netgenplugin/src/NETGENPlugin/NETGENPlugin_NETGEN_3D.cxx

685 lines
23 KiB
C++

// Copyright (C) 2007-2010 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
//=============================================================================
// File : NETGENPlugin_NETGEN_3D.cxx
// Moved here from SMESH_NETGEN_3D.cxx
// Created : lundi 27 Janvier 2003
// Author : Nadir BOUHAMOU (CEA)
// Project : SALOME
//=============================================================================
//
#include "NETGENPlugin_NETGEN_3D.hxx"
#include "NETGENPlugin_Mesher.hxx"
#include "SMDS_MeshElement.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMESHDS_Mesh.hxx"
#include "SMESH_Comment.hxx"
#include "SMESH_ControlsDef.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_MeshEditor.hxx"
#include "StdMeshers_QuadToTriaAdaptor.hxx"
#include <BRepGProp.hxx>
#include <BRep_Tool.hxx>
#include <GProp_GProps.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopoDS.hxx>
#include <Standard_Failure.hxx>
#include <Standard_ErrorHandler.hxx>
#include "utilities.h"
#include <list>
#include <vector>
#include <map>
/*
Netgen include files
*/
#define OCCGEOMETRY
#include <occgeom.hpp>
namespace nglib {
#include <nglib.h>
}
using namespace nglib;
using namespace std;
//=============================================================================
/*!
*
*/
//=============================================================================
NETGENPlugin_NETGEN_3D::NETGENPlugin_NETGEN_3D(int hypId, int studyId,
SMESH_Gen* gen)
: SMESH_3D_Algo(hypId, studyId, gen)
{
MESSAGE("NETGENPlugin_NETGEN_3D::NETGENPlugin_NETGEN_3D");
_name = "NETGEN_3D";
_shapeType = (1 << TopAbs_SHELL) | (1 << TopAbs_SOLID);// 1 bit /shape type
_compatibleHypothesis.push_back("MaxElementVolume");
_maxElementVolume = 0.;
_hypMaxElementVolume = NULL;
_requireShape = false; // can work without shape
}
//=============================================================================
/*!
*
*/
//=============================================================================
NETGENPlugin_NETGEN_3D::~NETGENPlugin_NETGEN_3D()
{
MESSAGE("NETGENPlugin_NETGEN_3D::~NETGENPlugin_NETGEN_3D");
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool NETGENPlugin_NETGEN_3D::CheckHypothesis (SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
Hypothesis_Status& aStatus)
{
MESSAGE("NETGENPlugin_NETGEN_3D::CheckHypothesis");
_hypMaxElementVolume = NULL;
_maxElementVolume = DBL_MAX;
list<const SMESHDS_Hypothesis*>::const_iterator itl;
const SMESHDS_Hypothesis* theHyp;
const list<const SMESHDS_Hypothesis*>& hyps = GetUsedHypothesis(aMesh, aShape);
int nbHyp = hyps.size();
if (!nbHyp)
{
aStatus = SMESH_Hypothesis::HYP_OK;
//aStatus = SMESH_Hypothesis::HYP_MISSING;
return true; // can work with no hypothesis
}
itl = hyps.begin();
theHyp = (*itl); // use only the first hypothesis
string hypName = theHyp->GetName();
bool isOk = false;
if (hypName == "MaxElementVolume")
{
_hypMaxElementVolume = static_cast<const StdMeshers_MaxElementVolume*> (theHyp);
ASSERT(_hypMaxElementVolume);
_maxElementVolume = _hypMaxElementVolume->GetMaxVolume();
isOk =true;
aStatus = SMESH_Hypothesis::HYP_OK;
}
else
aStatus = SMESH_Hypothesis::HYP_INCOMPATIBLE;
return isOk;
}
//=============================================================================
/*!
*Here we are going to use the NETGEN mesher
*/
//=============================================================================
bool NETGENPlugin_NETGEN_3D::Compute(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape)
{
MESSAGE("NETGENPlugin_NETGEN_3D::Compute with maxElmentsize = " << _maxElementVolume);
SMESHDS_Mesh* meshDS = aMesh.GetMeshDS();
SMESH_MesherHelper helper(aMesh);
bool _quadraticMesh = helper.IsQuadraticSubMesh(aShape);
helper.SetElementsOnShape( true );
int Netgen_NbOfNodes = 0;
int Netgen_param2ndOrder = 0;
double Netgen_paramFine = 1.;
double Netgen_paramSize = pow( 72, 1/6. ) * pow( _maxElementVolume, 1/3. );
double Netgen_point[3];
int Netgen_triangle[3];
int Netgen_tetrahedron[4];
NETGENPlugin_NetgenLibWrapper ngLib;
Ng_Mesh * Netgen_mesh = ngLib._ngMesh;
// vector of nodes in which node index == netgen ID
vector< const SMDS_MeshNode* > nodeVec;
{
const int invalid_ID = -1;
SMESH::Controls::Area areaControl;
SMESH::Controls::TSequenceOfXYZ nodesCoords;
// maps nodes to ng ID
typedef map< const SMDS_MeshNode*, int, TIDCompare > TNodeToIDMap;
typedef TNodeToIDMap::value_type TN2ID;
TNodeToIDMap nodeToNetgenID;
// find internal shapes
NETGENPlugin_Internals internals( aMesh, aShape, /*is3D=*/true );
// ---------------------------------
// Feed the Netgen with surface mesh
// ---------------------------------
TopAbs_ShapeEnum mainType = aMesh.GetShapeToMesh().ShapeType();
bool checkReverse = ( mainType == TopAbs_COMPOUND || mainType == TopAbs_COMPSOLID );
StdMeshers_QuadToTriaAdaptor Adaptor;
if ( aMesh.NbQuadrangles() > 0 )
Adaptor.Compute(aMesh,aShape);
for ( TopExp_Explorer exFa( aShape, TopAbs_FACE ); exFa.More(); exFa.Next())
{
const TopoDS_Shape& aShapeFace = exFa.Current();
int faceID = meshDS->ShapeToIndex( aShapeFace );
bool isInternalFace = internals.isInternalShape( faceID );
bool isRev = false;
if ( checkReverse && !isInternalFace &&
helper.NbAncestors(aShapeFace, aMesh, aShape.ShapeType()) > 1 )
// IsReversedSubMesh() can work wrong on strongly curved faces,
// so we use it as less as possible
isRev = SMESH_Algo::IsReversedSubMesh( TopoDS::Face(aShapeFace), meshDS );
const SMESHDS_SubMesh * aSubMeshDSFace = meshDS->MeshElements( aShapeFace );
if ( !aSubMeshDSFace ) continue;
SMDS_ElemIteratorPtr iteratorElem = aSubMeshDSFace->GetElements();
while ( iteratorElem->more() ) // loop on elements on a geom face
{
// check mesh face
const SMDS_MeshElement* elem = iteratorElem->next();
if ( !elem )
return error( COMPERR_BAD_INPUT_MESH, "Null element encounters");
vector< const SMDS_MeshElement* > trias;
bool isTraingle = ( elem->NbNodes() == ( elem->IsQuadratic() ? 6 : 3 ));
if ( !isTraingle )
{
// use adaptor to convert quadrangle face into triangles
const list<const SMDS_MeshFace*>* faces = Adaptor.GetTriangles(elem);
if(faces==0)
return error( COMPERR_BAD_INPUT_MESH,
SMESH_Comment("No triangles in adaptor for element ")<<elem->GetID());
trias.assign( faces->begin(), faces->end() );
}
else
{
trias.push_back( elem );
}
// Add nodes of triangles and triangles them-selves to netgen mesh
for ( int i = 0; i < trias.size(); ++i )
{
// add three nodes of triangle
bool hasDegen = false;
for ( int iN = 0; iN < 3; ++iN )
{
const SMDS_MeshNode* node = trias[i]->GetNode( iN );
int shapeID = node->getshapeId();
if ( node->GetPosition()->GetTypeOfPosition() == SMDS_TOP_EDGE &&
helper.IsDegenShape( shapeID ))
{
// ignore all nodes on degeneraged edge and use node on its vertex instead
TopoDS_Shape vertex = TopoDS_Iterator( meshDS->IndexToShape( shapeID )).Value();
node = SMESH_Algo::VertexNode( TopoDS::Vertex( vertex ), meshDS );
hasDegen = true;
}
int& ngID = nodeToNetgenID.insert(TN2ID( node, invalid_ID )).first->second;
if ( ngID == invalid_ID )
{
ngID = ++Netgen_NbOfNodes;
Netgen_point [ 0 ] = node->X();
Netgen_point [ 1 ] = node->Y();
Netgen_point [ 2 ] = node->Z();
Ng_AddPoint(Netgen_mesh, Netgen_point);
}
Netgen_triangle[ isRev ? 2-iN : iN ] = ngID;
}
// add triangle
if ( hasDegen && (Netgen_triangle[0] == Netgen_triangle[1] ||
Netgen_triangle[0] == Netgen_triangle[2] ||
Netgen_triangle[2] == Netgen_triangle[1] ))
continue;
Ng_AddSurfaceElement(Netgen_mesh, NG_TRIG, Netgen_triangle);
if ( isInternalFace && isTraingle )
{
swap( Netgen_triangle[1], Netgen_triangle[2] );
Ng_AddSurfaceElement(Netgen_mesh, NG_TRIG, Netgen_triangle);
}
}
#ifdef _DEBUG_
// check if a trainge is degenerated
areaControl.GetPoints( elem, nodesCoords );
double area = areaControl.GetValue( nodesCoords );
if ( area <= DBL_MIN ) {
MESSAGE( "Warning: Degenerated " << elem );
}
#endif
} // loop on elements on a face
} // loop on faces of a SOLID or SHELL
// insert old nodes into nodeVec
nodeVec.resize( nodeToNetgenID.size() + 1, 0 );
TNodeToIDMap::iterator n_id = nodeToNetgenID.begin();
for ( ; n_id != nodeToNetgenID.end(); ++n_id )
nodeVec[ n_id->second ] = n_id->first;
nodeToNetgenID.clear();
if ( internals.hasInternalVertexInSolid() )
{
netgen::OCCGeometry occgeo;
NETGENPlugin_Mesher::addIntVerticesInSolids( occgeo,
(netgen::Mesh&) *Netgen_mesh,
nodeVec,
internals);
Netgen_NbOfNodes = Ng_GetNP(Netgen_mesh);
}
}
// -------------------------
// Generate the volume mesh
// -------------------------
Ng_Meshing_Parameters Netgen_param;
Netgen_param.secondorder = Netgen_param2ndOrder;
Netgen_param.fineness = Netgen_paramFine;
Netgen_param.maxh = Netgen_paramSize;
Ng_Result status;
try {
#if (OCC_VERSION_MAJOR << 16 | OCC_VERSION_MINOR << 8 | OCC_VERSION_MAINTENANCE) > 0x060100
OCC_CATCH_SIGNALS;
#endif
status = Ng_GenerateVolumeMesh(Netgen_mesh, &Netgen_param);
}
catch (Standard_Failure& exc) {
error(COMPERR_OCC_EXCEPTION, exc.GetMessageString());
status = NG_VOLUME_FAILURE;
}
catch (...) {
error("Exception in Ng_GenerateVolumeMesh()");
status = NG_VOLUME_FAILURE;
}
if ( GetComputeError()->IsOK() ) {
switch ( status ) {
case NG_SURFACE_INPUT_ERROR:error( status, "NG_SURFACE_INPUT_ERROR");
case NG_VOLUME_FAILURE: error( status, "NG_VOLUME_FAILURE");
case NG_STL_INPUT_ERROR: error( status, "NG_STL_INPUT_ERROR");
case NG_SURFACE_FAILURE: error( status, "NG_SURFACE_FAILURE");
case NG_FILE_NOT_FOUND: error( status, "NG_FILE_NOT_FOUND");
};
}
int Netgen_NbOfNodesNew = Ng_GetNP(Netgen_mesh);
int Netgen_NbOfTetra = Ng_GetNE(Netgen_mesh);
MESSAGE("End of Volume Mesh Generation. status=" << status <<
", nb new nodes: " << Netgen_NbOfNodesNew - Netgen_NbOfNodes <<
", nb tetra: " << Netgen_NbOfTetra);
// -------------------------------------------------------------------
// Feed back the SMESHDS with the generated Nodes and Volume Elements
// -------------------------------------------------------------------
if ( status == NG_VOLUME_FAILURE )
{
SMESH_ComputeErrorPtr err = NETGENPlugin_Mesher::readErrors(nodeVec);
if ( err && !err->myBadElements.empty() )
error( err );
}
bool isOK = ( /*status == NG_OK &&*/ Netgen_NbOfTetra > 0 );// get whatever built
if ( isOK )
{
// create and insert new nodes into nodeVec
nodeVec.resize( Netgen_NbOfNodesNew + 1, 0 );
int nodeIndex = Netgen_NbOfNodes + 1;
for ( ; nodeIndex <= Netgen_NbOfNodesNew; ++nodeIndex )
{
Ng_GetPoint( Netgen_mesh, nodeIndex, Netgen_point );
nodeVec.at(nodeIndex) = helper.AddNode(Netgen_point[0], Netgen_point[1], Netgen_point[2]);
}
// create tetrahedrons
for ( int elemIndex = 1; elemIndex <= Netgen_NbOfTetra; ++elemIndex )
{
Ng_GetVolumeElement(Netgen_mesh, elemIndex, Netgen_tetrahedron);
helper.AddVolume (nodeVec.at( Netgen_tetrahedron[0] ),
nodeVec.at( Netgen_tetrahedron[1] ),
nodeVec.at( Netgen_tetrahedron[2] ),
nodeVec.at( Netgen_tetrahedron[3] ));
}
}
return (status == NG_OK);
}
//================================================================================
/*!
* \brief Compute tetrahedral mesh from 2D mesh without geometry
*/
//================================================================================
bool NETGENPlugin_NETGEN_3D::Compute(SMESH_Mesh& aMesh,
SMESH_MesherHelper* aHelper)
{
MESSAGE("NETGENPlugin_NETGEN_3D::Compute with maxElmentsize = " << _maxElementVolume);
const int invalid_ID = -1;
bool _quadraticMesh = false;
typedef map< const SMDS_MeshNode*, int, TIDCompare > TNodeToIDMap;
TNodeToIDMap nodeToNetgenID;
list< const SMDS_MeshElement* > triangles;
SMESHDS_Mesh* MeshDS = aHelper->GetMeshDS();
SMESH_MesherHelper::MType MeshType = aHelper->IsQuadraticMesh();
if(MeshType == SMESH_MesherHelper::COMP)
return error( COMPERR_BAD_INPUT_MESH,
SMESH_Comment("Mesh with linear and quadratic elements given."));
else if (MeshType == SMESH_MesherHelper::QUADRATIC)
_quadraticMesh = true;
StdMeshers_QuadToTriaAdaptor Adaptor;
if ( aMesh.NbQuadrangles() > 0 )
Adaptor.Compute(aMesh);
SMDS_FaceIteratorPtr fIt = MeshDS->facesIterator(/*idInceasingOrder=*/true);
while( fIt->more())
{
// check element
const SMDS_MeshElement* elem = fIt->next();
if ( !elem )
return error( COMPERR_BAD_INPUT_MESH, "Null element encounters");
vector< const SMDS_MeshElement* > trias;
bool isTraingle = ( elem->NbCornerNodes() == 3 );
if ( !isTraingle ) {
// using adaptor
const list<const SMDS_MeshFace*>* faces = Adaptor.GetTriangles(elem);
if(faces==0)
continue; // Issue 0020682. There already can be 3d mesh
trias.assign( faces->begin(), faces->end() );
}
else {
trias.push_back( elem );
}
for ( int i = 0; i < trias.size(); ++i )
{
triangles.push_back( trias[i] );
for ( int iN = 0; iN < 3; ++iN )
{
const SMDS_MeshNode* node = trias[i]->GetNode( iN );
// put elem nodes to nodeToNetgenID map
nodeToNetgenID.insert( make_pair( node, invalid_ID ));
}
}
}
// ---------------------------------
// Feed the Netgen with surface mesh
// ---------------------------------
int Netgen_NbOfNodes = 0;
int Netgen_param2ndOrder = 0;
double Netgen_paramFine = 1.;
double Netgen_paramSize = pow( 72, 1/6. ) * pow( _maxElementVolume, 1/3. );
double Netgen_point[3];
int Netgen_triangle[3];
int Netgen_tetrahedron[4];
NETGENPlugin_NetgenLibWrapper ngLib;
Ng_Mesh * Netgen_mesh = ngLib._ngMesh;
// set nodes and remember thier netgen IDs
TNodeToIDMap::iterator n_id = nodeToNetgenID.begin();
for ( ; n_id != nodeToNetgenID.end(); ++n_id )
{
const SMDS_MeshNode* node = n_id->first;
Netgen_point [ 0 ] = node->X();
Netgen_point [ 1 ] = node->Y();
Netgen_point [ 2 ] = node->Z();
Ng_AddPoint(Netgen_mesh, Netgen_point);
n_id->second = ++Netgen_NbOfNodes; // set netgen ID
}
// set triangles
list< const SMDS_MeshElement* >::iterator tria = triangles.begin();
for ( ; tria != triangles.end(); ++tria)
{
int i = 0;
SMDS_ElemIteratorPtr triangleNodesIt = (*tria)->nodesIterator();
while ( triangleNodesIt->more() ) {
const SMDS_MeshNode * node =
static_cast<const SMDS_MeshNode *>(triangleNodesIt->next());
if(aHelper->IsMedium(node))
continue;
Netgen_triangle[ i ] = nodeToNetgenID[ node ];
++i;
}
Ng_AddSurfaceElement(Netgen_mesh, NG_TRIG, Netgen_triangle);
}
// vector of nodes in which node index == netgen ID
vector< const SMDS_MeshNode* > nodeVec ( nodeToNetgenID.size() + 1 );
// insert old nodes into nodeVec
for ( n_id = nodeToNetgenID.begin(); n_id != nodeToNetgenID.end(); ++n_id )
nodeVec.at( n_id->second ) = n_id->first;
nodeToNetgenID.clear();
// -------------------------
// Generate the volume mesh
// -------------------------
Ng_Meshing_Parameters Netgen_param;
Netgen_param.secondorder = Netgen_param2ndOrder;
Netgen_param.fineness = Netgen_paramFine;
Netgen_param.maxh = Netgen_paramSize;
Ng_Result status;
try {
#if (OCC_VERSION_MAJOR << 16 | OCC_VERSION_MINOR << 8 | OCC_VERSION_MAINTENANCE) > 0x060100
OCC_CATCH_SIGNALS;
#endif
status = Ng_GenerateVolumeMesh(Netgen_mesh, &Netgen_param);
}
catch (Standard_Failure& exc) {
error(COMPERR_OCC_EXCEPTION, exc.GetMessageString());
status = NG_VOLUME_FAILURE;
}
catch (...) {
error("Exception in Ng_GenerateVolumeMesh()");
status = NG_VOLUME_FAILURE;
}
if ( GetComputeError()->IsOK() ) {
switch ( status ) {
case NG_SURFACE_INPUT_ERROR:error( status, "NG_SURFACE_INPUT_ERROR");
case NG_VOLUME_FAILURE: error( status, "NG_VOLUME_FAILURE");
case NG_STL_INPUT_ERROR: error( status, "NG_STL_INPUT_ERROR");
case NG_SURFACE_FAILURE: error( status, "NG_SURFACE_FAILURE");
case NG_FILE_NOT_FOUND: error( status, "NG_FILE_NOT_FOUND");
};
}
int Netgen_NbOfNodesNew = Ng_GetNP(Netgen_mesh);
int Netgen_NbOfTetra = Ng_GetNE(Netgen_mesh);
MESSAGE("End of Volume Mesh Generation. status=" << status <<
", nb new nodes: " << Netgen_NbOfNodesNew - Netgen_NbOfNodes <<
", nb tetra: " << Netgen_NbOfTetra);
// -------------------------------------------------------------------
// Feed back the SMESHDS with the generated Nodes and Volume Elements
// -------------------------------------------------------------------
if ( status == NG_VOLUME_FAILURE )
{
SMESH_ComputeErrorPtr err = NETGENPlugin_Mesher::readErrors(nodeVec);
if ( err && !err->myBadElements.empty() )
error( err );
}
bool isOK = ( Netgen_NbOfTetra > 0 );// get whatever built
if ( isOK )
{
// create and insert new nodes into nodeVec
nodeVec.resize( Netgen_NbOfNodesNew + 1 );
int nodeIndex = Netgen_NbOfNodes + 1;
for ( ; nodeIndex <= Netgen_NbOfNodesNew; ++nodeIndex )
{
Ng_GetPoint( Netgen_mesh, nodeIndex, Netgen_point );
nodeVec.at(nodeIndex) = aHelper->AddNode(Netgen_point[0],Netgen_point[1],Netgen_point[2]);
}
// create tetrahedrons
for ( int elemIndex = 1; elemIndex <= Netgen_NbOfTetra; ++elemIndex )
{
Ng_GetVolumeElement(Netgen_mesh, elemIndex, Netgen_tetrahedron);
aHelper->AddVolume (nodeVec.at( Netgen_tetrahedron[0] ),
nodeVec.at( Netgen_tetrahedron[1] ),
nodeVec.at( Netgen_tetrahedron[2] ),
nodeVec.at( Netgen_tetrahedron[3] ));
}
}
return (status == NG_OK);
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool NETGENPlugin_NETGEN_3D::Evaluate(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
MapShapeNbElems& aResMap)
{
int nbtri = 0, nbqua = 0;
double fullArea = 0.0;
for (TopExp_Explorer expF(aShape, TopAbs_FACE); expF.More(); expF.Next()) {
TopoDS_Face F = TopoDS::Face( expF.Current() );
SMESH_subMesh *sm = aMesh.GetSubMesh(F);
MapShapeNbElemsItr anIt = aResMap.find(sm);
if( anIt==aResMap.end() ) {
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this));
return false;
}
std::vector<int> aVec = (*anIt).second;
nbtri += Max(aVec[SMDSEntity_Triangle],aVec[SMDSEntity_Quad_Triangle]);
nbqua += Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]);
GProp_GProps G;
BRepGProp::SurfaceProperties(F,G);
double anArea = G.Mass();
fullArea += anArea;
}
// collect info from edges
int nb0d_e = 0, nb1d_e = 0;
bool IsQuadratic = false;
bool IsFirst = true;
TopTools_MapOfShape tmpMap;
for (TopExp_Explorer expF(aShape, TopAbs_EDGE); expF.More(); expF.Next()) {
TopoDS_Edge E = TopoDS::Edge(expF.Current());
if( tmpMap.Contains(E) )
continue;
tmpMap.Add(E);
SMESH_subMesh *aSubMesh = aMesh.GetSubMesh(expF.Current());
MapShapeNbElemsItr anIt = aResMap.find(aSubMesh);
if( anIt==aResMap.end() ) {
SMESH_ComputeErrorPtr& smError = aSubMesh->GetComputeError();
smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,
"Submesh can not be evaluated",this));
return false;
}
std::vector<int> aVec = (*anIt).second;
nb0d_e += aVec[SMDSEntity_Node];
nb1d_e += Max(aVec[SMDSEntity_Edge],aVec[SMDSEntity_Quad_Edge]);
if(IsFirst) {
IsQuadratic = (aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge]);
IsFirst = false;
}
}
tmpMap.Clear();
double ELen_face = sqrt(2.* ( fullArea/(nbtri+nbqua*2) ) / sqrt(3.0) );
double ELen_vol = pow( 72, 1/6. ) * pow( _maxElementVolume, 1/3. );
double ELen = Min(ELen_vol,ELen_face*2);
GProp_GProps G;
BRepGProp::VolumeProperties(aShape,G);
double aVolume = G.Mass();
double tetrVol = 0.1179*ELen*ELen*ELen;
double CoeffQuality = 0.9;
int nbVols = int( aVolume/tetrVol/CoeffQuality );
int nb1d_f = (nbtri*3 + nbqua*4 - nb1d_e) / 2;
int nb1d_in = (nbVols*6 - nb1d_e - nb1d_f ) / 5;
std::vector<int> aVec(SMDSEntity_Last);
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aVec[i]=0;
if( IsQuadratic ) {
aVec[SMDSEntity_Node] = nb1d_in/6 + 1 + nb1d_in;
aVec[SMDSEntity_Quad_Tetra] = nbVols - nbqua*2;
aVec[SMDSEntity_Quad_Pyramid] = nbqua;
}
else {
aVec[SMDSEntity_Node] = nb1d_in/6 + 1;
aVec[SMDSEntity_Tetra] = nbVols - nbqua*2;
aVec[SMDSEntity_Pyramid] = nbqua;
}
SMESH_subMesh *sm = aMesh.GetSubMesh(aShape);
aResMap.insert(std::make_pair(sm,aVec));
return true;
}