netgen/libsrc/meshing/boundarylayer.cpp
Matthias Hochsteger f97aafb162 something
2024-02-28 15:24:09 +01:00

2258 lines
78 KiB
C++

#include <set>
#include <regex>
#include <mystdlib.h>
#include "global.hpp"
#include "debugging.hpp"
#include "boundarylayer.hpp"
#include "meshfunc.hpp"
namespace netgen
{
struct Face {
ArrayMem<Point<3>, 4> p;
ArrayMem<double, 4> lam;
};
struct Intersection_ {
bool is_intersecting=false;
double lam0=-1, lam1=-1;
Point<3> p;
double bary[3];
operator bool() const { return is_intersecting; }
};
std::tuple<int, int> FindCloseVectors(FlatArray<Vec<3>> ns, bool find_max = true) {
int maxpos1;
int maxpos2;
double val = find_max ? -1e99 : 1e99;
for (auto i : Range(ns))
for (auto j : Range(i + 1, ns.Size()))
{
double ip = ns[i] * ns[j];
if((find_max && (ip > val)) || (!find_max && (ip < val)))
{
val = ip;
maxpos1 = i;
maxpos2 = j;
}
}
return {maxpos1, maxpos2};
}
Vec<3> CalcGrowthVector(FlatArray<Vec<3>> ns) {
if(ns.Size() == 0) return {0,0,0};
if(ns.Size() == 1) return ns[0];
if(ns.Size() == 2)
{
auto gw = ns[0];
auto n = ns[1];
auto npn = gw * n;
auto npnp = gw * gw;
auto nn = n * n;
if(fabs(nn-npn*npn/npnp) < 1e-6)
return n;
gw += (nn - npn)/(nn - npn*npn/npnp) * (n - npn/npnp * gw);
return gw;
}
if (ns.Size() == 3)
{
DenseMatrix mat(3,3);
for(auto i : Range(3))
for(auto j : Range(3))
mat(i,j) = ns[i][j];
if(fabs(mat.Det()) > 1e-6) {
DenseMatrix mat(3,3);
for(auto i : Range(3))
for(auto j : Range(3))
mat(i, j) = ns[i] * ns[j];
Vector rhs(3);
rhs = 1.;
Vector res(3);
DenseMatrix inv(3, ns.Size());
CalcInverse(mat, inv);
inv.Mult(rhs, res);
Vec<3> growth = 0.;
for(auto i : Range(ns))
growth += res[i] * ns[i];
return growth;
}
}
auto [maxpos1, maxpos2] = FindCloseVectors(ns);
Array<Vec<3>> new_normals;
new_normals = ns;
const auto dot = ns[maxpos1] * ns[maxpos2];
auto average = 0.5*(ns[maxpos1] + ns[maxpos2]);
average.Normalize();
new_normals[maxpos1] = average;
new_normals.DeleteElement(maxpos2);
auto gw = CalcGrowthVector(new_normals);
for(auto n : ns)
if(n*gw < 0)
throw Exception("Normals not pointing in same direction as growth vector");
return gw;
}
SpecialBoundaryPoint :: GrowthGroup :: GrowthGroup(FlatArray<int> faces_, FlatArray<Vec<3>> normals)
{
faces = faces_;
growth_vector = CalcGrowthVector(normals);
}
SpecialBoundaryPoint :: SpecialBoundaryPoint( const std::map<int, Vec<3>> & normals )
{
// find opposing face normals
Array<Vec<3>> ns;
Array<int> faces;
for(auto [face, normal] : normals){
ns.Append(normal);
faces.Append(face);
}
auto [minface1, minface2] = FindCloseVectors(ns, false);
minface1 = faces[minface1];
minface2 = faces[minface2];
Array<int> g1_faces;
g1_faces.Append(minface1);
Array<int> g2_faces;
g2_faces.Append(minface2);
Array<Vec<3>> normals1, normals2;
for(auto [facei, normali] : normals)
if(facei != minface1 && facei != minface2)
{
g1_faces.Append(facei);
g2_faces.Append(facei);
}
for(auto fi : g1_faces)
normals1.Append(normals.at(fi));
for(auto fi : g2_faces)
normals2.Append(normals.at(fi));
growth_groups.Append(GrowthGroup(g1_faces, normals1));
growth_groups.Append(GrowthGroup(g2_faces, normals2));
}
struct GrowthVectorLimiter {
BoundaryLayerTool & tool;
const BoundaryLayerParameters & params;
Mesh & mesh;
double height;
FlatArray<double, PointIndex> limits;
FlatArray<Vec<3>, PointIndex> growthvectors;
BitArray changed_domains;
unique_ptr<BoxTree<3>> tree;
Array<PointIndex, PointIndex> map_from;
ofstream debug;
GrowthVectorLimiter( BoundaryLayerTool & tool_, Mesh & mesh_, const BoundaryLayerParameters & params_, FlatArray<double, PointIndex> limits_, FlatArray<Vec<3>, PointIndex> growthvectors_, double height_) :
tool(tool_),
params(params_), mesh(mesh_), height(height_), limits(limits_), growthvectors(growthvectors_), map_from(mesh.Points().Size()), debug("debug.txt") {
changed_domains = params.domains;
if(!params.outside)
changed_domains.Invert();
map_from = PointIndex::INVALID;
for(auto pi : tool.mapto.Range())
for (auto pi_to : tool.mapto[pi])
map_from[pi_to] = pi;
}
Face GetFace( SurfaceElementIndex sei );
Face GetMappedFace( SurfaceElementIndex sei );
Face GetMappedFace( SurfaceElementIndex sei, int face );
Point<3> GetPoint(PointIndex pi_to, double shift=1.) {
if(shift == 1.) return mesh[pi_to];
auto pi_from = map_from[pi_to];
if(!pi_from.IsValid()) return mesh[pi_to];
if(shift == 0.) return mesh[pi_from];
Point<3> p_from = mesh[pi_from];
auto [gw_ptr, h] = tool.growth_vector_map.at(pi_to);
Point<3> p_to = mesh[pi_to] + h * limits[pi_to] * (*gw_ptr);
return p_from + shift * (p_to - p_from);
}
std::array<Point<3>, 2> GetSeg(PointIndex pi_to, double shift=1.) {
return {GetPoint(pi_to, 0), GetPoint(pi_to, shift)};
}
auto GetTrig(SurfaceElementIndex sei, double shift = 0.0) {
auto sel = mesh[sei];
std::array<Point<3>, 3> trig;
for (auto i : Range(3))
trig[i] = mesh[sel[i]];
return trig;
}
auto GetSideTrig(SurfaceElementIndex sei, int index, double shift = 0.0) {
auto trig = GetTrig(sei, 0.0);
auto sel = mesh[sei];
auto index1 = (index+1)%3;
trig[index] = trig[index1];
auto [gw_ptr, h] = tool.growth_vector_map.at(sel[index1]);
trig[index] += h * shift * (*gw_ptr);
return trig;
}
string DebugPoint(PointIndex pi, string col, bool shift=false ) {
stringstream ss;
stringstream pos;
auto p = mesh[pi];
auto p1 = mesh[pi]+height*growthvectors[pi];
pos << "\"position\": [" << p[0] << "," << p[1] << "," << p[2];
if(shift)
pos << "," << p1[0] << "," << p1[1] << "," << p1[2];
pos << "]}";
ss << R"({"name": "point", "color": ")" + col + R"(", "type": "points", )";
ss << pos.str();
if(shift) {
ss << R"(, {"name": "line", "color": ")" + col + R"(", "type": "lines", )";
ss << pos.str();
}
return ss.str();
}
void DebugOut(PointIndex pi, SurfaceElementIndex sei) {
auto sel = mesh[sei];
auto trig = GetTrig(sei, 1.0);
debug << "[";
for(auto i : Range(3))
if(pi!=sel[i])
debug << DebugPoint(sel[i], "blue", true) << ',';
debug << DebugPoint(pi, "red", true);
debug << "]" << endl;
}
static constexpr double INTERSECTION_SAFETY = .99;
void LimitGrowthVector(PointIndex pi_to, SurfaceElementIndex sei, double trig_shift, double seg_shift) {
auto pi_from = map_from[pi_to];
if(!pi_from.IsValid()) return;
if(trig_shift > 0) {
auto intersection = isIntersectingTrig(pi_from, pi_to, sei, trig_shift);
if(!intersection) return;
double dshift = trig_shift;
while(intersection && dshift > 0.01 && dshift > intersection.lam0) {
dshift *= 0.9;
intersection = isIntersectingTrig(pi_from, pi_to, sei, dshift);
}
dshift /= 0.9;
intersection = isIntersectingTrig(pi_from, pi_to, sei, dshift);
if(dshift < 1)
cout << "final dshift " << dshift << "\t" << intersection.lam0 << endl;
limits[pi_from] *= intersection.lam0;
auto sel = mesh[sei];
for(auto i : Range(3))
limits[sel[i]] *= dshift;
}
else {
auto seg = GetSeg(pi_to, seg_shift);
auto trig = GetTrig(sei, 0.0);
// cout << mesh[sei] << " " << pi_from << endl;
auto intersection = isIntersectingTrig(seg, trig);
auto lam = intersection.lam0;
// cout << "lam " << intersection.is_intersecting <<"\t" << lam << endl;
if(intersection) {
// check with original surface elements
limits[pi_from] = min(limits[pi_from], seg_shift*0.45*INTERSECTION_SAFETY*lam);
// cout << "set limit " << pi_from << '\t' << limits[pi_from] << endl;
if(limits[pi_from] < 0.1) DebugOut(pi_from, sei);
return;
}
// cout << "lam " << lam << endl;
// if (lam > 0 && lam < 2./INTERSECTION_SAFETY) {
// limits[pi_from] = min(limits[pi_from], 0.45*INTERSECTION_SAFETY*lam);
// cout << "limit by 2 safety " << limits[pi_from] << endl;
// }
}
// check with shifted surface elements using growthvectors
// return;
}
void LimitSelfIntersection () {
// check for self-intersection within new elements (prisms/hexes)
auto isIntersecting = [&](SurfaceElementIndex sei, double shift) {
const auto sel = mesh[sei];
auto np = sel.GetNP();
for(auto i : Range(np)) {
auto seg = GetSeg(sel[i], shift);
for(auto fi : Range(np-2)) {
auto trig = GetSideTrig(sei, i+fi, 1.0);
if(isIntersectingPlane(seg, trig)) return true;
}
}
return false;
};
auto equalizeLimits = [&](SurfaceElementIndex sei) {
const auto sel = mesh[sei];
auto np = sel.GetNP();
double max_limit = 0;
double min_limit = 1e99;
for(auto i : Range(np)) {
max_limit = max(max_limit, limits[sel[i]]);
min_limit = min(min_limit, limits[sel[i]]);
}
// equalize
if(max_limit/min_limit > 1.2) {
max_limit = min_limit * 1.2;
for(auto i : Range(np))
limits[sel[i]] = min(limits[sel[i]], max_limit);
}
};
for(SurfaceElementIndex sei : mesh.SurfaceElements().Range()) {
auto sel = mesh[sei];
const auto& fd = mesh.GetFaceDescriptor(sel.GetIndex());
if(sei < tool.nse) continue;
// if(sei >= tool.nse || (!changed_domains.Test(fd.DomainIn()) &&
// !changed_domains.Test(fd.DomainOut())))
// continue;
ArrayMem<double, 4> ori_limits;
ori_limits.SetSize(3);
auto np = sel.GetNP();
for(auto i : Range(np))
ori_limits[i] = limits[sel[i]];
equalizeLimits(sei);
double shift = 1.0;
double safety = 1.1;
while(shift>0.01 && isIntersecting(sei, shift*safety)) {
double max_limit = 0;
for(auto i : Range(np))
max_limit = max(max_limit, limits[sel[i]]);
for(auto i : Range(np))
if(max_limit == limits[sel[i]])
limits[sel[i]] *= 0.9;
if(max_limit < 0.01) {
cout << "self intersection" << endl;
break;
}
}
if(shift < 1) {
if(shift < 0.3) {
cout << "self intersection " << sel << "\t" << shift << endl;
cout << "\t" << limits[sel[0]] << '\t' << limits[sel[1]] << '\t' << limits[sel[2]] << endl;
}
for(auto pi : sel.PNums())
limits[pi] *= INTERSECTION_SAFETY*shift;
}
// cout <<
// auto np = sel.GetNP();
// // check if a new edge intesects the plane of any opposing face
// for(auto i : Range(np)) {
// auto seg = GetSeg(sel[i]);
// for(auto fi : Range(np-2)) {
// auto trig = GetSideTrig(sei, i+fi, 1.0);
// auto intersection = isIntersectingPlane(seg, trig);
// if(intersection) {
// if(intersection.lam0 < 0.2) {
// DebugOut(sel[i], sei);
// }
// limits[sel[i]] *= INTERSECTION_SAFETY*intersection.lam0;
// }
// }
// }
}
}
// checks if a segment is intersecting a plane, spanned by three points, lam will be set s.t. p_intersect = seg[0] + lam * (seg[1]-seg[0])
Intersection_ isIntersectingPlane ( std::array<Point<3>, 2> seg, std::array<Point<3>, 3> trig )
{
auto t1 = trig[1]-trig[0];
auto t2 = trig[2]-trig[0];
auto n = Cross(trig[1]-trig[0], trig[2]-trig[0]);
auto v0n = (seg[0]-trig[0])*n;
auto v1n = (seg[1]-trig[0])*n;
Intersection_ intersection;
intersection.lam0 = -v0n/(v1n-v0n);
// cout << "lam0 " << intersection.lam0 << ", " << v0n << ", " << v1n << endl;
intersection.p = seg[0] + intersection.lam0*(seg[1]-seg[0]);
intersection.is_intersecting = (v0n * v1n < 0) && (intersection.lam0 > -1e-8) && (intersection.lam0<1+1e-8);
return intersection;
}
Intersection_ isIntersectingPlane ( PointIndex pi, PointIndex pi_to, SurfaceElementIndex sei, double shift = 0.0 )
{
return isIntersectingPlane(GetSeg(pi, pi_to), GetTrig(sei, shift));
}
Intersection_ isIntersectingTrig ( std::array<Point<3>, 2> seg, std::array<Point<3>, 3> trig )
{
auto intersection = isIntersectingPlane(seg, trig);
if(!intersection)
return intersection;
auto p = seg[0] + intersection.lam0*(seg[1]-seg[0]) - trig[0];
Vec3d col1 = trig[1]-trig[0];
Vec3d col2 = trig[2]-trig[0];
Vec3d col3 = Cross(col1,col2);
Vec3d rhs = p;
Vec3d bary;
SolveLinearSystem (col1, col2, col3, rhs, bary);
intersection.lam1 = 0;
double eps = 0;
if (bary.X() >= -eps && bary.Y() >= -eps &&
bary.X() + bary.Y() <= 1+eps)
{
intersection.bary[0] = bary.X();
intersection.bary[1] = bary.Y();
intersection.bary[2] = 1.0-bary.X()-bary.Y();
// cout << "\tFOUND INTERSECTION " << intersection.bary[0] << ", " << intersection.bary[1] << ", " << intersection.bary[2] << endl;
}
else
intersection.is_intersecting = false;
// cout << "return intersection " << intersection.is_intersecting << endl;
return intersection;
}
Intersection_ isIntersectingTrig ( PointIndex pi_from, PointIndex pi_to, SurfaceElementIndex sei, double shift=0.0)
{
return isIntersectingTrig(GetSeg(pi_from, pi_to), GetTrig(sei, shift));
}
void BuildSearchTree(double trig_shift) {
Box<3> bbox(Box<3>::EMPTY_BOX);
for(PointIndex pi : mesh.Points().Range())
{
bbox.Add(mesh[pi]);
bbox.Add(GetPoint(pi, 1.0));
// if(tool.mapto[pi].Size() >0)
// bbox.Add(mesh[tool.mapto[pi].Last()]);
}
tree = make_unique<BoxTree<3>>(bbox);
for(auto sei : mesh.SurfaceElements().Range())
{
// cout << "handle sei " << sei << ", old nse " << tool.nse << endl;
const auto & sel = mesh[sei];
auto sel_index = mesh[sei].GetIndex();
// if(sel_index)
// {
// cout << "index " << sel_index << endl;
// const auto& fd = mesh.GetFaceDescriptor(sel_index);
// if( !changed_domains.Test(fd.DomainIn()) &&
// !changed_domains.Test(fd.DomainOut()))
// continue;
// }
Box<3> box(Box<3>::EMPTY_BOX);
for(auto p : GetTrig(sei, trig_shift))
box.Add(p);
// for(auto pi : sel.PNums())
// box.Add(mesh[pi]);
// also add moved points to bounding box
// for(auto p : GetTrig(sei, trig_shift))
// box.Add(mesh[pi]+trig_shift*limits[pi]*height*growthvectors[pi]);
tree->Insert(box, sei);
}
}
template<typename TFunc>
void FindTreeIntersections( double trig_shift, double seg_shift, TFunc f) {
BuildSearchTree(trig_shift);
auto np_new = mesh.Points().Size();
// cout << "np_new " << np_new << endl;
// cout << "too.np " << tool.np << endl;
for(auto i : IntRange(tool.np, np_new)) {
// cout << "handle point " << i << endl;
PointIndex pi_to = i+PointIndex::BASE;
// if(mesh[pi_to].Type() == INNERPOINT)
// continue;
// if(growthvectors[pi_to].Length2() == 0.0)
// continue;
Box<3> box(Box<3>::EMPTY_BOX);
auto seg = GetSeg(pi_to, seg_shift);
box.Add(seg[0]);
box.Add(seg[1]);
tree->GetFirstIntersecting(box.PMin(), box.PMax(), [&](SurfaceElementIndex sei) {
const auto & sel = mesh[sei];
// cout << "got intersecting " << sei << endl;
auto pi_from = map_from[pi_to];
if(sel.PNums().Contains(pi_from))
return false;
f(pi_to, sei);
return false;
});
}
}
};
// Face GrowthVectorLimiter :: GetMappedFace( SurfaceElementIndex sei, int face_nr )
// {
// if(face_nr == -1) return GetFace(sei);
// if(face_nr == -2) return GetMappedFace(sei);
// const auto & sel = mesh[sei];
// auto np = sel.GetNP();
// Face face;
// face.p.SetSize(4);
// face.lam.SetSize(4);
// face.lam = 0;
// auto pi0 = sel[face_nr % np];
// auto pi1 = sel[(face_nr+1) % np];
// face.p[0] = face.p[3] = mesh[pi0];
// face.p[1] = face.p[2] = mesh[pi1];
// face.p[3] += height * limits[pi0]*growthvectors[pi0];
// face.p[2] += height * limits[pi1]*growthvectors[pi1];
// face.lam[2] = 1.0;
// face.lam[3] = 1.0;
// return face;
// }
Vec<3> BoundaryLayerTool :: getEdgeTangent(PointIndex pi, int edgenr)
{
Vec<3> tangent = 0.0;
ArrayMem<PointIndex,2> pts;
for(auto segi : topo.GetVertexSegments(pi))
{
auto & seg = mesh[segi];
if(seg.edgenr != edgenr+1)
continue;
PointIndex other = seg[0]+seg[1]-pi;
if(!pts.Contains(other))
pts.Append(other);
}
if(pts.Size() != 2) {
cout << "getEdgeTangent pi = " << pi << ", edgenr = " << edgenr << endl;
for(auto segi : topo.GetVertexSegments(pi))
cout << mesh[segi] << endl;
throw Exception("Something went wrong in getEdgeTangent!");
}
tangent = mesh[pts[1]] - mesh[pts[0]];
return tangent.Normalize();
}
void BoundaryLayerTool :: LimitGrowthVectorLengths()
{
return;
static Timer tall("BoundaryLayerTool::LimitGrowthVectorLengths"); RegionTimer rtall(tall);
limits.SetSize(mesh.Points().Size());
limits = 1.0;
GrowthVectorLimiter limiter(*this, mesh, params, limits, growthvectors, total_height);
// limit to not intersect with other (original) surface elements
double trig_shift = 0;
double seg_shift = 2.1;
limiter.FindTreeIntersections(trig_shift, seg_shift, [&] (PointIndex pi_to, SurfaceElementIndex sei) {
// cout << "found intersection 1 " << pi_to << ", " << sei << endl;
if(sei >= nse) return; // ignore new surface elements in first pass
limiter.LimitGrowthVector(pi_to, sei, trig_shift, seg_shift);
});
limiter.LimitSelfIntersection();
// for(auto i : Range(growthvectors))
// growthvectors[i] *= limits[i];
// limits = 1.0;
// now limit again with shifted surace elements
trig_shift = 1.0;
seg_shift = 1.0;
limiter.FindTreeIntersections(trig_shift, seg_shift, [&] (PointIndex pi_to, SurfaceElementIndex sei) {
// cout << "Should not have intersection with original surface element anymore" << endl;
// cout << "found intersection 2 " << pi_to << ", " << sei << endl;
limiter.LimitGrowthVector(pi_to, sei, trig_shift, seg_shift);
});
// for (auto i : Range(limits))
// if(limits[i] < 1.0)
// cout << i << ": " << limits[i] << endl;
for (auto [pi_to, data] : growth_vector_map) {
auto pi_from = limiter.map_from[pi_to];
if(pi_from.IsValid())
limits[pi_from] = min(limits[pi_from], limits[pi_to]);
}
for(auto i : Range(growthvectors))
growthvectors[i] *= limits[i];
}
// void BoundaryLayerTool :: LimitGrowthVectorLengths()
// {
// static Timer tall("BoundaryLayerTool::LimitGrowthVectorLengths"); RegionTimer rtall(tall);
// limits.SetSize(np);
// limits = 1.0;
//
// // Function to calculate the dot product of two 3D vectors
// // Is there netgen native function for this?
// const auto Dot = [](Vec<3> a, Vec<3> b) {
// return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
// };
// auto parallel_limiter = [&](PointIndex pi1, PointIndex pi2, SurfaceElementIndex si) {
// MeshPoint& a_base = mesh[pi1];
// MeshPoint& b_base = mesh[pi2];
// MeshPoint a_end = mesh[pi1] + height * limits[pi1] * growthvectors[pi1];
// MeshPoint b_end = mesh[pi2] + height * limits[pi2] * growthvectors[pi2];
// double ab_base = (b_base - a_base).Length();
// Vec<3> a_vec = (a_end - a_base);
// Vec<3> b_vec = (b_end - b_base);
// // Calculate parallel projections
// Vec<3> ab_base_norm = (b_base - a_base).Normalize();
// double a_vec_x = Dot(a_vec, ab_base_norm);
// double b_vec_x = Dot(b_vec, -ab_base_norm);
// // double ratio_parallel = (a_vec_x + b_vec_x) / ab_base;
// double PARALLEL_RATIO_LIMIT = 0.85;
// if (ratio_parallel > PARALLEL_RATIO_LIMIT) {
// // Adjust limits, vectors, and projections if parallel ratio exceeds the limit
// double corrector = PARALLEL_RATIO_LIMIT / ratio_parallel;
// limits[pi1] *= corrector;
// limits[pi2] *= corrector;
// }
// };
//
// auto perpendicular_limiter = [&](PointIndex pi1, PointIndex pi2, SurfaceElementIndex si) {
// // this part is same as in parallel limiter, but note that limits contents are already changed
// MeshPoint& a_base = mesh[pi1];
// MeshPoint& b_base = mesh[pi2];
// MeshPoint a_end = mesh[pi1] + height * limits[pi1] * growthvectors[pi1];
// MeshPoint b_end = mesh[pi2] + height * limits[pi2] * growthvectors[pi2];
// double ab_base = (b_base - a_base).Length();
// Vec<3> a_vec = (a_end - a_base);
// Vec<3> b_vec = (b_end - b_base);
// // Calculate parallel projections
// Vec<3> ab_base_norm = (b_base - a_base).Normalize();
// double a_vec_x = Dot(a_vec, ab_base_norm);
// double b_vec_x = Dot(b_vec, -ab_base_norm);
// double ratio_parallel = (a_vec_x + b_vec_x) / ab_base;
// // Calculate surface normal at point si
// Vec<3> surface_normal = getNormal(mesh[si]);
// double a_vec_y = abs(Dot(a_vec, surface_normal));
// double b_vec_y = abs(Dot(b_vec, surface_normal));
// double diff_perpendicular = abs(a_vec_y - b_vec_y);
// double tan_alpha = diff_perpendicular / (ab_base - a_vec_x - b_vec_x);
// double TAN_ALPHA_LIMIT = 0.36397; // Approximately 20 degrees in radians
// if (tan_alpha > TAN_ALPHA_LIMIT) {
// if (a_vec_y > b_vec_y) {
// double correction = (TAN_ALPHA_LIMIT / tan_alpha * diff_perpendicular + b_vec_y) / a_vec_y;
// limits[pi1] *= correction;
// }
// else {
// double correction = (TAN_ALPHA_LIMIT / tan_alpha * diff_perpendicular + a_vec_y) / b_vec_y;
// limits[pi2] *= correction;
// }
// }
// };
// auto neighbour_limiter = [&](PointIndex pi1, PointIndex pi2, SurfaceElementIndex si) {
// parallel_limiter(pi1, pi2, si);
// perpendicular_limiter(pi1, pi2, si);
// };
//
// auto modifiedsmooth = [&](size_t nsteps) {
// for ([[maybe_unused]] auto i : Range(nsteps))
// for (SurfaceElementIndex sei : mesh.SurfaceElements().Range())
// {
// // assuming triangle
// neighbour_limiter(mesh[sei].PNum(1), mesh[sei].PNum(2), sei);
// neighbour_limiter(mesh[sei].PNum(2), mesh[sei].PNum(3), sei);
// neighbour_limiter(mesh[sei].PNum(3), mesh[sei].PNum(1), sei);
// }
// };
// auto smooth = [&] (size_t nsteps) {
// for([[maybe_unused]] auto i : Range(nsteps))
// for(const auto & sel : mesh.SurfaceElements())
// {
// double min_limit = 999;
// for(auto pi : sel.PNums())
// min_limit = min(min_limit, limits[pi]);
// for(auto pi : sel.PNums())
// limits[pi] = min(limits[pi], 1.4*min_limit);
// }
// };
// // check for self-intersection within new elements (prisms/hexes)
// auto self_intersection = [&] () {
// for(SurfaceElementIndex sei : mesh.SurfaceElements().Range())
// {
// auto facei = mesh[sei].GetIndex();
// if(facei < nfd_old && !params.surfid.Contains(facei))
// continue;
// auto sel = mesh[sei];
// auto np = sel.GetNP();
// // check if a new edge intesects the plane of any opposing face
// double lam0, lam1;
// for(auto i : Range(np))
// for(auto fi : Range(np-2))
// if(isIntersectingPlane(GetMappedSeg(sel[i]), GetMappedFace(sei, i+fi+1), lam0, lam1))
// if(lam0 < 1.0)
// limits[sel[i]] *= lam0;
// }
// };
// // first step: intersect with other surface elements that are boundary of domain the layer is grown into
// // second (and subsequent) steps: intersect with other boundary layers, allow restriction by 20% in each step
// auto changed_domains = domains;
// if(!params.outside)
// changed_domains.Invert();
// bool limit_reached = true;
// double lam_lower_limit = 1.0;
// int step = 0;
// while(step<2)
// {
// Array<double, PointIndex> new_limits;
// new_limits.SetSize(np);
// new_limits = 1.0;
// // if(step==1) break;
// if(step>1)
// lam_lower_limit *= 0.8;
// limit_reached = false;
// // build search tree with all surface elements (bounding box of a surface element also covers the generated boundary layer)
// for(auto pi : mesh.Points().Range())
// {
// if(mesh[pi].Type() == INNERPOINT)
// continue;
// if(growthvectors[pi].Length2() == 0.0)
// continue;
// const auto debug = false;
// Box<3> box(Box<3>::EMPTY_BOX);
// auto seg = GetMappedSeg(pi);
// box.Add(seg[0]);
// box.Add(seg[1]);
// double lam = 1.0;
// tree.GetFirstIntersecting(box.PMin(), box.PMax(), [&](SurfaceElementIndex sei)
// {
// const auto & sel = mesh[sei];
// if(sel.PNums().Contains(pi))
// return false;
// cout << "LIMIT STEP " << step << endl;
// if(step == 0)
// LimitGrowthVector(pi, sei, new_limits, {-1, 0});
// else
// LimitGrowthVector(pi, sei, new_limits, {-2, -1});
// // auto face = GetMappedFace(sei, -2);
// // double lam0_ = 999;
// // double lam1_ = 999;
// // bool is_bl_sel = params.surfid.Contains(sel.GetIndex());
// // if (step == 0)
// // {
// // face = GetFace(sei);
// // if (isIntersectingFace(seg, face, lam0_, lam1_))
// // {
// // if(lam0_ < lam) {
// // if(debug) cout << "intersecting face " << sei << endl;
// // if(debug) cout << "\t" << lam0_ << endl;
// // }
// // // if (is_bl_sel)
// // // lam_ *= params.limit_safety;
// // lam = min(lam, lam0_);
// // }
// // }
// // if(step==1)
// // {
// // if(isIntersectingFace(seg, face, lam0_, lam1_))
// // {
// // // if(is_bl_sel) // allow only half the distance if the opposing surface element has a boundary layer too
// // // lam_ *= params.limit_safety;
// // lam = min(lam, lam0_);
// // }
// // }
// // // if the opposing surface element has a boundary layer, we need to additionally intersect with the new faces
// // if(step>1 && is_bl_sel)
// // {
// // for(auto facei : Range(-1, sel.GetNP()))
// // {
// // auto face = GetMappedFace(sei, facei);
// // if(isIntersectingFace(seg, face, lam0_, lam1_)) // && lam_ > other_limit)
// // {
// // lam = min(lam, lam0_);
// // }
// // }
// // }
// return false;
// });
// // if(lam<1)
// // {
// // if(lam<lam_lower_limit && step>1)
// // {
// // limit_reached = true;
// // lam = lam_lower_limit;
// // }
// // }
// // new_limits[pi] = min(limits[pi], lam* limits[pi]);
// }
// // cout << "new limits " << endl;
// // cout << new_limits << endl;
// // for(auto pi : mesh.Points().Range())
// // if(growthvectors[pi].Length2())
// // {
// // if(new_limits[pi] < 0.001) {
// // cout << pi << " " << new_limits[pi] << endl;
// // new_limits[pi] = 0.001;
// // }
// // }
// if(step == 0) {
// cout << "limit with 0.9" << endl;
// for(auto & v : new_limits)
// v *= 0.9;
// }
// for(auto i : Range(limits))
// limits[i] *= new_limits[i];
// cout << "new limits " << endl << limits << endl;
// // for(auto pi : mesh.Points().Range())
// // if(growthvectors[pi].Length2())
// // cout << "apply limit " << pi << " \t" << limits[pi] << endl;
// // break;
// // if (step > 0)
// // modifiedsmooth(1);
// step++;
// }
// // self_intersection();
// // modifiedsmooth(1);
// cout << "final limits " << limits << endl;
// for(auto pi : Range(growthvectors))
// growthvectors[pi] *= limits[pi];
// }
// depending on the geometry type, the mesh contains segments multiple times (once for each face)
bool HaveSingleSegments( const Mesh & mesh )
{
auto& topo = mesh.GetTopology();
NgArray<SurfaceElementIndex> surf_els;
for(auto segi : Range(mesh.LineSegments()))
{
mesh.GetTopology().GetSegmentSurfaceElements(segi+1, surf_els);
if(surf_els.Size()<2)
continue;
auto seg = mesh[segi];
auto pi0 = min(seg[0], seg[1]);
auto pi1 = max(seg[0], seg[1]);
auto p0_segs = topo.GetVertexSegments(seg[0]);
for(auto segi_other : p0_segs)
{
if(segi_other == segi)
continue;
auto seg_other = mesh[segi_other];
auto pi0_other = min(seg_other[0], seg_other[1]);
auto pi1_other = max(seg_other[0], seg_other[1]);
if( pi0_other == pi0 && pi1_other == pi1 )
return false;
}
// found segment with multiple adjacent surface elements but no other segments with same points -> have single segments
return true;
}
return true;
}
// duplicates segments (and sets seg.si accordingly) to have a unified data structure for all geometry types
Array<Segment> BuildSegments( Mesh & mesh )
{
Array<Segment> segments;
// auto& topo = mesh.GetTopology();
NgArray<SurfaceElementIndex> surf_els;
for(auto segi : Range(mesh.LineSegments()))
{
auto seg = mesh[segi];
mesh.GetTopology().GetSegmentSurfaceElements(segi+1, surf_els);
for(auto seli : surf_els)
{
const auto & sel = mesh[seli];
seg.si = sel.GetIndex();
auto np = sel.GetNP();
for(auto i : Range(np))
{
if(sel[i] == seg[0])
{
if(sel[(i+1)%np] != seg[1])
swap(seg[0], seg[1]);
break;
}
}
segments.Append(seg);
}
}
return segments;
}
void MergeAndAddSegments( Mesh & mesh, FlatArray<Segment> new_segments)
{
INDEX_2_HASHTABLE<bool> already_added( mesh.LineSegments().Size() + 2*new_segments.Size() );
for(auto & seg : mesh.LineSegments())
{
INDEX_2 i2 (seg[0], seg[1]);
i2.Sort();
if(!already_added.Used(i2))
already_added.Set(i2, true);
}
for(auto & seg : new_segments)
{
INDEX_2 i2 (seg[0], seg[1]);
i2.Sort();
if(!already_added.Used(i2))
{
mesh.AddSegment(seg);
already_added.Set(i2, true);
}
}
}
void BoundaryLayerTool :: InterpolateSurfaceGrowthVectors()
{
static Timer tall("InterpolateSurfaceGrowthVectors"); RegionTimer rtall(tall);
static Timer tsmooth("InterpolateSurfaceGrowthVectors-Smoothing");
auto np_old = this->np;
auto np = mesh.GetNP();
BitArray is_point_on_bl_surface(np+1);
is_point_on_bl_surface.Clear();
BitArray is_point_on_other_surface(np+1);
is_point_on_other_surface.Clear();
auto getGW = [&] (PointIndex pi) -> Vec<3>& {
if(pi<=np_old)
return growthvectors[pi];
return *get<0>(growth_vector_map[pi]);
};
Array<Vec<3>, PointIndex> normals(np);
for(auto pi = np_old; pi<np; pi++){
normals[pi+PointIndex::BASE] = getGW(pi+PointIndex::BASE);
}
ParallelForRange( mesh.SurfaceElements().Range(), [&] ( auto myrange )
{
for(SurfaceElementIndex sei : myrange)
{
auto facei = mesh[sei].GetIndex();
if(facei < nfd_old && !params.surfid.Contains(facei))
{
for(auto pi : mesh[sei].PNums())
if(mesh[pi].Type() == SURFACEPOINT)
is_point_on_other_surface.SetBitAtomic(pi);
}
else
{
for(auto pi : mesh[sei].PNums())
if(pi >= np_old + PointIndex::BASE && mesh[pi].Type() == SURFACEPOINT)
is_point_on_bl_surface.SetBitAtomic(pi);
}
}
});
Array<PointIndex> points;
for(PointIndex pi : mesh.Points().Range())
{
if(is_point_on_bl_surface[pi])
{
points.Append(pi);
}
else if(is_point_on_other_surface[pi])
{
points.Append(pi);
getGW(pi) = 0.0;
}
// else
// getGW(pi) = 0.0;
}
auto p2sel = mesh.CreatePoint2SurfaceElementTable();
// smooth tangential part of growth vectors from edges to surface elements
RegionTimer rtsmooth(tsmooth);
for([[maybe_unused]] auto i : Range(3))
{
for(auto pi : points)
{
auto sels = p2sel[pi];
Vec<3> new_gw = getGW(pi);
if(pi == 35) cout << "average " << pi << " " << new_gw << endl;
new_gw = 0.;
// int cnt = 1;
std::set<PointIndex> suround;
suround.insert(pi);
double total_weight = 0;
// auto normal = normals[pi];
for(auto sei: sels)
{
const auto & sel = mesh[sei];
for(auto pi1 : sel.PNums())
if(suround.count(pi1)==0)
{
suround.insert(pi1);
auto gw_other = getGW(pi1);
auto normal_other = getNormal(mesh[sei]);
auto tangent_part = gw_other - (gw_other*normal_other)*normal_other;
double weight = 1.0;
// cout << "tangent part " << pi1 << tangent_part << endl;
if(is_point_on_bl_surface[pi]) {
if(mesh[pi1].Type() == FIXEDPOINT)
weight *= 1.0; //13-i;
else
weight = 1.0;
new_gw += weight * tangent_part;
}
else {
new_gw += weight * gw_other;
}
total_weight += weight;
}
}
// total_weight += suround.size();
getGW(pi) = 1.0/total_weight * new_gw;
cout << "average " << pi << " " << getGW(pi) << endl;
}
}
// for(auto pi : points)
// getGW(pi) += normals[pi];
// for(auto pi : mesh.Points().Range())
// cout << "point " << pi << " has type " << (int)(mesh[pi].Type()) << endl;
}
BoundaryLayerTool::BoundaryLayerTool(Mesh & mesh_, const BoundaryLayerParameters & params_)
: mesh(mesh_), topo(mesh_.GetTopology()), params(params_)
{
static Timer timer("BoundaryLayerTool::ctor");
RegionTimer regt(timer);
//for(auto & seg : mesh.LineSegments())
//seg.edgenr = seg.epgeominfo[1].edgenr;
total_height = 0.0;
for (auto h : params.heights)
total_height += h;
max_edge_nr = -1;
for(const auto& seg : mesh.LineSegments())
if(seg.edgenr > max_edge_nr)
max_edge_nr = seg.edgenr;
int ndom = mesh.GetNDomains();
ndom_old = ndom;
new_mat_nrs.SetSize(mesh.FaceDescriptors().Size() + 1);
new_mat_nrs = -1;
for(auto [bcname, matname] : params.new_mat)
{
mesh.SetMaterial(++ndom, matname);
regex pattern(bcname);
for(auto i : Range(1, mesh.GetNFD()+1))
{
auto& fd = mesh.GetFaceDescriptor(i);
if(regex_match(fd.GetBCName(), pattern))
new_mat_nrs[i] = ndom;
}
}
domains = params.domains;
if(!params.outside)
domains.Invert();
topo.SetBuildVertex2Element(true);
mesh.UpdateTopology();
have_single_segments = HaveSingleSegments(mesh);
cout << "HAVE_SINGLE_SEGMENTS " << have_single_segments << endl;
if(have_single_segments)
segments = BuildSegments(mesh);
else
segments = mesh.LineSegments();
np = mesh.GetNP();
ne = mesh.GetNE();
nse = mesh.GetNSE();
nseg = segments.Size();
p2sel = mesh.CreatePoint2SurfaceElementTable();
nfd_old = mesh.GetNFD();
moved_surfaces.SetSize(nfd_old+1);
moved_surfaces.Clear();
si_map.SetSize(nfd_old+1);
for(auto i : Range(nfd_old+1))
si_map[i] = i;
}
void BoundaryLayerTool :: CreateNewFaceDescriptors()
{
surfacefacs.SetSize(nfd_old+1);
surfacefacs = 0.0;
// create new FaceDescriptors
for(auto i : Range(1, nfd_old+1))
{
const auto& fd = mesh.GetFaceDescriptor(i);
string name = fd.GetBCName();
if(params.surfid.Contains(i))
{
if(auto isIn = domains.Test(fd.DomainIn()); isIn != domains.Test(fd.DomainOut()))
{
int new_si = mesh.GetNFD()+1;
surfacefacs[i] = isIn ? 1. : -1.;
// -1 surf nr is so that curving does not do anything
FaceDescriptor new_fd(-1, isIn ? new_mat_nrs[i] : fd.DomainIn(),
isIn ? fd.DomainOut() : new_mat_nrs[i], -1);
new_fd.SetBCProperty(new_si);
mesh.AddFaceDescriptor(new_fd);
si_map[i] = new_si;
moved_surfaces.SetBit(i);
mesh.SetBCName(new_si-1, "mapped_" + name);
}
// curving of surfaces with boundary layers will often
// result in pushed through elements, since we do not (yet)
// curvature through layers.
// Therefore we disable curving for these surfaces.
if(!params.keep_surfaceindex)
mesh.GetFaceDescriptor(i).SetSurfNr(-1);
}
}
for(auto si : params.surfid)
if(surfacefacs[si] == 0.0)
throw Exception("Surface " + to_string(si) + " is not a boundary of the domain to be grown into!");
}
void BoundaryLayerTool ::CreateFaceDescriptorsSides()
{
BitArray face_done(mesh.GetNFD()+1);
face_done.Clear();
for(const auto& sel : mesh.SurfaceElements())
{
auto facei = sel.GetIndex();
if(face_done.Test(facei))
continue;
bool point_moved = false;
// bool point_fixed = false;
for(auto pi : sel.PNums())
{
if(growthvectors[pi].Length() > 0)
point_moved = true;
/*
else
point_fixed = true;
*/
}
if(point_moved && !moved_surfaces.Test(facei))
{
int new_si = mesh.GetNFD()+1;
const auto& fd = mesh.GetFaceDescriptor(facei);
// auto isIn = domains.Test(fd.DomainIn());
// auto isOut = domains.Test(fd.DomainOut());
int si = params.sides_keep_surfaceindex ? facei : -1;
// domin and domout can only be set later
FaceDescriptor new_fd(si, -1,
-1, si);
new_fd.SetBCProperty(new_si);
mesh.AddFaceDescriptor(new_fd);
si_map[facei] = new_si;
mesh.SetBCName(new_si-1, fd.GetBCName());
face_done.SetBit(facei);
}
}
}
void BoundaryLayerTool :: CalculateGrowthVectors()
{
growthvectors.SetSize(np);
growthvectors = 0.;
for(auto pi : mesh.Points().Range())
{
const auto & p = mesh[pi];
if(p.Type() == INNERPOINT)
continue;
std::map<int, Vec<3>> normals;
// calculate one normal vector per face (average with angles as weights for multiple surface elements within a face)
for(auto sei : p2sel[pi])
{
const auto & sel = mesh[sei];
auto facei = sel.GetIndex();
if(!params.surfid.Contains(facei))
continue;
auto n = surfacefacs[sel.GetIndex()] * getNormal(sel);
int itrig = sel.PNums().Pos(pi);
itrig += sel.GetNP();
auto v0 = (mesh[sel.PNumMod(itrig+1)] - mesh[pi]).Normalize();
auto v1 = (mesh[sel.PNumMod(itrig-1)] - mesh[pi]).Normalize();
if(normals.count(facei)==0)
normals[facei] = {0.,0.,0.};
normals[facei] += acos(v0*v1)*n;
}
for(auto & [facei, n] : normals)
n *= 1.0/n.Length();
// combine normal vectors for each face to keep uniform distances
ArrayMem<Vec<3>, 5> ns;
for (auto &[facei, n] : normals) {
ns.Append(n);
}
try {
growthvectors[pi] = CalcGrowthVector(ns);
}
catch(const Exception & e) {
cout << "caught exception for point " << pi << ":\t" << e.what() << endl;
special_boundary_points.emplace(pi, normals);
growthvectors[pi] = special_boundary_points[pi].growth_groups[0].growth_vector;
}
}
}
Array<Array<pair<SegmentIndex, int>>, SegmentIndex> BoundaryLayerTool :: BuildSegMap()
{
// Bit array to keep track of segments already processed
BitArray segs_done(nseg+1);
segs_done.Clear();
// map for all segments with same points
// points to pair of SegmentIndex, int
// int is type of other segment, either:
// 0 == adjacent surface grows layer
// 1 == adjacent surface doesn't grow layer, but layer ends on it
// 2 == adjacent surface is interior surface that ends on layer
// 3 == adjacent surface is exterior surface that ends on layer (not allowed yet)
Array<Array<pair<SegmentIndex, int>>, SegmentIndex> segmap(segments.Size());
// moved segments
is_edge_moved.SetSize(max_edge_nr+1);
is_edge_moved = false;
// boundaries to project endings to
is_boundary_projected.SetSize(nfd_old+1);
is_boundary_projected.Clear();
is_boundary_moved.SetSize(nfd_old+1);
is_boundary_moved.Clear();
for(auto si : Range(segments))
{
if(segs_done[si]) continue;
const auto& segi = segments[si];
if(!moved_surfaces.Test(segi.si)) continue;
segs_done.SetBit(si);
segmap[si].Append(make_pair(si, 0));
moved_segs.Append(si);
is_edge_moved.SetBit(segi.edgenr);
for(auto sj : Range(segments))
{
if(segs_done.Test(sj)) continue;
const auto& segj = segments[sj];
if((segi[0] == segj[0] && segi[1] == segj[1]) ||
(segi[0] == segj[1] && segi[1] == segj[0]))
{
segs_done.SetBit(sj);
int type;
if(moved_surfaces.Test(segj.si)) {
type = 0;
moved_segs.Append(sj);
}
else if(const auto& fd = mesh.GetFaceDescriptor(segj.si); domains.Test(fd.DomainIn()) && domains.Test(fd.DomainOut()))
{
type = 2;
if(fd.DomainIn() == 0 || fd.DomainOut() == 0)
is_boundary_projected.SetBit(segj.si);
}
else if(const auto& fd = mesh.GetFaceDescriptor(segj.si); !domains.Test(fd.DomainIn()) && !domains.Test(fd.DomainOut()))
{
type = 3;
is_boundary_moved.SetBit(segj.si);
}
else
{
type = 1;
// in case 1 we project the growthvector onto the surface
is_boundary_projected.SetBit(segj.si);
}
segmap[si].Append(make_pair(sj, type));
}
}
}
return segmap;
}
BitArray BoundaryLayerTool :: ProjectGrowthVectorsOnSurface()
{
BitArray in_surface_direction(nfd_old+1);
in_surface_direction.Clear();
// project growthvector on surface for inner angles
if(params.grow_edges)
{
for(const auto& sel : mesh.SurfaceElements())
if(is_boundary_projected.Test(sel.GetIndex()))
{
auto n = getNormal(sel);
for(auto i : Range(sel.PNums()))
{
auto pi = sel.PNums()[i];
if(growthvectors[pi].Length2() == 0.)
continue;
auto next = sel.PNums()[(i+1)%sel.GetNV()];
auto prev = sel.PNums()[i == 0 ? sel.GetNV()-1 : i-1];
auto v1 = (mesh[next] - mesh[pi]).Normalize();
auto v2 = (mesh[prev] - mesh[pi]).Normalize();
auto v3 = growthvectors[pi];
v3.Normalize();
auto tol = v1.Length() * 1e-12;
if((v1 * v3 > -tol) && (v2 * v3 > -tol))
in_surface_direction.SetBit(sel.GetIndex());
else
continue;
if(!params.project_boundaries.Contains(sel.GetIndex()))
continue;
auto& g = growthvectors[pi];
auto ng = n * g;
auto gg = g * g;
auto nn = n * n;
// if(fabs(ng*ng-nn*gg) < 1e-12 || fabs(ng) < 1e-12) continue;
auto a = -ng*ng/(ng*ng-nn * gg);
auto b = ng*gg/(ng*ng-nn*gg);
g += a*g + b*n;
}
}
}
else
{
for(const auto& seg : segments)
{
int count = 0;
for(const auto& seg2 : segments)
if(((seg[0] == seg2[0] && seg[1] == seg2[1]) || (seg[0] == seg2[1] && seg[1] == seg2[0])) && params.surfid.Contains(seg2.si))
count++;
if(count == 1)
{
growthvectors[seg[0]] = {0., 0., 0.};
growthvectors[seg[1]] = {0., 0., 0.};
}
}
}
return in_surface_direction;
}
void BoundaryLayerTool :: InterpolateGrowthVectors()
{
// mesh.Save("interpolate.vol");
// cout << "new number of line segments " << mesh.LineSegments().Size() << endl;
int new_max_edge_nr = max_edge_nr;
for(const auto& seg : mesh.LineSegments())
if(seg.edgenr > new_max_edge_nr)
new_max_edge_nr = seg.edgenr;
auto getGW = [&] (PointIndex pi) -> Vec<3> {
// static Vec<3> zero(0.,0.,0.);
if(growth_vector_map.count(pi))
{
auto [gw, height] = growth_vector_map[pi];
return height * (*gw);
}
else
return growthvectors[pi];
// zero = {0.,0.,0.};
// return zero;
};
// auto setGW = [&] (PointIndex pi, Vec<3> gw, double h) {
// growthvectors[pi] = gw;
// growth_vector_map[pi] = {&growthvectors[pi], h};
// };
// cout << "edge range " << max_edge_nr << ", " << new_max_edge_nr << endl;
// interpolate tangential component of growth vector along edge
for(auto edgenr : Range(max_edge_nr+1, new_max_edge_nr))
{
// cout << "SEARCH EDGE " << edgenr +1 << endl;
// if(!is_edge_moved[edgenr+1]) continue;
// build sorted list of edge
Array<PointIndex> points;
// find first vertex on edge
double edge_len = 0.;
auto is_end_point = [&] (PointIndex pi)
{
// if(mesh[pi].Type() == FIXEDPOINT)
// return true;
// return false;
auto segs = topo.GetVertexSegments(pi);
if(segs.Size() == 1)
return true;
auto first_edgenr = mesh[segs[0]].edgenr;
for(auto segi : segs)
if(mesh[segi].edgenr != first_edgenr)
return true;
return false;
};
bool any_grows = false;
for(const auto& seg : mesh.LineSegments())
{
if(seg.edgenr-1 == edgenr)
{
if(getGW(seg[0]).Length2() != 0 ||
getGW(seg[1]).Length2() != 0)
any_grows = true;
if(points.Size() == 0 && (is_end_point(seg[0]) || is_end_point(seg[1])))
{
PointIndex seg0 = seg[0], seg1 = seg[1];
if(is_end_point(seg[1]))
Swap(seg0, seg1);
points.Append(seg0);
points.Append(seg1);
edge_len += (mesh[seg[1]] - mesh[seg[0]]).Length();
}
}
}
if(!any_grows) {
cout << "skip edge " << edgenr+1 << endl;
continue;
}
if(!points.Size())
throw Exception("Could not find startpoint for edge " + ToString(edgenr));
while(true)
{
bool point_found = false;
for(auto si : topo.GetVertexSegments(points.Last()))
{
const auto& seg = mesh[si];
if(seg.edgenr-1 != edgenr)
continue;
if(seg[0] == points.Last() && points[points.Size()-2] !=seg[1])
{
edge_len += (mesh[points.Last()] - mesh[seg[1]]).Length();
points.Append(seg[1]);
point_found = true;
break;
}
else if(seg[1] == points.Last() &&
points[points.Size()-2] != seg[0])
{
edge_len += (mesh[points.Last()] - mesh[seg[0]]).Length();
points.Append(seg[0]);
point_found = true;
break;
}
}
if(is_end_point(points.Last()))
break;
if(!point_found)
{
throw Exception(string("Could not find connected list of line segments for edge ") + edgenr);
}
}
cout << "Points " << points << endl;
if(getGW(points[0]).Length2() == 0 &&
getGW(points.Last()).Length2() == 0)
continue;
// cout << "Points to average " << endl << points << endl;
// tangential part of growth vectors
auto t1 = (mesh[points[1]]-mesh[points[0]]).Normalize();
auto gt1 = getGW(points[0]) * t1 * t1;
auto t2 = (mesh[points.Last()]-mesh[points[points.Size()-2]]).Normalize();
auto gt2 = getGW(points.Last()) * t2 * t2;
// if(!is_edge_moved[edgenr+1])
// {
// if(getGW(points[0]) * (mesh[points[1]] - mesh[points[0]]) < 0)
// gt1 = 0.;
// if(getGW(points.Last()) * (mesh[points[points.Size()-2]] - mesh[points.Last()]) < 0)
// gt2 = 0.;
// }
// cout << "edgenr " << edgenr << endl;
// cout << "points " << endl << points << endl;
double len = 0.;
for(auto i : IntRange(1, points.Size()-1))
{
auto pi = points[i];
len += (mesh[pi] - mesh[points[i-1]]).Length();
auto t = getEdgeTangent(pi, edgenr);
auto lam = len/edge_len;
auto interpol = (1-lam) * (gt1 * t) * t + lam * (gt2 * t) * t;
// if(pi==89) {
// cout << "points " << points << endl;
// cout << "INTERPOL" << len << ',' << t << ',' << lam << ',' << interpol << endl;
// cout << gt1 << endl;
// cout << gt2 << endl;
// cout << getGW(pi) << endl;
// }
cout << "add gw " << pi << " " << interpol << endl;
growthvectors[pi] += interpol;
}
}
InterpolateSurfaceGrowthVectors();
}
void BoundaryLayerTool :: InsertNewElements( FlatArray<Array<pair<SegmentIndex, int>>, SegmentIndex> segmap, const BitArray & in_surface_direction )
{
static Timer timer("BoundaryLayerTool::InsertNewElements"); RegionTimer rt(timer);
mapto.SetSize(0);
mapto.SetSize(np);
auto changed_domains = domains;
if(!params.outside)
changed_domains.Invert();
auto & identifications = mesh.GetIdentifications();
const int identnr = identifications.GetNr("boundarylayer");
auto add_points = [&](PointIndex pi, Vec<3> & growth_vector, Array<PointIndex> & new_points)
{
Point<3> p = mesh[pi];
PointIndex pi_last = pi;
for(auto i : Range(params.heights))
{
// p += params.heights[i] * growth_vector;
auto pi_new = mesh.AddPoint(p);
new_points.Append(pi_new);
growth_vector_map[pi_new] = { &growth_vector, params.heights[i] };
if(special_boundary_points.count(pi) > 0)
mesh.AddLockedPoint(pi_new);
pi_last = pi_new;
}
};
// insert new points
for (PointIndex pi = 1; pi <= np; pi++) {
if (growthvectors[pi].Length2() != 0) {
if(special_boundary_points.count(pi))
{
for(auto & group : special_boundary_points[pi].growth_groups)
add_points(pi, group.growth_vector, group.new_points);
}
else
add_points(pi, growthvectors[pi], mapto[pi]);
}
}
// get point from mapto (or the group if point is mapped to multiple new points)
// layer = -1 means last point (top of boundary layer)
auto newPoint = [&](PointIndex pi, int layer = -1, int group = 0) {
if(layer == -1) layer = params.heights.Size()-1;
if(special_boundary_points.count(pi))
return special_boundary_points[pi].growth_groups[group].new_points[layer];
else
return mapto[pi][layer];
};
auto hasMoved = [&](PointIndex pi) {
return mapto[pi].Size() > 0 || special_boundary_points.count(pi);
};
auto numGroups = [&](PointIndex pi) -> size_t {
if(special_boundary_points.count(pi))
return special_boundary_points[pi].growth_groups.Size();
else
return 1;
};
auto getGroups = [&] (PointIndex pi, int face_index) -> Array<int> {
auto n = numGroups(pi);
Array<int> groups;
if(n == 1) {
groups.Append(0);
return groups;
}
const auto & all_groups = special_boundary_points[pi].growth_groups;
for(auto i : Range(n))
if(all_groups[i].faces.Contains(face_index))
groups.Append(i);
// cout << "groups " << pi << ", " << face_index << endl << groups;
return groups;
};
// add 2d quads on required surfaces
map<pair<PointIndex, PointIndex>, int> seg2edge;
map<int, int> edge_map;
int edge_nr = max_edge_nr;
auto getEdgeNr = [&] (int ei) {
if(edge_map.count(ei) == 0)
edge_map[ei] = ++edge_nr;
return edge_map[ei];
};
if(params.grow_edges)
{
for(auto sei : moved_segs)
{
// copy here since we will add segments and this would
// invalidate a reference!
// auto segi = segments[sei];
for(auto [sej, type] : segmap[sei])
{
auto segj = segments[sej];
if(type == 0)
{
auto addSegment = [&] (PointIndex p0, PointIndex p1, bool extra_edge_nr = false) {
Segment s;
s[0] = p0;
s[1] = p1;
s[2] = PointIndex::INVALID;
auto pair = s[0] < s[1] ? make_pair(s[0], s[1]) : make_pair(s[1], s[0]);
if(extra_edge_nr)
s.edgenr = ++edge_nr;
else
s.edgenr = getEdgeNr(segj.edgenr);
s.si = si_map[segj.si];
new_segments.Append(s);
// cout << __LINE__ <<"\t" << s << endl;
return s;
};
auto p0=segj[0], p1=segj[1];
auto g0 = getGroups(p0, segj.si);
auto g1 = getGroups(p1, segj.si);
if(g0.Size() == 1 && g1.Size() == 1)
auto s = addSegment( newPoint(p0, -1, g0[0]), newPoint(p1, -1, g1[0]) );
else {
if(g0.Size() == 2)
addSegment( newPoint(p0, -1, g0[0]), newPoint(p0, -1, g0[1]) );
if(g1.Size() == 2)
addSegment( newPoint(p1, -1, g1[0]), newPoint(p1, -1, g1[1]) );
}
}
// here we need to grow the quad elements
else if(type == 1)
{
PointIndex pp1 = segj[1];
PointIndex pp2 = segj[0];
if(in_surface_direction.Test(segj.si))
{
Swap(pp1, pp2);
is_boundary_moved.SetBit(segj.si);
}
PointIndex p1 = pp1;
PointIndex p2 = pp2;
PointIndex p3, p4;
Segment s0;
s0[0] = p1;
s0[1] = p2;
s0[2] = PointIndex::INVALID;
s0.edgenr = segj.edgenr;
s0.si = segj.si;
new_segments.Append(s0);
// cout << __LINE__ <<"\t" << s0 << endl;
for(auto i : Range(params.heights))
{
Element2d sel(QUAD);
p3 = newPoint(pp2, i);
p4 = newPoint(pp1, i);
sel[0] = p1;
sel[1] = p2;
sel[2] = p3;
sel[3] = p4;
for(auto i : Range(4))
{
sel.GeomInfo()[i].u = 0.0;
sel.GeomInfo()[i].v = 0.0;
}
sel.SetIndex(si_map[segj.si]);
mesh.AddSurfaceElement(sel);
// TODO: Too many, would be enough to only add outermost ones
Segment s1;
s1[0] = p2;
s1[1] = p3;
s1[2] = PointIndex::INVALID;
auto pair = make_pair(p2, p3);
s1.edgenr = getEdgeNr(segj.edgenr);
s1.si = segj.si;
// new_segments.Append(s1);
// cout << __LINE__ <<"\t" << s1 << endl;
Segment s2;
s2[0] = p4;
s2[1] = p1;
s2[2] = PointIndex::INVALID;
pair = make_pair(p1, p4);
s2.edgenr = getEdgeNr(segj.edgenr);
s2.si = segj.si;
// new_segments.Append(s2);
// cout << __LINE__ <<"\t" << s2 << endl;
p1 = p4;
p2 = p3;
}
Segment s3;
s3[0] = p3;
s3[1] = p4;
s3[2] = PointIndex::INVALID;
auto pair = p3 < p4 ? make_pair(p3, p4) : make_pair(p4, p3);
s3.edgenr = getEdgeNr(segj.edgenr);
s3.si = segj.si;
new_segments.Append(s3);
// cout << __LINE__ << "\t" << s3 << endl;
}
}
}
}
auto getClosestGroup = [&] (PointIndex pi, SurfaceElementIndex sei)
{
auto n = numGroups(pi);
if(n == 1) return 0;
const auto & sel = mesh[sei];
auto igroup = 0;
double distance = 1e99;
for(auto j : Range(n)) {
// auto g = getGroups(pi, sel.GetIndex());
auto vcenter = Center(mesh[sel[0]], mesh[sel[1]], mesh[sel[2]]);
auto dist = (vcenter-(mesh[pi]+special_boundary_points[pi].growth_groups[j].growth_vector)).Length2();
if(dist < distance) {
distance = dist;
igroup = j;
}
}
return getGroups(pi, sel.GetIndex())[igroup];
};
BitArray fixed_points(np+1);
fixed_points.Clear();
BitArray moveboundarypoint(np+1);
moveboundarypoint.Clear();
auto p2el = mesh.CreatePoint2ElementTable();
for(SurfaceElementIndex si = 0; si < nse; si++)
{
// copy because surfaceels array will be resized!
const auto sel = mesh[si];
if(moved_surfaces.Test(sel.GetIndex()))
{
Array<PointIndex> points(sel.PNums());
if(surfacefacs[sel.GetIndex()] > 0) Swap(points[0], points[2]);
ArrayMem<int, 4> groups(points.Size());
for(auto i : Range(points))
groups[i] = getClosestGroup(sel[i], si);
bool add_volume_element = true;
for(auto pi : sel.PNums())
if(numGroups(pi)>1)
add_volume_element = false;
for(auto j : Range(params.heights))
{
auto eltype = points.Size() == 3 ? PRISM : HEX;
Element el(eltype);
for(auto i : Range(points))
el[i] = points[i];
for(auto i : Range(points))
points[i] = newPoint(sel.PNums()[i], j, groups[i]);
if(surfacefacs[sel.GetIndex()] > 0) Swap(points[0], points[2]);
for(auto i : Range(points))
el[sel.PNums().Size() + i] = points[i];
auto new_index = new_mat_nrs[sel.GetIndex()];
if(new_index == -1)
throw Exception("Boundary " + ToString(sel.GetIndex()) + " with name " + mesh.GetBCName(sel.GetIndex()-1) + " extruded, but no new material specified for it!");
el.SetIndex(new_mat_nrs[sel.GetIndex()]);
if(add_volume_element)
mesh.AddVolumeElement(el);
else
{
// Let the volume mesher fill the hole with pyramids/tets
// To insert pyramids, we need close surface identifications on open quads
for(auto i : Range(points))
if(numGroups(sel[i]) == 1)
identifications.Add(el[i], el[i+points.Size()], identnr);
}
}
Element2d newel = sel;
for(auto i: Range(points))
newel[i] = newPoint(sel[i], -1, groups[i]);
newel.SetIndex(si_map[sel.GetIndex()]);
mesh.AddSurfaceElement(newel);
// also move volume element adjacent to this surface element accordingly
ElementIndex ei = -1;
// if(groups[0] || groups[1] || groups[2])
// for(auto ei_ : p2el[sel.PNums()[0]])
// {
// const auto & el = mesh[ei_];
// // if(!domains.Test(el.GetIndex())) continue;
// cout << "check " << ei_ << "\t" << el << "\t" << sel << endl;
// auto pnums = el.PNums();
// if(pnums.Contains(sel[1]) && pnums.Contains(sel[2])) {
// ei = ei_;
// break;
// }
// }
if(ei != -1) {
cout << "move " << ei << mesh[ei] << endl;
auto & el = mesh[ei];
for (auto i : Range(el.GetNP()))
for (auto j : Range(3))
{
if(groups[j] && el[i] == sel[j]) {
el[i] = newel[j];
break;
}
}
cout << "after " << ei << mesh[ei] << endl;
}
}
else
{
bool has_moved = false;
for(auto p : sel.PNums())
has_moved |= hasMoved(p);
if(has_moved)
for(auto p : sel.PNums())
{
if(hasMoved(p))
{
fixed_points.SetBit(p);
if(is_boundary_moved.Test(sel.GetIndex()))
moveboundarypoint.SetBit(p);
}
}
}
if(is_boundary_moved.Test(sel.GetIndex()))
{
for(auto& p : mesh[si].PNums())
if(hasMoved(p))
p = newPoint(p);
}
}
for(SegmentIndex sei = 0; sei < nseg; sei++)
{
auto& seg = segments[sei];
if(is_boundary_moved.Test(seg.si))
for(auto& p : seg.PNums())
if(hasMoved(p))
p = newPoint(p);
}
// fill holes in surface mesh at special boundary points (with >=4 adjacent boundary faces)
auto p2sel = mesh.CreatePoint2SurfaceElementTable();
for(auto & [pi, special_point] : special_boundary_points) {
if(special_point.growth_groups.Size() != 2)
throw Exception("special_point.growth_groups.Size() != 2");
for(auto igroup : Range(2)) {
auto & group = special_point.growth_groups[igroup];
std::set<int> faces;
for(auto face : group.faces)
faces.insert(si_map[face]);
auto pi_new = group.new_points.Last();
auto pi_new_other = special_point.growth_groups[1-igroup].new_points.Last();
for(auto sei : p2sel[pi_new])
faces.erase(mesh[sei].GetIndex());
for(auto face : faces)
for(auto seg : new_segments) {
if(//seg.si == face
(seg[0] == pi_new || seg[1] == pi_new)
&& (seg[0] != pi_new_other && seg[1] != pi_new_other)
) {
bool is_correct_face = false;
auto pi_other = seg[0] == pi_new ? seg[1] : seg[0];
for(auto sei : p2sel[pi_other]) {
if(mesh[sei].GetIndex() == face) {
is_correct_face = true;
break;
}
}
if(is_correct_face) {
Element2d sel;
sel[0] = seg[1];
sel[1] = seg[0];
sel[2] = pi_new_other;
sel.SetIndex(face);
mesh.AddSurfaceElement(sel);
}
}
}
}
}
for(ElementIndex ei = 0; ei < ne; ei++)
{
auto el = mesh[ei];
ArrayMem<PointIndex,4> fixed;
ArrayMem<PointIndex,4> moved;
bool moved_bnd = false;
for(const auto& p : el.PNums())
{
if(fixed_points.Test(p))
fixed.Append(p);
if(hasMoved(p))
moved.Append(p);
if(moveboundarypoint.Test(p))
moved_bnd = true;
}
bool do_move, do_insert;
if(changed_domains.Test(el.GetIndex()))
{
do_move = fixed.Size() && moved_bnd;
do_insert = do_move;
}
else
{
do_move = !fixed.Size() || moved_bnd;
do_insert = !do_move;
}
if(do_move)
{
for(auto& p : mesh[ei].PNums())
if(hasMoved(p)) {
if(special_boundary_points.count(p)) {
auto & special_point = special_boundary_points[p];
auto & group = special_point.growth_groups[0];
p = group.new_points.Last();
}
else
p = newPoint(p);
}
}
if(do_insert)
{
if(el.GetType() == TET)
{
if(moved.Size() == 3) // inner corner
{
PointIndex p1 = moved[0];
PointIndex p2 = moved[1];
PointIndex p3 = moved[2];
auto v1 = mesh[p1];
auto n = Cross(mesh[p2]-v1, mesh[p3]-v1);
auto d = mesh[newPoint(p1,0)] - v1;
if(n*d > 0)
Swap(p2,p3);
PointIndex p4 = p1;
PointIndex p5 = p2;
PointIndex p6 = p3;
for(auto i : Range(params.heights))
{
Element nel(PRISM);
nel[0] = p4; nel[1] = p5; nel[2] = p6;
p4 = newPoint(p1, i); p5 = newPoint(p2, i); p6 = newPoint(p3, i);
nel[3] = p4; nel[4] = p5; nel[5] = p6;
nel.SetIndex(el.GetIndex());
mesh.AddVolumeElement(nel);
}
}
if(moved.Size() == 2)
{
if(fixed.Size() == 1)
{
PointIndex p1 = moved[0];
PointIndex p2 = moved[1];
for(auto i : Range(params.heights))
{
PointIndex p3 = newPoint(moved[1], i);
PointIndex p4 = newPoint(moved[0], i);
Element nel(PYRAMID);
nel[0] = p1;
nel[1] = p2;
nel[2] = p3;
nel[3] = p4;
nel[4] = el[0] + el[1] + el[2] + el[3] - fixed[0] - moved[0] - moved[1];
if(Cross(mesh[p2]-mesh[p1], mesh[p4]-mesh[p1]) * (mesh[nel[4]]-mesh[nel[1]]) > 0)
Swap(nel[1], nel[3]);
nel.SetIndex(el.GetIndex());
mesh.AddVolumeElement(nel);
p1 = p4;
p2 = p3;
}
}
}
if(moved.Size() == 1 && fixed.Size() == 1)
{
PointIndex p1 = moved[0];
for(auto i : Range(params.heights))
{
Element nel = el;
PointIndex p2 = newPoint(moved[0], i);
for(auto& p : nel.PNums())
{
if(p == moved[0])
p = p1;
else if(p == fixed[0])
p = p2;
}
p1 = p2;
mesh.AddVolumeElement(nel);
}
}
}
else if(el.GetType() == PYRAMID)
{
if(moved.Size() == 2)
{
if(fixed.Size() != 2)
throw Exception("This case is not implemented yet! Fixed size = " + ToString(fixed.Size()));
PointIndex p1 = moved[0];
PointIndex p2 = moved[1];
for(auto i : Range(params.heights))
{
PointIndex p3 = newPoint(moved[1], i);
PointIndex p4 = newPoint(moved[0], i);
Element nel(PYRAMID);
nel[0] = p1;
nel[1] = p2;
nel[2] = p3;
nel[3] = p4;
nel[4] = el[0] + el[1] + el[2] + el[3] + el[4] - fixed[0] - fixed[1] - moved[0] - moved[1];
if(Cross(mesh[p2] - mesh[p1], mesh[p4]-mesh[p1]) * (mesh[nel[4]]-mesh[nel[1]]) > 0)
Swap(nel[1], nel[3]);
nel.SetIndex(el.GetIndex());
mesh.AddVolumeElement(nel);
p1 = p4;
p2 = p3;
}
}
else if(moved.Size() == 1)
throw Exception("This case is not implemented yet!");
}
else if(do_move) {
cout << "have moved " << moved << endl;
cout << "do_insert " << do_insert << endl;
cout << "do_move " << do_move << endl;
cout << "el " << el << endl;
cout << "bl domain " << domains.Test(el.GetIndex()) << endl;
throw Exception("Boundarylayer only implemented for tets and pyramids outside yet!");
}
}
}
}
void BoundaryLayerTool :: SetDomInOut()
{
for(auto i : Range(1, nfd_old+1))
if(moved_surfaces.Test(i))
{
if(auto dom = mesh.GetFaceDescriptor(si_map[i]).DomainIn(); dom > ndom_old)
mesh.GetFaceDescriptor(i).SetDomainOut(dom);
else
mesh.GetFaceDescriptor(i).SetDomainIn(mesh.GetFaceDescriptor(si_map[i]).DomainOut());
}
}
void BoundaryLayerTool :: SetDomInOutSides()
{
BitArray done(mesh.GetNFD()+1);
done.Clear();
for(auto sei : Range(mesh.SurfaceElements()))
{
auto& sel = mesh[sei];
auto index = sel.GetIndex();
if(done.Test(index))
continue;
done.SetBit(index);
auto& fd = mesh.GetFaceDescriptor(index);
if(fd.DomainIn() != -1)
continue;
int e1, e2;
mesh.GetTopology().GetSurface2VolumeElement(sei+1, e1, e2);
if(e1 == 0)
fd.SetDomainIn(0);
else
fd.SetDomainIn(mesh.VolumeElement(e1).GetIndex());
if(e2 == 0)
fd.SetDomainOut(0);
else
fd.SetDomainOut(mesh.VolumeElement(e2).GetIndex());
}
}
void BoundaryLayerTool :: AddSegments()
{
if(have_single_segments)
MergeAndAddSegments(mesh, new_segments);
else
{
for(auto & seg : new_segments)
mesh.AddSegment(seg);
}
}
void BoundaryLayerTool :: FixVolumeElements()
{
static Timer timer("BoundaryLayerTool::FixVolumeElements"); RegionTimer rt(timer);
BitArray is_inner_point(mesh.GetNP()+1);
is_inner_point.Clear();
auto changed_domains = domains;
if(!params.outside)
changed_domains.Invert();
for(ElementIndex ei : Range(ne))
if(changed_domains.Test(mesh[ei].GetIndex()))
for(auto pi : mesh[ei].PNums())
if(mesh[pi].Type() == INNERPOINT)
is_inner_point.SetBit(pi);
Array<PointIndex> points;
for(auto pi : mesh.Points().Range())
if(is_inner_point.Test(pi))
points.Append(pi);
auto p2el = mesh.CreatePoint2ElementTable(is_inner_point);
// smooth growth vectors to shift additional element layers to the inside and fix flipped tets
for([[maybe_unused]] auto step : Range(0))
{
for(auto pi : points)
{
Vec<3> average_gw = 0.0;
auto & els = p2el[pi];
size_t cnt = 0;
for(auto ei : els)
if(ei<ne)
for(auto pi1 : mesh[ei].PNums())
if(pi1<=np)
{
average_gw += growthvectors[pi1];
cnt++;
}
growthvectors[pi] = 1.0/cnt * average_gw;
}
}
// for(auto pi : points)
// {
// mesh[pi] += height * growthvectors[pi];
// growthvectors[pi] = 0.0;
// }
}
void BoundaryLayerTool :: Perform()
{
CreateNewFaceDescriptors();
CalculateGrowthVectors();
cout << "growthvectors " << __LINE__ << endl << growthvectors << endl;
CreateFaceDescriptorsSides();
auto segmap = BuildSegMap();
auto in_surface_direction = ProjectGrowthVectorsOnSurface();
cout << "growthvectors " << __LINE__ << endl << growthvectors << endl;
// auto fout = ofstream("growthvectors.txt");
// for (auto pi : Range(mesh.Points()))
// {
// for(auto i : Range(3))
// fout << mesh[pi][i] << " ";
// for(auto i : Range(3))
// fout << mesh[pi][i]+height*growthvectors[pi][i] << " ";
// }
// fout << endl;
// FixVolumeElements();
// mesh.Save("before_insert.vol");
InsertNewElements(segmap, in_surface_direction);
SetDomInOut();
AddSegments();
mesh.CalcSurfacesOfNode();
topo.SetBuildVertex2Element(true);
mesh.UpdateTopology();
InterpolateGrowthVectors();
// cout << "growthvectors before " << endl<< growthvectors << endl;
// cout << "growthvectors after " << endl << growthvectors << endl;
if(params.limit_growth_vectors)
LimitGrowthVectorLengths();
cout << "growthvectors " << __LINE__ << endl << growthvectors << endl;
for(PointIndex pi : Range(PointIndex::BASE, this->np + PointIndex::BASE))
{
cout << "move " << pi << "\tby " << total_height << " * " << growthvectors[pi] << endl;
mesh[pi] += total_height * growthvectors[pi];
}
for (auto [pi, data] : growth_vector_map) {
auto [gw, height] = data;
cout << "move " << pi << "\tby " << height << " * " << (*gw) << endl;
mesh[pi] += height * (*gw);
}
mesh.GetTopology().ClearEdges();
mesh.SetNextMajorTimeStamp();
mesh.UpdateTopology();
SetDomInOutSides();
MeshingParameters mp;
mp.optimize3d ="m";
mp.optsteps3d = 4;
OptimizeVolume(mp, mesh);
}
void GenerateBoundaryLayer(Mesh& mesh, const BoundaryLayerParameters& blp)
{
static Timer timer("Create Boundarylayers");
RegionTimer regt(timer);
BoundaryLayerTool tool(mesh, blp);
tool.Perform();
}
} // namespace netgen