mirror of
https://github.com/NGSolve/netgen.git
synced 2025-01-25 04:10:33 +05:00
230 lines
8.1 KiB
C++
230 lines
8.1 KiB
C++
|
|
#ifdef NG_PYTHON
|
|
|
|
#include <../general/ngpython.hpp>
|
|
#include <core/python_ngcore.hpp>
|
|
#include <stlgeom.hpp>
|
|
#include "../meshing/python_mesh.hpp"
|
|
|
|
#ifdef WIN32
|
|
#define DLL_HEADER __declspec(dllexport)
|
|
#endif
|
|
|
|
using namespace netgen;
|
|
namespace netgen
|
|
{
|
|
//extern shared_ptr<Mesh> mesh;
|
|
extern shared_ptr<NetgenGeometry> ng_geometry;
|
|
}
|
|
|
|
static string stlparameter_description = R"delimiter(
|
|
STL Specific Meshing Parameters
|
|
-------------------------------
|
|
|
|
yangle: float = 30.
|
|
Angle for edge detection
|
|
|
|
contyangle: float = 20.
|
|
Edges continue if angle > contyangle
|
|
|
|
edgecornerangle: float = 60.
|
|
Angle of geometry edge at which the mesher should set a point.
|
|
|
|
closeedgefac: Optional[float] = 1.
|
|
Factor for meshing close edges, if None it is disabled.
|
|
|
|
minedgelen: Optional[float] = 0.001
|
|
Minimum edge length to be used for dividing edges to mesh points. If
|
|
None this is disabled.
|
|
)delimiter";
|
|
|
|
void CreateSTLParametersFromKwargs(STLParameters& stlparam, py::dict kwargs)
|
|
{
|
|
if(kwargs.contains("yangle"))
|
|
stlparam.yangle = py::cast<double>(kwargs.attr("pop")("yangle"));
|
|
if(kwargs.contains("contyangle"))
|
|
stlparam.contyangle = py::cast<double>(kwargs.attr("pop")("contyangle"));
|
|
if(kwargs.contains("edgecornerangle"))
|
|
stlparam.edgecornerangle = py::cast<double>(kwargs.attr("pop")("edgecornerangle"));
|
|
if(kwargs.contains("chartangle"))
|
|
stlparam.chartangle = py::cast<double>(kwargs.attr("pop")("chartangle"));
|
|
if(kwargs.contains("outerchartangle"))
|
|
stlparam.outerchartangle = py::cast<double>(kwargs.attr("pop")("outerchartangle"));
|
|
if(kwargs.contains("usesearchtree"))
|
|
stlparam.usesearchtree = py::cast<int>(kwargs.attr("pop")("usesearchtree"));
|
|
if(kwargs.contains("atlasfac"))
|
|
{
|
|
auto val = kwargs.attr("pop")("resthatlasfac");
|
|
if(val.is_none())
|
|
stlparam.resthatlasenable = false;
|
|
else
|
|
{
|
|
stlparam.resthatlasenable = true;
|
|
stlparam.resthatlasfac = py::cast<double>(val);
|
|
}
|
|
}
|
|
if(kwargs.contains("atlasminh"))
|
|
stlparam.atlasminh = py::cast<double>(kwargs.attr("pop")("atlasminh"));
|
|
if(kwargs.contains("surfcurvfac"))
|
|
{
|
|
auto val = kwargs.attr("pop")("surfcurvfac");
|
|
if(val.is_none())
|
|
stlparam.resthsurfcurvenable = false;
|
|
else
|
|
{
|
|
stlparam.resthsurfcurvenable = true;
|
|
stlparam.resthsurfcurvfac = py::cast<double>(val);
|
|
}
|
|
}
|
|
if(kwargs.contains("chartdistfac"))
|
|
{
|
|
auto val = kwargs.attr("pop")("chartdistfac");
|
|
if(val.is_none())
|
|
stlparam.resthchartdistenable = false;
|
|
else
|
|
{
|
|
stlparam.resthchartdistenable = true;
|
|
stlparam.resthchartdistfac = py::cast<double>(val);
|
|
}
|
|
}
|
|
if(kwargs.contains("edgeanglefac"))
|
|
{
|
|
auto val = kwargs.attr("pop")("edgeanglefac");
|
|
if(val.is_none())
|
|
stlparam.resthedgeangleenable = false;
|
|
else
|
|
{
|
|
stlparam.resthedgeangleenable = true;
|
|
stlparam.resthedgeanglefac = py::cast<double>(val);
|
|
}
|
|
}
|
|
if(kwargs.contains("surfmeshcurvfac"))
|
|
{
|
|
auto val = kwargs.attr("pop")("surfmeshcurvfac");
|
|
if(val.is_none())
|
|
stlparam.resthsurfmeshcurvenable = false;
|
|
else
|
|
{
|
|
stlparam.resthsurfmeshcurvenable = true;
|
|
stlparam.resthsurfmeshcurvfac = py::cast<double>(val);
|
|
}
|
|
}
|
|
if(kwargs.contains("linelengthfac"))
|
|
{
|
|
auto val = kwargs.attr("pop")("linelengthfac");
|
|
if(val.is_none())
|
|
stlparam.resthlinelengthenable = false;
|
|
else
|
|
{
|
|
stlparam.resthlinelengthenable = true;
|
|
stlparam.resthlinelengthfac = py::cast<double>(val);
|
|
}
|
|
}
|
|
if(kwargs.contains("recalc_h_opt"))
|
|
stlparam.recalc_h_opt = py::cast<bool>(kwargs.attr("pop")("recalc_h_opt"));
|
|
}
|
|
|
|
|
|
DLL_HEADER void ExportSTL(py::module & m)
|
|
{
|
|
py::class_<STLGeometry,shared_ptr<STLGeometry>, NetgenGeometry> (m,"STLGeometry")
|
|
.def(py::init<>())
|
|
.def(py::init<>([](const string& filename)
|
|
{
|
|
ifstream ist(filename);
|
|
return shared_ptr<STLGeometry>(STLGeometry::Load(ist));
|
|
}), py::arg("filename"),
|
|
py::call_guard<py::gil_scoped_release>())
|
|
.def(NGSPickle<STLGeometry>())
|
|
.def("_visualizationData", [](shared_ptr<STLGeometry> stl_geo)
|
|
{
|
|
std::vector<float> vertices;
|
|
std::vector<int> trigs;
|
|
std::vector<float> normals;
|
|
std::vector<float> min = {std::numeric_limits<float>::max(),
|
|
std::numeric_limits<float>::max(),
|
|
std::numeric_limits<float>::max()};
|
|
std::vector<float> max = {std::numeric_limits<float>::lowest(),
|
|
std::numeric_limits<float>::lowest(),
|
|
std::numeric_limits<float>::lowest()};
|
|
std::vector<string> surfnames;
|
|
|
|
surfnames.push_back("stl");
|
|
vertices.reserve(stl_geo->GetNT()*3*3);
|
|
trigs.reserve(stl_geo->GetNT()*4);
|
|
normals.reserve(stl_geo->GetNT()*3*3);
|
|
size_t ii = 0;
|
|
for(int i = 0; i < stl_geo->GetNT(); i++)
|
|
{
|
|
auto& trig = stl_geo->GetTriangle(i+1);
|
|
for(int k = 0; k < 3; k++)
|
|
{
|
|
trigs.push_back(ii++);
|
|
auto& pnt = stl_geo->GetPoint(trig[k]);
|
|
for (int l = 0; l < 3; l++)
|
|
{
|
|
float val = pnt[l];
|
|
vertices.push_back(val);
|
|
min[l] = min2(min[l], val);
|
|
max[l] = max2(max[l], val);
|
|
normals.push_back(trig.Normal()[l]);
|
|
}
|
|
}
|
|
trigs.push_back(0);
|
|
}
|
|
py::gil_scoped_acquire ac;
|
|
py::dict res;
|
|
py::list snames;
|
|
for(auto name : surfnames)
|
|
snames.append(py::cast(name));
|
|
res["vertices"] = MoveToNumpy(vertices);
|
|
res["triangles"] = MoveToNumpy(trigs);
|
|
res["normals"] = MoveToNumpy(normals);
|
|
res["surfnames"] = snames;
|
|
res["min"] = MoveToNumpy(min);
|
|
res["max"] = MoveToNumpy(max);
|
|
return res;
|
|
}, py::call_guard<py::gil_scoped_release>())
|
|
.def("GenerateMesh", [] (shared_ptr<STLGeometry> geo,
|
|
MeshingParameters* pars, py::kwargs kwargs)
|
|
{
|
|
MeshingParameters mp;
|
|
STLParameters stlparam;
|
|
{ py::gil_scoped_acquire aq;
|
|
if(pars)
|
|
{
|
|
auto mp_flags = pars->geometrySpecificParameters;
|
|
auto mp_kwargs = CreateDictFromFlags(mp_flags);
|
|
CreateSTLParametersFromKwargs(stlparam, mp_kwargs);
|
|
mp = *pars;
|
|
}
|
|
CreateSTLParametersFromKwargs(stlparam, kwargs);
|
|
CreateMPfromKwargs(mp, kwargs); // this will throw if any kwargs are not passed
|
|
}
|
|
auto mesh = make_shared<Mesh>();
|
|
mesh->SetGeometry(geo);
|
|
ng_geometry = geo;
|
|
SetGlobalMesh(mesh);
|
|
auto result = STLMeshingDummy(geo.get(), mesh, mp, stlparam);
|
|
if(result != 0)
|
|
throw Exception("Meshing failed!");
|
|
|
|
return mesh;
|
|
}, py::arg("mp") = nullptr,
|
|
py::call_guard<py::gil_scoped_release>(),
|
|
(meshingparameter_description + stlparameter_description).c_str())
|
|
;
|
|
m.def("LoadSTLGeometry", [] (const string & filename)
|
|
{
|
|
cout << "WARNING: LoadSTLGeometry is deprecated, use the STLGeometry(filename) constructor instead!" << endl;
|
|
ifstream ist(filename);
|
|
return shared_ptr<STLGeometry>(STLGeometry::Load(ist));
|
|
},py::call_guard<py::gil_scoped_release>());
|
|
}
|
|
|
|
PYBIND11_MODULE(libstl, m) {
|
|
ExportSTL(m);
|
|
}
|
|
|
|
#endif
|