netgenplugin/src/NETGENPlugin/NETGENPlugin_NETGEN_2D_ONLY.cxx
imn 9cc5a6ab79 0023299: [CEA] Finalize multi-study removal
- delete study id parameter
2016-10-14 17:01:39 +03:00

719 lines
24 KiB
C++

// Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : NETGENPlugin_NETGEN_2D_ONLY.cxx
// Author : Edward AGAPOV (OCC)
// Project : SALOME
//
#include "NETGENPlugin_NETGEN_2D_ONLY.hxx"
#include "NETGENPlugin_Mesher.hxx"
#include "NETGENPlugin_Hypothesis_2D.hxx"
#include <SMDS_MeshElement.hxx>
#include <SMDS_MeshNode.hxx>
#include <SMESHDS_Mesh.hxx>
#include <SMESH_Comment.hxx>
#include <SMESH_Gen.hxx>
#include <SMESH_Mesh.hxx>
#include <SMESH_MesherHelper.hxx>
#include <SMESH_subMesh.hxx>
#include <StdMeshers_FaceSide.hxx>
#include <StdMeshers_LengthFromEdges.hxx>
#include <StdMeshers_MaxElementArea.hxx>
#include <StdMeshers_QuadranglePreference.hxx>
#include <StdMeshers_ViscousLayers2D.hxx>
#include <Precision.hxx>
#include <Standard_ErrorHandler.hxx>
#include <Standard_Failure.hxx>
#include <utilities.h>
#include <list>
#include <vector>
#include <limits>
/*
Netgen include files
*/
namespace nglib {
#include <nglib.h>
}
#ifndef OCCGEOMETRY
#define OCCGEOMETRY
#endif
#include <occgeom.hpp>
#include <meshing.hpp>
//#include <meshtype.hpp>
namespace netgen {
#ifdef NETGEN_V5
extern int OCCGenerateMesh (OCCGeometry&, Mesh*&, MeshingParameters&, int, int);
#else
extern int OCCGenerateMesh (OCCGeometry&, Mesh*&, int, int, char*);
#endif
extern MeshingParameters mparam;
extern void OCCSetLocalMeshSize(OCCGeometry & geom, Mesh & mesh);
}
using namespace std;
using namespace netgen;
using namespace nglib;
//=============================================================================
/*!
*
*/
//=============================================================================
NETGENPlugin_NETGEN_2D_ONLY::NETGENPlugin_NETGEN_2D_ONLY(int hypId,
SMESH_Gen* gen)
: SMESH_2D_Algo(hypId, gen)
{
_name = "NETGEN_2D_ONLY";
_shapeType = (1 << TopAbs_FACE);// 1 bit /shape type
_onlyUnaryInput = false; // treat all FACEs at once
_compatibleHypothesis.push_back("MaxElementArea");
_compatibleHypothesis.push_back("LengthFromEdges");
_compatibleHypothesis.push_back("QuadranglePreference");
_compatibleHypothesis.push_back("NETGEN_Parameters_2D");
_compatibleHypothesis.push_back("ViscousLayers2D");
_hypMaxElementArea = 0;
_hypLengthFromEdges = 0;
_hypQuadranglePreference = 0;
_hypParameters = 0;
}
//=============================================================================
/*!
*
*/
//=============================================================================
NETGENPlugin_NETGEN_2D_ONLY::~NETGENPlugin_NETGEN_2D_ONLY()
{
MESSAGE("NETGENPlugin_NETGEN_2D_ONLY::~NETGENPlugin_NETGEN_2D_ONLY");
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool NETGENPlugin_NETGEN_2D_ONLY::CheckHypothesis (SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
Hypothesis_Status& aStatus)
{
_hypMaxElementArea = 0;
_hypLengthFromEdges = 0;
_hypQuadranglePreference = 0;
_hypParameters = 0;
_progressByTic = -1;
const list<const SMESHDS_Hypothesis*>& hyps = GetUsedHypothesis(aMesh, aShape, false);
if (hyps.empty())
{
aStatus = HYP_OK; //SMESH_Hypothesis::HYP_MISSING;
return true; // (PAL13464) can work with no hypothesis, LengthFromEdges is default one
}
aStatus = HYP_MISSING;
bool hasVL = false;
list<const SMESHDS_Hypothesis*>::const_iterator ith;
for (ith = hyps.begin(); ith != hyps.end(); ++ith )
{
const SMESHDS_Hypothesis* hyp = (*ith);
string hypName = hyp->GetName();
if ( hypName == "MaxElementArea")
_hypMaxElementArea = static_cast<const StdMeshers_MaxElementArea*> (hyp);
else if ( hypName == "LengthFromEdges" )
_hypLengthFromEdges = static_cast<const StdMeshers_LengthFromEdges*> (hyp);
else if ( hypName == "QuadranglePreference" )
_hypQuadranglePreference = static_cast<const StdMeshers_QuadranglePreference*>(hyp);
else if ( hypName == "NETGEN_Parameters_2D" )
_hypParameters = static_cast<const NETGENPlugin_Hypothesis_2D*>(hyp);
else if ( hypName == StdMeshers_ViscousLayers2D::GetHypType() )
hasVL = true;
else {
aStatus = HYP_INCOMPATIBLE;
return false;
}
}
int nbHyps = bool(_hypMaxElementArea) + bool(_hypLengthFromEdges) + bool(_hypParameters );
if ( nbHyps > 1 )
aStatus = HYP_CONCURENT;
else if ( hasVL )
error( StdMeshers_ViscousLayers2D::CheckHypothesis( aMesh, aShape, aStatus ));
else
aStatus = HYP_OK;
if ( aStatus == HYP_OK && _hypParameters && _hypQuadranglePreference )
{
aStatus = HYP_INCOMPAT_HYPS;
return error(SMESH_Comment("\"") << _hypQuadranglePreference->GetName()
<< "\" and \"" << _hypParameters->GetName()
<< "\" are incompatible hypotheses");
}
return ( aStatus == HYP_OK );
}
// namespace
// {
// void limitSize( netgen::Mesh* ngMesh,
// const double maxh )
// {
// // get bnd box
// netgen::Point3d pmin, pmax;
// ngMesh->GetBox( pmin, pmax, 0 );
// const double dx = pmax.X() - pmin.X();
// const double dy = pmax.Y() - pmin.Y();
// const double dz = pmax.Z() - pmin.Z();
// const int nbX = Max( 2, int( dx / maxh * 3 ));
// const int nbY = Max( 2, int( dy / maxh * 3 ));
// const int nbZ = Max( 2, int( dz / maxh * 3 ));
// if ( ! & ngMesh->LocalHFunction() )
// ngMesh->SetLocalH( pmin, pmax, 0.1 );
// netgen::Point3d p;
// for ( int i = 0; i <= nbX; ++i )
// {
// p.X() = pmin.X() + i * dx / nbX;
// for ( int j = 0; j <= nbY; ++j )
// {
// p.Y() = pmin.Y() + j * dy / nbY;
// for ( int k = 0; k <= nbZ; ++k )
// {
// p.Z() = pmin.Z() + k * dz / nbZ;
// ngMesh->RestrictLocalH( p, maxh );
// }
// }
// }
// }
// }
//=============================================================================
/*!
*Here we are going to use the NETGEN mesher
*/
//=============================================================================
bool NETGENPlugin_NETGEN_2D_ONLY::Compute(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape)
{
netgen::multithread.terminate = 0;
//netgen::multithread.task = "Surface meshing";
SMESHDS_Mesh* meshDS = aMesh.GetMeshDS();
SMESH_MesherHelper helper(aMesh);
helper.SetElementsOnShape( true );
NETGENPlugin_NetgenLibWrapper ngLib;
ngLib._isComputeOk = false;
netgen::Mesh ngMeshNoLocSize;
netgen::Mesh * ngMeshes[2] = { (netgen::Mesh*) ngLib._ngMesh, & ngMeshNoLocSize };
netgen::OCCGeometry occgeoComm;
// min / max sizes are set as follows:
// if ( _hypParameters )
// min and max are defined by the user
// else if ( _hypLengthFromEdges )
// min = aMesher.GetDefaultMinSize()
// max = average segment len of a FACE
// else if ( _hypMaxElementArea )
// min = aMesher.GetDefaultMinSize()
// max = f( _hypMaxElementArea )
// else
// min = aMesher.GetDefaultMinSize()
// max = max segment len of a FACE
NETGENPlugin_Mesher aMesher( &aMesh, aShape, /*isVolume=*/false);
aMesher.SetParameters( _hypParameters ); // _hypParameters -> netgen::mparam
const bool toOptimize = _hypParameters ? _hypParameters->GetOptimize() : true;
if ( _hypMaxElementArea )
{
netgen::mparam.maxh = sqrt( 2. * _hypMaxElementArea->GetMaxArea() / sqrt(3.0) );
}
if ( _hypQuadranglePreference )
netgen::mparam.quad = true;
// local size is common for all FACEs in aShape?
const bool isCommonLocalSize = ( !_hypLengthFromEdges && !_hypMaxElementArea && netgen::mparam.uselocalh );
const bool isDefaultHyp = ( !_hypLengthFromEdges && !_hypMaxElementArea && !_hypParameters );
if ( isCommonLocalSize ) // compute common local size in ngMeshes[0]
{
//list< SMESH_subMesh* > meshedSM[4]; --> all sub-shapes are added to occgeoComm
aMesher.PrepareOCCgeometry( occgeoComm, aShape, aMesh );//, meshedSM );
// local size set at MESHCONST_ANALYSE step depends on
// minh, face_maxh, grading and curvaturesafety; find minh if not set by the user
if ( !_hypParameters || netgen::mparam.minh < DBL_MIN )
{
if ( !_hypParameters )
netgen::mparam.maxh = occgeoComm.GetBoundingBox().Diam() / 3.;
netgen::mparam.minh = aMesher.GetDefaultMinSize( aShape, netgen::mparam.maxh );
}
// set local size depending on curvature and NOT closeness of EDGEs
netgen::occparam.resthcloseedgeenable = false;
//netgen::occparam.resthcloseedgefac = 1.0 + netgen::mparam.grading;
occgeoComm.face_maxh = netgen::mparam.maxh;
netgen::OCCSetLocalMeshSize( occgeoComm, *ngMeshes[0] );
occgeoComm.emap.Clear();
occgeoComm.vmap.Clear();
// set local size according to size of existing segments
const double factor = netgen::occparam.resthcloseedgefac;
TopTools_IndexedMapOfShape edgeMap;
TopExp::MapShapes( aMesh.GetShapeToMesh(), TopAbs_EDGE, edgeMap );
for ( int iE = 1; iE <= edgeMap.Extent(); ++iE )
{
const TopoDS_Shape& edge = edgeMap( iE );
if ( SMESH_Algo::isDegenerated( TopoDS::Edge( edge )))
continue;
SMESHDS_SubMesh* smDS = meshDS->MeshElements( edge );
if ( !smDS ) continue;
SMDS_ElemIteratorPtr segIt = smDS->GetElements();
while ( segIt->more() )
{
const SMDS_MeshElement* seg = segIt->next();
SMESH_TNodeXYZ n1 = seg->GetNode(0);
SMESH_TNodeXYZ n2 = seg->GetNode(1);
gp_XYZ p = 0.5 * ( n1 + n2 );
netgen::Point3d pi(p.X(), p.Y(), p.Z());
ngMeshes[0]->RestrictLocalH( pi, factor * ( n1 - n2 ).Modulus() );
}
}
// set local size defined on shapes
aMesher.SetLocalSize( occgeoComm, *ngMeshes[0] );
try {
ngMeshes[0]->LoadLocalMeshSize( mparam.meshsizefilename );
} catch (NgException & ex) {
return error( COMPERR_BAD_PARMETERS, ex.What() );
}
}
netgen::mparam.uselocalh = toOptimize; // restore as it is used at surface optimization
// ==================
// Loop on all FACEs
// ==================
vector< const SMDS_MeshNode* > nodeVec;
TopExp_Explorer fExp( aShape, TopAbs_FACE );
for ( int iF = 0; fExp.More(); fExp.Next(), ++iF )
{
TopoDS_Face F = TopoDS::Face( fExp.Current() /*.Oriented( TopAbs_FORWARD )*/);
int faceID = meshDS->ShapeToIndex( F );
SMESH_ComputeErrorPtr& faceErr = aMesh.GetSubMesh( F )->GetComputeError();
_quadraticMesh = helper.IsQuadraticSubMesh( F );
const bool ignoreMediumNodes = _quadraticMesh;
// build viscous layers if required
if ( F.Orientation() != TopAbs_FORWARD &&
F.Orientation() != TopAbs_REVERSED )
F.Orientation( TopAbs_FORWARD ); // avoid pb with TopAbs_INTERNAL
SMESH_ProxyMesh::Ptr proxyMesh = StdMeshers_ViscousLayers2D::Compute( aMesh, F );
if ( !proxyMesh )
continue;
// ------------------------
// get all EDGEs of a FACE
// ------------------------
TSideVector wires =
StdMeshers_FaceSide::GetFaceWires( F, aMesh, ignoreMediumNodes, faceErr, proxyMesh );
if ( faceErr && !faceErr->IsOK() )
continue;
int nbWires = wires.size();
if ( nbWires == 0 )
{
faceErr.reset
( new SMESH_ComputeError
( COMPERR_ALGO_FAILED, "Problem in StdMeshers_FaceSide::GetFaceWires()" ));
continue;
}
if ( wires[0]->NbSegments() < 3 ) // ex: a circle with 2 segments
{
faceErr.reset
( new SMESH_ComputeError
( COMPERR_BAD_INPUT_MESH, SMESH_Comment("Too few segments: ")<<wires[0]->NbSegments()) );
continue;
}
// ----------------------
// compute maxh of a FACE
// ----------------------
if ( !_hypParameters )
{
double edgeLength = 0;
if (_hypLengthFromEdges )
{
// compute edgeLength as an average segment length
int nbSegments = 0;
for ( int iW = 0; iW < nbWires; ++iW )
{
edgeLength += wires[ iW ]->Length();
nbSegments += wires[ iW ]->NbSegments();
}
if ( nbSegments )
edgeLength /= nbSegments;
netgen::mparam.maxh = edgeLength;
}
else if ( isDefaultHyp )
{
// set edgeLength by a longest segment
double maxSeg2 = 0;
for ( int iW = 0; iW < nbWires; ++iW )
{
const UVPtStructVec& points = wires[ iW ]->GetUVPtStruct();
if ( points.empty() )
return error( COMPERR_BAD_INPUT_MESH );
gp_Pnt pPrev = SMESH_TNodeXYZ( points[0].node );
for ( size_t i = 1; i < points.size(); ++i )
{
gp_Pnt p = SMESH_TNodeXYZ( points[i].node );
maxSeg2 = Max( maxSeg2, p.SquareDistance( pPrev ));
pPrev = p;
}
}
edgeLength = sqrt( maxSeg2 ) * 1.05;
netgen::mparam.maxh = edgeLength;
}
if ( netgen::mparam.maxh < DBL_MIN )
netgen::mparam.maxh = occgeoComm.GetBoundingBox().Diam();
if ( !isCommonLocalSize )
{
netgen::mparam.minh = aMesher.GetDefaultMinSize( F, netgen::mparam.maxh );
}
}
// prepare occgeom
netgen::OCCGeometry occgeom;
occgeom.shape = F;
occgeom.fmap.Add( F );
occgeom.CalcBoundingBox();
occgeom.facemeshstatus.SetSize(1);
occgeom.facemeshstatus = 0;
occgeom.face_maxh_modified.SetSize(1);
occgeom.face_maxh_modified = 0;
occgeom.face_maxh.SetSize(1);
occgeom.face_maxh = netgen::mparam.maxh;
// -------------------------
// Fill netgen mesh
// -------------------------
// MESHCONST_ANALYSE step may lead to a failure, so we make an attempt
// w/o MESHCONST_ANALYSE at the second loop
int err = 0;
enum { LOC_SIZE, NO_LOC_SIZE };
int iLoop = isCommonLocalSize ? 0 : 1;
for ( ; iLoop < 2; iLoop++ )
{
//bool isMESHCONST_ANALYSE = false;
InitComputeError();
netgen::Mesh * ngMesh = ngMeshes[ iLoop ];
ngMesh->DeleteMesh();
if ( iLoop == NO_LOC_SIZE )
{
ngMesh->SetGlobalH ( mparam.maxh );
ngMesh->SetMinimalH( mparam.minh );
Box<3> bb = occgeom.GetBoundingBox();
bb.Increase (bb.Diam()/10);
ngMesh->SetLocalH (bb.PMin(), bb.PMax(), mparam.grading);
aMesher.SetLocalSize( occgeom, *ngMesh );
try {
ngMesh->LoadLocalMeshSize( mparam.meshsizefilename );
} catch (NgException & ex) {
return error( COMPERR_BAD_PARMETERS, ex.What() );
}
}
nodeVec.clear();
faceErr = aMesher.AddSegmentsToMesh( *ngMesh, occgeom, wires, helper, nodeVec,
/*overrideMinH=*/!_hypParameters);
if ( faceErr && !faceErr->IsOK() )
break;
//if ( !isCommonLocalSize )
//limitSize( ngMesh, mparam.maxh * 0.8);
// -------------------------
// Generate surface mesh
// -------------------------
const int startWith = MESHCONST_MESHSURFACE;
const int endWith = toOptimize ? MESHCONST_OPTSURFACE : MESHCONST_MESHSURFACE;
SMESH_Comment str;
try {
OCC_CATCH_SIGNALS;
#ifdef NETGEN_V5
err = netgen::OCCGenerateMesh(occgeom, ngMesh, netgen::mparam, startWith, endWith);
#else
char *optstr = 0;
err = netgen::OCCGenerateMesh(occgeom, ngMesh, startWith, endWith, optstr);
#endif
if ( netgen::multithread.terminate )
return false;
if ( err )
str << "Error in netgen::OCCGenerateMesh() at " << netgen::multithread.task;
}
catch (Standard_Failure& ex)
{
err = 1;
str << "Exception in netgen::OCCGenerateMesh()"
<< " at " << netgen::multithread.task
<< ": " << ex.DynamicType()->Name();
if ( ex.GetMessageString() && strlen( ex.GetMessageString() ))
str << ": " << ex.GetMessageString();
}
catch (...) {
err = 1;
str << "Exception in netgen::OCCGenerateMesh()"
<< " at " << netgen::multithread.task;
}
if ( err )
{
if ( aMesher.FixFaceMesh( occgeom, *ngMesh, 1 ))
break;
if ( iLoop == LOC_SIZE )
{
netgen::mparam.minh = netgen::mparam.maxh;
netgen::mparam.maxh = 0;
for ( size_t iW = 0; iW < wires.size(); ++iW )
{
StdMeshers_FaceSidePtr wire = wires[ iW ];
const vector<UVPtStruct>& uvPtVec = wire->GetUVPtStruct();
for ( size_t iP = 1; iP < uvPtVec.size(); ++iP )
{
SMESH_TNodeXYZ p( uvPtVec[ iP ].node );
netgen::Point3d np( p.X(),p.Y(),p.Z());
double segLen = p.Distance( uvPtVec[ iP-1 ].node );
double size = ngMesh->GetH( np );
netgen::mparam.minh = Min( netgen::mparam.minh, size );
netgen::mparam.maxh = Max( netgen::mparam.maxh, segLen );
}
}
//cerr << "min " << netgen::mparam.minh << " max " << netgen::mparam.maxh << endl;
netgen::mparam.minh *= 0.9;
netgen::mparam.maxh *= 1.1;
continue;
}
else
{
faceErr.reset( new SMESH_ComputeError( COMPERR_ALGO_FAILED, str ));
}
}
// ----------------------------------------------------
// Fill the SMESHDS with the generated nodes and faces
// ----------------------------------------------------
int nbNodes = ngMesh->GetNP();
int nbFaces = ngMesh->GetNSE();
int nbInputNodes = nodeVec.size()-1;
nodeVec.resize( nbNodes+1, 0 );
// add nodes
for ( int ngID = nbInputNodes + 1; ngID <= nbNodes; ++ngID )
{
const MeshPoint& ngPoint = ngMesh->Point( ngID );
SMDS_MeshNode * node = meshDS->AddNode(ngPoint(0), ngPoint(1), ngPoint(2));
nodeVec[ ngID ] = node;
}
// create faces
int i,j;
vector<const SMDS_MeshNode*> nodes;
for ( i = 1; i <= nbFaces ; ++i )
{
const Element2d& elem = ngMesh->SurfaceElement(i);
nodes.resize( elem.GetNP() );
for (j=1; j <= elem.GetNP(); ++j)
{
int pind = elem.PNum(j);
if ( pind < 1 )
break;
nodes[ j-1 ] = nodeVec[ pind ];
if ( nodes[ j-1 ]->GetPosition()->GetTypeOfPosition() == SMDS_TOP_3DSPACE )
{
const PointGeomInfo& pgi = elem.GeomInfoPi(j);
meshDS->SetNodeOnFace( nodes[ j-1 ], faceID, pgi.u, pgi.v);
}
}
if ( j > elem.GetNP() )
{
if ( elem.GetType() == TRIG )
helper.AddFace(nodes[0],nodes[1],nodes[2]);
else
helper.AddFace(nodes[0],nodes[1],nodes[2],nodes[3]);
}
}
break;
} // two attempts
} // loop on FACEs
return true;
}
void NETGENPlugin_NETGEN_2D_ONLY::CancelCompute()
{
SMESH_Algo::CancelCompute();
netgen::multithread.terminate = 1;
}
//================================================================================
/*!
* \brief Return progress of Compute() [0.,1]
*/
//================================================================================
double NETGENPlugin_NETGEN_2D_ONLY::GetProgress() const
{
return -1;
// const char* task1 = "Surface meshing";
// //const char* task2 = "Optimizing surface";
// double& progress = const_cast<NETGENPlugin_NETGEN_2D_ONLY*>( this )->_progress;
// if ( _progressByTic < 0. &&
// strncmp( netgen::multithread.task, task1, 3 ) == 0 )
// {
// progress = Min( 0.25, SMESH_Algo::GetProgressByTic() ); // [0, 0.25]
// }
// else //if ( strncmp( netgen::multithread.task, task2, 3 ) == 0)
// {
// if ( _progressByTic < 0 )
// {
// NETGENPlugin_NETGEN_2D_ONLY* me = (NETGENPlugin_NETGEN_2D_ONLY*) this;
// me->_progressByTic = 0.25 / (_progressTic+1);
// }
// const_cast<NETGENPlugin_NETGEN_2D_ONLY*>( this )->_progressTic++;
// progress = Max( progress, _progressByTic * _progressTic );
// }
// //cout << netgen::multithread.task << " " << _progressTic << endl;
// return Min( progress, 0.99 );
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool NETGENPlugin_NETGEN_2D_ONLY::Evaluate(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
MapShapeNbElems& aResMap)
{
TopoDS_Face F = TopoDS::Face(aShape);
if(F.IsNull())
return false;
// collect info from edges
int nb0d = 0, nb1d = 0;
bool IsQuadratic = false;
bool IsFirst = true;
double fullLen = 0.0;
TopTools_MapOfShape tmpMap;
for (TopExp_Explorer exp(F, TopAbs_EDGE); exp.More(); exp.Next()) {
TopoDS_Edge E = TopoDS::Edge(exp.Current());
if( tmpMap.Contains(E) )
continue;
tmpMap.Add(E);
SMESH_subMesh *aSubMesh = aMesh.GetSubMesh(exp.Current());
MapShapeNbElemsItr anIt = aResMap.find(aSubMesh);
if( anIt==aResMap.end() ) {
SMESH_subMesh *sm = aMesh.GetSubMesh(F);
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this));
return false;
}
std::vector<int> aVec = (*anIt).second;
nb0d += aVec[SMDSEntity_Node];
nb1d += Max(aVec[SMDSEntity_Edge],aVec[SMDSEntity_Quad_Edge]);
double aLen = SMESH_Algo::EdgeLength(E);
fullLen += aLen;
if(IsFirst) {
IsQuadratic = (aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge]);
IsFirst = false;
}
}
tmpMap.Clear();
// compute edge length
double ELen = 0;
if (( _hypLengthFromEdges ) || ( !_hypLengthFromEdges && !_hypMaxElementArea )) {
if ( nb1d > 0 )
ELen = fullLen / nb1d;
}
if ( _hypMaxElementArea ) {
double maxArea = _hypMaxElementArea->GetMaxArea();
ELen = sqrt(2. * maxArea/sqrt(3.0));
}
GProp_GProps G;
BRepGProp::SurfaceProperties(F,G);
double anArea = G.Mass();
const int hugeNb = numeric_limits<int>::max()/10;
if ( anArea / hugeNb > ELen*ELen )
{
SMESH_subMesh *sm = aMesh.GetSubMesh(F);
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated.\nToo small element length",this));
return false;
}
int nbFaces = (int) ( anArea / ( ELen*ELen*sqrt(3.) / 4 ) );
int nbNodes = (int) ( ( nbFaces*3 - (nb1d-1)*2 ) / 6 + 1 );
std::vector<int> aVec(SMDSEntity_Last);
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aVec[i]=0;
if( IsQuadratic ) {
aVec[SMDSEntity_Node] = nbNodes;
aVec[SMDSEntity_Quad_Triangle] = nbFaces;
}
else {
aVec[SMDSEntity_Node] = nbNodes;
aVec[SMDSEntity_Triangle] = nbFaces;
}
SMESH_subMesh *sm = aMesh.GetSubMesh(F);
aResMap.insert(std::make_pair(sm,aVec));
return true;
}