// Copyright (C) 2007-2013 CEA/DEN, EDF R&D, OPEN CASCADE // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // File : NETGENPlugin_NETGEN_2D_ONLY.cxx // Author : Edward AGAPOV (OCC) // Project : SALOME // #include "NETGENPlugin_NETGEN_2D_ONLY.hxx" #include "NETGENPlugin_Mesher.hxx" #include "NETGENPlugin_Hypothesis_2D.hxx" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Netgen include files */ namespace nglib { #include } #ifndef OCCGEOMETRY #define OCCGEOMETRY #endif #include #include //#include namespace netgen { #ifdef NETGEN_V5 extern int OCCGenerateMesh (OCCGeometry&, Mesh*&, MeshingParameters&, int, int); #else extern int OCCGenerateMesh (OCCGeometry&, Mesh*&, int, int, char*); #endif extern MeshingParameters mparam; } using namespace std; using namespace netgen; using namespace nglib; //#define DUMP_SEGMENTS //============================================================================= /*! * */ //============================================================================= NETGENPlugin_NETGEN_2D_ONLY::NETGENPlugin_NETGEN_2D_ONLY(int hypId, int studyId, SMESH_Gen* gen) : SMESH_2D_Algo(hypId, studyId, gen) { MESSAGE("NETGENPlugin_NETGEN_2D_ONLY::NETGENPlugin_NETGEN_2D_ONLY"); _name = "NETGEN_2D_ONLY"; _shapeType = (1 << TopAbs_FACE);// 1 bit /shape type _compatibleHypothesis.push_back("MaxElementArea"); _compatibleHypothesis.push_back("LengthFromEdges"); _compatibleHypothesis.push_back("QuadranglePreference"); _compatibleHypothesis.push_back("NETGEN_Parameters_2D"); _compatibleHypothesis.push_back("ViscousLayers2D"); _hypMaxElementArea = 0; _hypLengthFromEdges = 0; _hypQuadranglePreference = 0; _hypParameters = 0; } //============================================================================= /*! * */ //============================================================================= NETGENPlugin_NETGEN_2D_ONLY::~NETGENPlugin_NETGEN_2D_ONLY() { MESSAGE("NETGENPlugin_NETGEN_2D_ONLY::~NETGENPlugin_NETGEN_2D_ONLY"); } //============================================================================= /*! * */ //============================================================================= bool NETGENPlugin_NETGEN_2D_ONLY::CheckHypothesis (SMESH_Mesh& aMesh, const TopoDS_Shape& aShape, Hypothesis_Status& aStatus) { _hypMaxElementArea = 0; _hypLengthFromEdges = 0; _hypQuadranglePreference = 0; const list& hyps = GetUsedHypothesis(aMesh, aShape, false); if (hyps.empty()) { aStatus = HYP_OK; //SMESH_Hypothesis::HYP_MISSING; return true; // (PAL13464) can work with no hypothesis, LengthFromEdges is default one } aStatus = HYP_MISSING; list::const_iterator ith; for (ith = hyps.begin(); ith != hyps.end(); ++ith ) { const SMESHDS_Hypothesis* hyp = (*ith); string hypName = hyp->GetName(); if ( hypName == "MaxElementArea") _hypMaxElementArea = static_cast (hyp); else if ( hypName == "LengthFromEdges" ) _hypLengthFromEdges = static_cast (hyp); else if ( hypName == "QuadranglePreference" ) _hypQuadranglePreference = static_cast(hyp); else if ( hypName == "NETGEN_Parameters_2D" ) _hypParameters = static_cast(hyp); else if ( hypName == StdMeshers_ViscousLayers2D::GetHypType() ) continue; else { aStatus = HYP_INCOMPATIBLE; return false; } } int nbHyps = bool(_hypMaxElementArea) + bool(_hypLengthFromEdges) + bool(_hypParameters ); if ( nbHyps > 1 ) aStatus = HYP_CONCURENT; else aStatus = HYP_OK; return ( aStatus == HYP_OK ); } //============================================================================= /*! *Here we are going to use the NETGEN mesher */ //============================================================================= bool NETGENPlugin_NETGEN_2D_ONLY::Compute(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape) { #ifdef WITH_SMESH_CANCEL_COMPUTE netgen::multithread.terminate = 0; #endif MESSAGE("NETGENPlugin_NETGEN_2D_ONLY::Compute()"); SMESHDS_Mesh* meshDS = aMesh.GetMeshDS(); int faceID = meshDS->ShapeToIndex( aShape ); SMESH_MesherHelper helper(aMesh); _quadraticMesh = helper.IsQuadraticSubMesh(aShape); helper.SetElementsOnShape( true ); const bool ignoreMediumNodes = _quadraticMesh; // build viscous layers if required const TopoDS_Face F = TopoDS::Face( aShape.Oriented( TopAbs_FORWARD )); SMESH_ProxyMesh::Ptr proxyMesh = StdMeshers_ViscousLayers2D::Compute( aMesh, F ); if ( !proxyMesh ) return false; // ------------------------ // get all edges of a face // ------------------------ TError problem; TSideVector wires = StdMeshers_FaceSide::GetFaceWires( F, aMesh, ignoreMediumNodes, problem, proxyMesh ); if ( problem && !problem->IsOK() ) return error( problem ); int nbWires = wires.size(); if ( nbWires == 0 ) return error( "Problem in StdMeshers_FaceSide::GetFaceWires()"); if ( wires[0]->NbSegments() < 3 ) // ex: a circle with 2 segments return error(COMPERR_BAD_INPUT_MESH, SMESH_Comment("Too few segments: ")<NbSegments()); // -------------------- // compute edge length // -------------------- NETGENPlugin_Mesher aMesher( &aMesh, aShape, /*isVolume=*/false); netgen::OCCGeometry occgeo; aMesher.PrepareOCCgeometry( occgeo, F, aMesh ); occgeo.fmap.Clear(); // face can be reversed, which is wrong in this case (issue 19978) occgeo.fmap.Add( F ); if ( _hypParameters ) { aMesher.SetParameters(_hypParameters); } else { double edgeLength = 0; if (_hypLengthFromEdges || (!_hypLengthFromEdges && !_hypMaxElementArea)) { int nbSegments = 0; for ( int iW = 0; iW < nbWires; ++iW ) { edgeLength += wires[ iW ]->Length(); nbSegments += wires[ iW ]->NbSegments(); } if ( nbSegments ) edgeLength /= nbSegments; } if ( _hypMaxElementArea ) { double maxArea = _hypMaxElementArea->GetMaxArea(); edgeLength = sqrt(2. * maxArea/sqrt(3.0)); } if ( edgeLength < DBL_MIN ) edgeLength = occgeo.GetBoundingBox().Diam(); netgen::mparam.maxh = edgeLength; netgen::mparam.minh = aMesher.GetDefaultMinSize( aShape, netgen::mparam.maxh ); netgen::mparam.quad = _hypQuadranglePreference ? 1 : 0; netgen::mparam.grading = 0.7; // very coarse mesh by default } occgeo.face_maxh = netgen::mparam.maxh; // ------------------------- // Make input netgen mesh // ------------------------- NETGENPlugin_NetgenLibWrapper ngLib; netgen::Mesh * ngMesh = (netgen::Mesh*) ngLib._ngMesh; Box<3> bb = occgeo.GetBoundingBox(); bb.Increase (bb.Diam()/10); ngMesh->SetLocalH (bb.PMin(), bb.PMax(), netgen::mparam.grading); ngMesh->SetGlobalH (netgen::mparam.maxh); vector< const SMDS_MeshNode* > nodeVec; problem = aMesher.AddSegmentsToMesh( *ngMesh, occgeo, wires, helper, nodeVec ); if ( problem && !problem->IsOK() ) return error( problem ); // ------------------------- // Generate surface mesh // ------------------------- #ifndef NETGEN_V5 char *optstr = 0; #endif int startWith = MESHCONST_MESHSURFACE; int endWith = MESHCONST_OPTSURFACE; int err = 1; try { #if (OCC_VERSION_MAJOR << 16 | OCC_VERSION_MINOR << 8 | OCC_VERSION_MAINTENANCE) > 0x060100 OCC_CATCH_SIGNALS; #endif #ifdef NETGEN_V5 err = netgen::OCCGenerateMesh(occgeo, ngMesh, netgen::mparam, startWith, endWith); #else err = netgen::OCCGenerateMesh(occgeo, ngMesh, startWith, endWith, optstr); #endif #ifdef WITH_SMESH_CANCEL_COMPUTE if(netgen::multithread.terminate) return false; #endif if ( err ) error(SMESH_Comment("Error in netgen::OCCGenerateMesh() at ") << netgen::multithread.task); } catch (Standard_Failure& ex) { SMESH_Comment str("Exception in netgen::OCCGenerateMesh()"); str << " at " << netgen::multithread.task << ": " << ex.DynamicType()->Name(); if ( ex.GetMessageString() && strlen( ex.GetMessageString() )) str << ": " << ex.GetMessageString(); error(str); } catch (...) { SMESH_Comment str("Exception in netgen::OCCGenerateMesh()"); str << " at " << netgen::multithread.task; error(str); } // ---------------------------------------------------- // Fill the SMESHDS with the generated nodes and faces // ---------------------------------------------------- int nbNodes = ngMesh->GetNP(); int nbFaces = ngMesh->GetNSE(); int nbInputNodes = nodeVec.size()-1; nodeVec.resize( nbNodes+1, 0 ); // add nodes for ( int ngID = nbInputNodes + 1; ngID <= nbNodes; ++ngID ) { const MeshPoint& ngPoint = ngMesh->Point( ngID ); SMDS_MeshNode * node = meshDS->AddNode(ngPoint(0), ngPoint(1), ngPoint(2)); nodeVec[ ngID ] = node; } // create faces bool reverse = ( aShape.Orientation() == TopAbs_REVERSED ); int i,j; for ( i = 1; i <= nbFaces ; ++i ) { const Element2d& elem = ngMesh->SurfaceElement(i); vector nodes( elem.GetNP() ); for (j=1; j <= elem.GetNP(); ++j) { int pind = elem.PNum(j); if ( pind < 1 ) break; const SMDS_MeshNode* node = nodeVec[ pind ]; if ( reverse ) nodes[ nodes.size()-j ] = node; else nodes[ j-1 ] = node; if ( node->GetPosition()->GetTypeOfPosition() == SMDS_TOP_3DSPACE ) { const PointGeomInfo& pgi = elem.GeomInfoPi(j); meshDS->SetNodeOnFace((SMDS_MeshNode*)node, faceID, pgi.u, pgi.v); } } if ( j > elem.GetNP() ) { SMDS_MeshFace* face = 0; if ( elem.GetType() == TRIG ) face = helper.AddFace(nodes[0],nodes[1],nodes[2]); else face = helper.AddFace(nodes[0],nodes[1],nodes[2],nodes[3]); } } return !err; } #ifdef WITH_SMESH_CANCEL_COMPUTE void NETGENPlugin_NETGEN_2D_ONLY::CancelCompute() { SMESH_Algo::CancelCompute(); netgen::multithread.terminate = 1; } #endif //============================================================================= /*! * */ //============================================================================= bool NETGENPlugin_NETGEN_2D_ONLY::Evaluate(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape, MapShapeNbElems& aResMap) { TopoDS_Face F = TopoDS::Face(aShape); if(F.IsNull()) return false; // collect info from edges int nb0d = 0, nb1d = 0; bool IsQuadratic = false; bool IsFirst = true; double fullLen = 0.0; TopTools_MapOfShape tmpMap; for (TopExp_Explorer exp(F, TopAbs_EDGE); exp.More(); exp.Next()) { TopoDS_Edge E = TopoDS::Edge(exp.Current()); if( tmpMap.Contains(E) ) continue; tmpMap.Add(E); SMESH_subMesh *aSubMesh = aMesh.GetSubMesh(exp.Current()); MapShapeNbElemsItr anIt = aResMap.find(aSubMesh); if( anIt==aResMap.end() ) { SMESH_subMesh *sm = aMesh.GetSubMesh(F); SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this)); return false; } std::vector aVec = (*anIt).second; nb0d += aVec[SMDSEntity_Node]; nb1d += Max(aVec[SMDSEntity_Edge],aVec[SMDSEntity_Quad_Edge]); double aLen = SMESH_Algo::EdgeLength(E); fullLen += aLen; if(IsFirst) { IsQuadratic = (aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge]); IsFirst = false; } } tmpMap.Clear(); // compute edge length double ELen = 0; if (_hypLengthFromEdges || !_hypLengthFromEdges && !_hypMaxElementArea) { if ( nb1d > 0 ) ELen = fullLen / nb1d; } if ( _hypMaxElementArea ) { double maxArea = _hypMaxElementArea->GetMaxArea(); ELen = sqrt(2. * maxArea/sqrt(3.0)); } GProp_GProps G; BRepGProp::SurfaceProperties(F,G); double anArea = G.Mass(); const int hugeNb = numeric_limits::max()/10; if ( anArea / hugeNb > ELen*ELen ) { SMESH_subMesh *sm = aMesh.GetSubMesh(F); SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated.\nToo small element length",this)); return false; } int nbFaces = (int) ( anArea / ( ELen*ELen*sqrt(3.) / 4 ) ); int nbNodes = (int) ( ( nbFaces*3 - (nb1d-1)*2 ) / 6 + 1 ); std::vector aVec(SMDSEntity_Last); for(int i=SMDSEntity_Node; i