (p,n);
|
||
Solid * sol = new Solid (sp);
|
||
return make_shared<SPSolid> (sol);
|
||
}));
|
||
m.def ("Cone", FunctionPointer([](Point<3> a, Point<3> b, double ra, double rb)
|
||
{
|
||
Cone * cyl = new Cone (a, b, ra, rb);
|
||
Solid * sol = new Solid (cyl);
|
||
return make_shared<SPSolid> (sol);
|
||
}));
|
||
m.def ("Cylinder", FunctionPointer([](Point<3> a, Point<3> b, double r)
|
||
{
|
||
Cylinder * cyl = new Cylinder (a, b, r);
|
||
Solid * sol = new Solid (cyl);
|
||
return make_shared<SPSolid> (sol);
|
||
}));
|
||
m.def ("OrthoBrick", FunctionPointer([](Point<3> p1, Point<3> p2)
|
||
{
|
||
OrthoBrick * brick = new OrthoBrick (p1,p2);
|
||
Solid * sol = new Solid (brick);
|
||
return make_shared<SPSolid> (sol);
|
||
}));
|
||
m.def ("Torus", FunctionPointer([](Point<3> c, Vec<3> n, double R, double r)
|
||
{
|
||
Torus * torus = new Torus (c,n,R,r);
|
||
Solid * sol = new Solid (torus);
|
||
return make_shared<SPSolid> (sol);
|
||
}));
|
||
m.def ("Revolution", [](Point<3> p1, Point<3> p2,
|
||
shared_ptr<SplineGeometry<2>> spline)
|
||
{
|
||
Revolution * rev = new Revolution (p1, p2, spline);
|
||
Solid * sol = new Solid(rev);
|
||
return make_shared<SPSolid> (sol);
|
||
});
|
||
m.def ("Extrusion", [](shared_ptr<SplineGeometry<3>> path,
|
||
shared_ptr<SplineGeometry<2>> profile,
|
||
Vec<3> d)
|
||
{
|
||
Extrusion * extr = new Extrusion (path,profile,d);
|
||
Solid * sol = new Solid(extr);
|
||
return make_shared<SPSolid> (sol);
|
||
}, py::arg("path"), py::arg("profile"), py::arg("d"),
|
||
R"delimiter(A body of extrusion is defined by its profile
|
||
(which has to be a closed, clockwiseoriented 2D curve),
|
||
by a path (a 3D curve) and a vector d. It is constructed
|
||
as follows: Take a point p on the path and denote the
|
||
(unit-)tangent of the path in this point by t. If we cut
|
||
the body by the plane given by p and t as normal vector,
|
||
the cut is the profile. The profile is oriented by the
|
||
(local) y-direction `y:=d−(d·t)t` and the (local) x-direction
|
||
`x:=t \times y`.
|
||
The following points have to be noticed:
|
||
* If the path is not closed, then also the body is NOT closed.
|
||
In this case e.g. planes or orthobricks have to be used to
|
||
construct a closed body.
|
||
* The path has to be smooth, i.e. the tangents at the end- resp.
|
||
start-point of two consecutive spline or line patches have to
|
||
have the same directions.
|
||
)delimiter");
|
||
m.def("EllipticCone", [](const Point<3>& a, const Vec<3>& v, const Vec<3>& w,
|
||
double h, double r)
|
||
{
|
||
auto ellcone = new EllipticCone(a,v,w,h,r);
|
||
auto sol = new Solid(ellcone);
|
||
return make_shared<SPSolid>(sol);
|
||
}, py::arg("a"), py::arg("vl"), py::arg("vs"), py::arg("h"), py::arg("r"),
|
||
R"raw_string(
|
||
An elliptic cone, given by the point 'a' at the base of the cone along the main axis,
|
||
the vectors v and w of the long and short axis of the ellipse, respectively,
|
||
the height of the cone, h, and ratio of base long axis length to top long axis length, r
|
||
|
||
Note: The elliptic cone has to be truncated by planes similar to a cone or an elliptic cylinder.
|
||
When r =1, the truncated elliptic cone becomes an elliptic cylinder.
|
||
When r tends to zero, the truncated elliptic cone tends to a full elliptic cone.
|
||
However, when r = 0, the top part becomes a point(tip) and meshing fails!
|
||
)raw_string");
|
||
|
||
m.def("Polyhedron", [](py::list points, py::list faces)
|
||
{
|
||
auto poly = new Polyhedra();
|
||
for(auto p : points)
|
||
poly->AddPoint(py::cast<Point<3>>(p));
|
||
int fnr = 0;
|
||
for(auto face : faces)
|
||
{
|
||
auto lface = py::cast<py::list>(face);
|
||
if(py::len(lface) == 3)
|
||
poly->AddFace(py::cast<int>(lface[0]),
|
||
py::cast<int>(lface[1]),
|
||
py::cast<int>(lface[2]),
|
||
fnr++);
|
||
else if(py::len(lface) == 4)
|
||
{
|
||
poly->AddFace(py::cast<int>(lface[0]),
|
||
py::cast<int>(lface[1]),
|
||
py::cast<int>(lface[2]),
|
||
fnr);
|
||
poly->AddFace(py::cast<int>(lface[0]),
|
||
py::cast<int>(lface[2]),
|
||
py::cast<int>(lface[3]),
|
||
fnr++);
|
||
}
|
||
}
|
||
return make_shared<SPSolid>(new Solid(poly));
|
||
});
|
||
|
||
m.def ("Or", FunctionPointer([](shared_ptr<SPSolid> s1, shared_ptr<SPSolid> s2)
|
||
{
|
||
return make_shared<SPSolid> (SPSolid::UNION, s1, s2);
|
||
}));
|
||
m.def ("And", FunctionPointer([](shared_ptr<SPSolid> s1, shared_ptr<SPSolid> s2)
|
||
{
|
||
return make_shared<SPSolid> (SPSolid::SECTION, s1, s2);
|
||
}));
|
||
|
||
|
||
py::class_<CSGeometry, NetgenGeometry, shared_ptr<CSGeometry>> (m, "CSGeometry")
|
||
.def(py::init<>())
|
||
.def(py::init([](const string& filename)
|
||
{
|
||
ifstream ist (filename);
|
||
auto geo = make_shared<CSGeometry>();
|
||
ParseCSG(ist, geo.get());
|
||
geo->FindIdenticSurfaces(1e-8 * geo->MaxSize());
|
||
return geo;
|
||
}), py::arg("filename"))
|
||
.def(NGSPickle<CSGeometry>())
|
||
.def("Save", FunctionPointer([] (CSGeometry & self, string filename)
|
||
{
|
||
cout << "save geometry to file " << filename << endl;
|
||
self.Save (filename);
|
||
}))
|
||
.def("Add",
|
||
[] (CSGeometry & self, shared_ptr<SPSolid> solid, py::list bcmod, double maxh,
|
||
py::tuple col, bool transparent, int layer)
|
||
{
|
||
solid->AddSurfaces (self);
|
||
solid->GiveUpOwner();
|
||
int tlonr = self.SetTopLevelObject (solid->GetSolid());
|
||
self.GetTopLevelObject(tlonr) -> SetMaterial(solid->GetMaterial());
|
||
self.GetTopLevelObject(tlonr) -> SetRGB(solid->GetRed(),solid->GetGreen(),solid->GetBlue());
|
||
// self.GetTopLevelObject(tlonr)->SetTransparent(solid->IsTransparent());
|
||
self.GetTopLevelObject(tlonr)->SetTransparent(transparent);
|
||
self.GetTopLevelObject(tlonr)->SetMaxH(maxh);
|
||
self.GetTopLevelObject(tlonr)->SetLayer(layer);
|
||
|
||
// cout << "rgb = " << py::len(rgb) << endl;
|
||
if (py::len(col)==3)
|
||
self.GetTopLevelObject(tlonr) -> SetRGB(py::cast<double>(col[0]),
|
||
py::cast<double>(col[1]),
|
||
py::cast<double>(col[2]));
|
||
|
||
// bcmod is list of tuples ( solid, bcnr )
|
||
for (int i = 0; i < py::len(bcmod); i++)
|
||
{
|
||
py::tuple tup = py::extract<py::tuple> (bcmod[i]) ();
|
||
auto mod_solid = py::extract<shared_ptr<SPSolid>> (tup[0]) ();
|
||
int mod_nr = -1;
|
||
string * bcname = nullptr;
|
||
py::object val = tup[1];
|
||
if (py::extract<int>(val).check()) mod_nr = py::extract<int> (val)();
|
||
if (py::extract<string>(val).check()) bcname = new string ( py::extract<string> (val)());
|
||
|
||
NgArray<int> si;
|
||
mod_solid -> GetSolid() -> GetSurfaceIndices (si);
|
||
// cout << "change bc on surfaces: " << si << " to " << mod_nr << endl;
|
||
|
||
for (int j = 0; j < si.Size(); j++)
|
||
{
|
||
CSGeometry::BCModification bcm;
|
||
bcm.bcname = bcname ? new string (*bcname) : nullptr;
|
||
bcm.tlonr = tlonr;
|
||
bcm.si = si[j];
|
||
bcm.bcnr = mod_nr;
|
||
self.bcmodifications.Append (bcm);
|
||
}
|
||
delete bcname;
|
||
}
|
||
return tlonr;
|
||
},
|
||
py::arg("solid"), py::arg("bcmod")=py::list(), py::arg("maxh")=1e99,
|
||
py::arg("col")=py::tuple(), py::arg("transparent")=false, py::arg("layer")=1
|
||
)
|
||
|
||
.def("AddSurface", FunctionPointer
|
||
([] (CSGeometry & self, shared_ptr<SPSolid> surface, shared_ptr<SPSolid> solid)
|
||
{
|
||
solid->AddSurfaces (self);
|
||
solid->GiveUpOwner();
|
||
Surface & surf = surface->GetSolid()->GetPrimitive()->GetSurface();
|
||
int tlonr = self.SetTopLevelObject (solid->GetSolid(), &surf);
|
||
// self.GetTopLevelObject(tlonr) -> SetMaterial(solid->GetMaterial());
|
||
self.GetTopLevelObject(tlonr) -> SetBCProp(surf.GetBCProperty());
|
||
self.GetTopLevelObject(tlonr) -> SetBCName(surf.GetBCName());
|
||
|
||
self.GetTopLevelObject(tlonr) -> SetRGB(solid->GetRed(),solid->GetGreen(),solid->GetBlue());
|
||
self.GetTopLevelObject(tlonr)->SetTransparent(solid->IsTransparent());
|
||
}),
|
||
py::arg("surface"), py::arg("solid")
|
||
)
|
||
.def("AddSplineSurface", FunctionPointer
|
||
([] (CSGeometry & self, shared_ptr<SplineSurface> surf)
|
||
{
|
||
auto cuttings = surf->CreateCuttingSurfaces();
|
||
auto spsol = make_shared<SPSolid>(new Solid(surf.get()));
|
||
for(auto cut : (*cuttings)){
|
||
spsol = make_shared<SPSolid>(SPSolid::SECTION,spsol,make_shared<SPSolid>(new Solid(cut.get())));
|
||
}
|
||
spsol->AddSurfaces(self);
|
||
int tlonr = self.SetTopLevelObject(spsol->GetSolid(), surf.get());
|
||
self.GetTopLevelObject(tlonr) -> SetBCProp(surf->GetBase()->GetBCProperty());
|
||
self.GetTopLevelObject(tlonr) -> SetBCName(surf->GetBase()->GetBCName());
|
||
self.GetTopLevelObject(tlonr) -> SetMaxH(surf->GetBase()->GetMaxH());
|
||
NgArray<Point<3>> non_midpoints;
|
||
for(auto spline : surf->GetSplines())
|
||
{
|
||
non_midpoints.Append(spline->GetPoint(0));
|
||
}
|
||
for(auto p : non_midpoints)
|
||
self.AddUserPoint(p);
|
||
self.AddSplineSurface(surf);
|
||
}),
|
||
py::arg("SplineSurface"))
|
||
.def("SingularFace", [] (CSGeometry & self, shared_ptr<SPSolid> sol, shared_ptr<SPSolid> surfaces, double factor)
|
||
{
|
||
int tlonum = -1;
|
||
for (int i = 0; i < self.GetNTopLevelObjects(); i++)
|
||
if (self.GetTopLevelObject(i)->GetSolid() == sol->GetSolid())
|
||
tlonum = i;
|
||
if (tlonum == -1) throw NgException("not a top-level-object");
|
||
if (!surfaces) surfaces = sol;
|
||
auto singface = new SingularFace(tlonum+1, surfaces->GetSolid(), factor);
|
||
self.singfaces.Append(singface);
|
||
}, py::arg("solid"), py::arg("surfaces")=nullptr, py::arg("factor")=0.25)
|
||
.def("SingularEdge", [] (CSGeometry & self, shared_ptr<SPSolid> s1,shared_ptr<SPSolid> s2, double factor)
|
||
{
|
||
auto singedge = new SingularEdge(1, -1, self, s1->GetSolid(), s2->GetSolid(), factor);
|
||
self.singedges.Append (singedge);
|
||
})
|
||
.def("SingularPoint", [] (CSGeometry & self, shared_ptr<SPSolid> s1,shared_ptr<SPSolid> s2,
|
||
shared_ptr<SPSolid> s3, double factor)
|
||
{
|
||
auto singpoint = new SingularPoint(1, s1->GetSolid(), s2->GetSolid(), s3->GetSolid(), factor);
|
||
self.singpoints.Append (singpoint);
|
||
})
|
||
.def("CloseSurfaces", FunctionPointer
|
||
([] (CSGeometry & self, shared_ptr<SPSolid> s1, shared_ptr<SPSolid> s2, py::list aslices )
|
||
{
|
||
NgArray<int> si1, si2;
|
||
s1->GetSolid()->GetSurfaceIndices (si1);
|
||
s2->GetSolid()->GetSurfaceIndices (si2);
|
||
Flags flags;
|
||
|
||
try
|
||
{
|
||
int n = py::len(aslices);
|
||
Array<double> slices(n);
|
||
for(int i=0; i<n; i++)
|
||
{
|
||
slices[i]= py::extract<double>(aslices[i])();
|
||
}
|
||
flags.SetFlag("slices", slices);
|
||
}
|
||
catch( py::error_already_set const & ) {
|
||
cout << "caught python error:" << endl;
|
||
PyErr_Print();
|
||
}
|
||
|
||
const TopLevelObject * domain = nullptr;
|
||
self.AddIdentification
|
||
(new CloseSurfaceIdentification
|
||
(self.GetNIdentifications()+1, self,
|
||
self.GetSurface (si1[0]), self.GetSurface (si2[0]),
|
||
domain,
|
||
flags));
|
||
}),
|
||
py::arg("solid1"), py::arg("solid2"), py::arg("slices")
|
||
)
|
||
.def("CloseSurfaces", FunctionPointer
|
||
([] (CSGeometry & self, shared_ptr<SPSolid> s1, shared_ptr<SPSolid> s2,
|
||
int reflevels, shared_ptr<SPSolid> domain_solid)
|
||
{
|
||
NgArray<int> si1, si2;
|
||
s1->GetSolid()->GetSurfaceIndices (si1);
|
||
s2->GetSolid()->GetSurfaceIndices (si2);
|
||
cout << "surface ids1 = " << si1 << endl;
|
||
cout << "surface ids2 = " << si2 << endl;
|
||
|
||
Flags flags;
|
||
const TopLevelObject * domain = nullptr;
|
||
if (domain_solid)
|
||
domain = self.GetTopLevelObject(domain_solid->GetSolid());
|
||
|
||
self.AddIdentification
|
||
(new CloseSurfaceIdentification
|
||
(self.GetNIdentifications()+1, self,
|
||
self.GetSurface (si1[0]), self.GetSurface (si2[0]),
|
||
domain,
|
||
flags));
|
||
}),
|
||
py::arg("solid1"), py::arg("solid2"), py::arg("reflevels")=2, py::arg("domain")=nullptr
|
||
)
|
||
|
||
.def("PeriodicSurfaces", FunctionPointer
|
||
([] (CSGeometry & self, shared_ptr<SPSolid> s1, shared_ptr<SPSolid> s2,
|
||
Transformation<3> trafo)
|
||
{
|
||
NgArray<int> si1, si2;
|
||
s1->GetSolid()->GetSurfaceIndices (si1);
|
||
s2->GetSolid()->GetSurfaceIndices (si2);
|
||
cout << "identify surfaces " << si1[0] << " and " << si2[0] << endl;
|
||
self.AddIdentification
|
||
(new PeriodicIdentification
|
||
(self.GetNIdentifications()+1, self,
|
||
self.GetSurface (si1[0]), self.GetSurface (si2[0]),
|
||
trafo));
|
||
}),
|
||
py::arg("solid1"), py::arg("solid2"),
|
||
py::arg("trafo")=Transformation<3>(Vec<3>(0,0,0))
|
||
)
|
||
.def("NameEdge", [] (CSGeometry & self, shared_ptr<SPSolid> s1, shared_ptr<SPSolid> s2, string name)
|
||
{
|
||
Array<Surface*> surfs1, surfs2;
|
||
s1->GetSolid()->ForEachSurface( [&surfs1] (Surface * s, bool inv) { surfs1.Append(s); });
|
||
s2->GetSolid()->ForEachSurface( [&surfs2] (Surface * s, bool inv) { surfs2.Append(s); });
|
||
for (auto s1 : surfs1)
|
||
for (auto s2 : surfs2)
|
||
self.named_edges[tuple(s1,s2)] = name;
|
||
})
|
||
|
||
.def("AddPoint", [] (CSGeometry & self, Point<3> p, variant<int,string> index) -> CSGeometry&
|
||
{
|
||
if (auto pint = std::get_if<int> (&index))
|
||
self.AddUserPoint(CSGeometry::UserPoint(p, *pint));
|
||
if (auto pstr = std::get_if<string> (&index))
|
||
self.AddUserPoint(CSGeometry::UserPoint(p, *pstr));
|
||
return self;
|
||
})
|
||
|
||
.def("GetTransparent", FunctionPointer
|
||
([] (CSGeometry & self, int tlonr)
|
||
{
|
||
return self.GetTopLevelObject(tlonr)->GetTransparent();
|
||
}),
|
||
py::arg("tlonr")
|
||
)
|
||
.def("SetTransparent", FunctionPointer
|
||
([] (CSGeometry & self, int tlonr, bool transparent)
|
||
{
|
||
self.GetTopLevelObject(tlonr)->SetTransparent(transparent);
|
||
}),
|
||
py::arg("tlonr"), py::arg("transparent")
|
||
)
|
||
|
||
.def("GetVisible", FunctionPointer
|
||
([] (CSGeometry & self, int tlonr)
|
||
{
|
||
return self.GetTopLevelObject(tlonr)->GetVisible();
|
||
}),
|
||
py::arg("tlonr")
|
||
)
|
||
.def("SetVisible", FunctionPointer
|
||
([] (CSGeometry & self, int tlonr, bool visible)
|
||
{
|
||
self.GetTopLevelObject(tlonr)->SetVisible(visible);
|
||
}),
|
||
py::arg("tlonr"), py::arg("visible")
|
||
)
|
||
.def("SetBoundingBox", FunctionPointer
|
||
([] (CSGeometry & self, Point<3> pmin, Point<3> pmax)
|
||
{
|
||
self.SetBoundingBox(Box<3> (pmin, pmax));
|
||
}),
|
||
py::arg("pmin"), py::arg("pmax")
|
||
)
|
||
.def("Draw", FunctionPointer
|
||
([] (shared_ptr<CSGeometry> self)
|
||
{
|
||
self->FindIdenticSurfaces(1e-6);
|
||
self->CalcTriangleApproximation(0.01, 20);
|
||
ng_geometry = self;
|
||
})
|
||
)
|
||
.def("GetSolids", [](CSGeometry& self)
|
||
{
|
||
py::list lst;
|
||
for(auto i : Range(self.GetSolids().Size()))
|
||
lst.append(make_shared<SPSolid>(self.GetSolids()[i], 1234));
|
||
return lst;
|
||
})
|
||
.def_property_readonly ("ntlo", &CSGeometry::GetNTopLevelObjects)
|
||
.def("_visualizationData", [](shared_ptr<CSGeometry> csg_geo)
|
||
{
|
||
std::vector<float> vertices;
|
||
std::vector<int> trigs;
|
||
std::vector<float> normals;
|
||
std::vector<float> min = {std::numeric_limits<float>::max(),
|
||
std::numeric_limits<float>::max(),
|
||
std::numeric_limits<float>::max()};
|
||
std::vector<float> max = {std::numeric_limits<float>::lowest(),
|
||
std::numeric_limits<float>::lowest(),
|
||
std::numeric_limits<float>::lowest()};
|
||
std::vector<string> surfnames;
|
||
for (int i = 0; i < csg_geo->GetNSurf(); i++)
|
||
{
|
||
auto surf = csg_geo->GetSurface(i);
|
||
surfnames.push_back(surf->GetBCName());
|
||
}
|
||
csg_geo->FindIdenticSurfaces(1e-6);
|
||
csg_geo->CalcTriangleApproximation(0.01,100);
|
||
auto nto = csg_geo->GetNTopLevelObjects();
|
||
size_t np = 0;
|
||
size_t ntrig = 0;
|
||
for (int i = 0; i < nto; i++){
|
||
np += csg_geo->GetTriApprox(i)->GetNP();
|
||
ntrig += csg_geo->GetTriApprox(i)->GetNT();
|
||
}
|
||
vertices.reserve(np*3);
|
||
trigs.reserve(ntrig*4);
|
||
normals.reserve(np*3);
|
||
int offset_points = 0;
|
||
for (int i = 0; i < nto; i++)
|
||
{
|
||
auto triapprox = csg_geo->GetTriApprox(i);
|
||
for (int j = 0; j < triapprox->GetNP(); j++)
|
||
for(int k = 0; k < 3; k++) {
|
||
float val = triapprox->GetPoint(j)[k];
|
||
vertices.push_back(val);
|
||
min[k] = min2(min[k], val);
|
||
max[k] = max2(max[k],val);
|
||
normals.push_back(triapprox->GetNormal(j)[k]);
|
||
}
|
||
for (int j = 0; j < triapprox->GetNT(); j++)
|
||
{
|
||
for(int k = 0; k < 3; k++)
|
||
trigs.push_back(triapprox->GetTriangle(j)[k]+offset_points);
|
||
trigs.push_back(triapprox->GetTriangle(j).SurfaceIndex());
|
||
}
|
||
offset_points += triapprox->GetNP();
|
||
}
|
||
py::gil_scoped_acquire ac;
|
||
py::dict res;
|
||
py::list snames;
|
||
for(auto name : surfnames)
|
||
snames.append(py::cast(name));
|
||
res["vertices"] = MoveToNumpy(vertices);
|
||
res["triangles"] = MoveToNumpy(trigs);
|
||
res["normals"] = MoveToNumpy(normals);
|
||
res["surfnames"] = snames;
|
||
res["min"] = MoveToNumpy(min);
|
||
res["max"] = MoveToNumpy(max);
|
||
return res;
|
||
}, py::call_guard<py::gil_scoped_release>())
|
||
.def("GenerateMesh", [](shared_ptr<CSGeometry> geo,
|
||
MeshingParameters* pars, py::kwargs kwargs)
|
||
{
|
||
MeshingParameters mp;
|
||
if(pars) mp = *pars;
|
||
{
|
||
py::gil_scoped_acquire aq;
|
||
CreateMPfromKwargs(mp, kwargs);
|
||
}
|
||
auto mesh = make_shared<Mesh>();
|
||
SetGlobalMesh (mesh);
|
||
mesh->SetGeometry(geo);
|
||
ng_geometry = geo;
|
||
geo->FindIdenticSurfaces(1e-8 * geo->MaxSize());
|
||
auto result = geo->GenerateMesh (mesh, mp);
|
||
if(result != 0)
|
||
throw Exception("Meshing failed!");
|
||
return mesh;
|
||
}, py::arg("mp") = nullptr,
|
||
meshingparameter_description.c_str(),
|
||
py::call_guard<py::gil_scoped_release>())
|
||
;
|
||
|
||
m.def("Save", FunctionPointer
|
||
([](const Mesh & self, const string & filename, const CSGeometry & geom)
|
||
{
|
||
ostream * outfile;
|
||
if (filename.substr (filename.length()-3, 3) == ".gz")
|
||
outfile = new ogzstream (filename.c_str());
|
||
else
|
||
outfile = new ofstream (filename.c_str());
|
||
|
||
self.Save (*outfile);
|
||
*outfile << endl << endl << "endmesh" << endl << endl;
|
||
geom.SaveToMeshFile (*outfile);
|
||
delete outfile;
|
||
}),py::call_guard<py::gil_scoped_release>())
|
||
;
|
||
|
||
|
||
|
||
m.def("ZRefinement", FunctionPointer
|
||
([](Mesh & mesh, CSGeometry & geom)
|
||
{
|
||
ZRefinementOptions opt;
|
||
opt.minref = 5;
|
||
ZRefinement (mesh, &geom, opt);
|
||
}),py::call_guard<py::gil_scoped_release>())
|
||
;
|
||
}
|
||
|
||
PYBIND11_MODULE(libcsg, m) {
|
||
ExportCSG(m);
|
||
}
|
||
#endif
|
||
|