smesh/src/StdMeshers/StdMeshers_QuadToTriaAdaptor.cxx

1163 lines
40 KiB
C++
Raw Normal View History

2009-02-17 10:27:49 +05:00
// Copyright (C) 2007-2008 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// SMESH SMESH : implementaion of SMESH idl descriptions
// File : StdMeshers_QuadToTriaAdaptor.cxx
// Module : SMESH
// Created : Wen May 07 16:37:07 2008
// Author : Sergey KUUL (skl)
//
#include "StdMeshers_QuadToTriaAdaptor.hxx"
//#include <TColgp_HArray1OfPnt.hxx>
//#include <TColgp_HArray1OfVec.hxx>
#include <TopExp_Explorer.hxx>
#include <TopoDS.hxx>
#include <SMESH_Algo.hxx>
#include <TColgp_HSequenceOfPnt.hxx>
#include <TColStd_MapOfInteger.hxx>
#include <TColStd_HSequenceOfInteger.hxx>
#include <IntAna_Quadric.hxx>
#include <IntAna_IntConicQuad.hxx>
#include <gp_Lin.hxx>
#include <gp_Pln.hxx>
#include <SMDS_FaceOfNodes.hxx>
#include <NCollection_Array1.hxx>
typedef NCollection_Array1<TColStd_SequenceOfInteger> StdMeshers_Array1OfSequenceOfInteger;
//=======================================================================
//function : StdMeshers_QuadToTriaAdaptor
//purpose :
//=======================================================================
StdMeshers_QuadToTriaAdaptor::StdMeshers_QuadToTriaAdaptor()
{
}
//================================================================================
/*!
* \brief Destructor
*/
//================================================================================
StdMeshers_QuadToTriaAdaptor::~StdMeshers_QuadToTriaAdaptor()
{}
//=======================================================================
//function : FindBestPoint
//purpose : Auxilare for Compute()
// V - normal to (P1,P2,PC)
//=======================================================================
static gp_Pnt FindBestPoint(const gp_Pnt& P1, const gp_Pnt& P2,
const gp_Pnt& PC, const gp_Vec& V)
{
double a = P1.Distance(P2);
double b = P1.Distance(PC);
double c = P2.Distance(PC);
if( a < (b+c)/2 )
return PC;
else {
// find shift along V in order to a became equal to (b+c)/2
double shift = sqrt( a*a + (b*b-c*c)*(b*b-c*c)/16/a/a - (b*b+c*c)/2 );
gp_Dir aDir(V);
gp_Pnt Pbest( PC.X() + aDir.X()*shift, PC.Y() + aDir.Y()*shift,
PC.Z() + aDir.Z()*shift );
return Pbest;
}
}
//=======================================================================
//function : HasIntersection3
//purpose : Auxilare for HasIntersection()
// find intersection point between triangle (P1,P2,P3)
// and segment [PC,P]
//=======================================================================
static bool HasIntersection3(const gp_Pnt& P, const gp_Pnt& PC, gp_Pnt& Pint,
const gp_Pnt& P1, const gp_Pnt& P2, const gp_Pnt& P3)
{
//cout<<"HasIntersection3"<<endl;
//cout<<" PC("<<PC.X()<<","<<PC.Y()<<","<<PC.Z()<<")"<<endl;
//cout<<" P("<<P.X()<<","<<P.Y()<<","<<P.Z()<<")"<<endl;
//cout<<" P1("<<P1.X()<<","<<P1.Y()<<","<<P1.Z()<<")"<<endl;
//cout<<" P2("<<P2.X()<<","<<P2.Y()<<","<<P2.Z()<<")"<<endl;
//cout<<" P3("<<P3.X()<<","<<P3.Y()<<","<<P3.Z()<<")"<<endl;
gp_Vec VP1(P1,P2);
gp_Vec VP2(P1,P3);
IntAna_Quadric IAQ(gp_Pln(P1,VP1.Crossed(VP2)));
IntAna_IntConicQuad IAICQ(gp_Lin(PC,gp_Dir(gp_Vec(PC,P))),IAQ);
if(IAICQ.IsDone()) {
if( IAICQ.IsInQuadric() )
return false;
if( IAICQ.NbPoints() == 1 ) {
gp_Pnt PIn = IAICQ.Point(1);
double preci = 1.e-6;
// check if this point is internal for segment [PC,P]
bool IsExternal =
( (PC.X()-PIn.X())*(P.X()-PIn.X()) > preci ) ||
( (PC.Y()-PIn.Y())*(P.Y()-PIn.Y()) > preci ) ||
( (PC.Z()-PIn.Z())*(P.Z()-PIn.Z()) > preci );
if(IsExternal) {
return false;
}
// check if this point is internal for triangle (P1,P2,P3)
gp_Vec V1(PIn,P1);
gp_Vec V2(PIn,P2);
gp_Vec V3(PIn,P3);
if( V1.Magnitude()<preci || V2.Magnitude()<preci ||
V3.Magnitude()<preci ) {
Pint = PIn;
return true;
}
gp_Vec VC1 = V1.Crossed(V2);
gp_Vec VC2 = V2.Crossed(V3);
gp_Vec VC3 = V3.Crossed(V1);
if(VC1.Magnitude()<preci) {
if(VC2.IsOpposite(VC3,preci)) {
return false;
}
}
else if(VC2.Magnitude()<preci) {
if(VC1.IsOpposite(VC3,preci)) {
return false;
}
}
else if(VC3.Magnitude()<preci) {
if(VC1.IsOpposite(VC2,preci)) {
return false;
}
}
else {
if( VC1.IsOpposite(VC2,preci) || VC1.IsOpposite(VC3,preci) ||
VC2.IsOpposite(VC3,preci) ) {
return false;
}
}
Pint = PIn;
return true;
}
}
return false;
}
//=======================================================================
//function : HasIntersection
//purpose : Auxilare for CheckIntersection()
//=======================================================================
static bool HasIntersection(const gp_Pnt& P, const gp_Pnt& PC, gp_Pnt& Pint,
Handle(TColgp_HSequenceOfPnt)& aContour)
{
if(aContour->Length()==3) {
return HasIntersection3( P, PC, Pint, aContour->Value(1),
aContour->Value(2), aContour->Value(3) );
}
else {
bool check = false;
if( (aContour->Value(1).Distance(aContour->Value(2)) > 1.e-6) &&
(aContour->Value(1).Distance(aContour->Value(3)) > 1.e-6) &&
(aContour->Value(2).Distance(aContour->Value(3)) > 1.e-6) ) {
check = HasIntersection3( P, PC, Pint, aContour->Value(1),
aContour->Value(2), aContour->Value(3) );
}
if(check) return true;
if( (aContour->Value(1).Distance(aContour->Value(4)) > 1.e-6) &&
(aContour->Value(1).Distance(aContour->Value(3)) > 1.e-6) &&
(aContour->Value(4).Distance(aContour->Value(3)) > 1.e-6) ) {
check = HasIntersection3( P, PC, Pint, aContour->Value(1),
aContour->Value(3), aContour->Value(4) );
}
if(check) return true;
}
return false;
}
//=======================================================================
//function : CheckIntersection
//purpose : Auxilare for Compute()
// NotCheckedFace - for optimization
//=======================================================================
bool StdMeshers_QuadToTriaAdaptor::CheckIntersection
(const gp_Pnt& P, const gp_Pnt& PC,
gp_Pnt& Pint, SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
const TopoDS_Shape& NotCheckedFace)
{
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
//cout<<" CheckIntersection: meshDS->NbFaces() = "<<meshDS->NbFaces()<<endl;
bool res = false;
double dist = RealLast();
gp_Pnt Pres;
for (TopExp_Explorer exp(aShape,TopAbs_FACE);exp.More();exp.Next()) {
const TopoDS_Shape& aShapeFace = exp.Current();
if(aShapeFace==NotCheckedFace)
continue;
const SMESHDS_SubMesh * aSubMeshDSFace = meshDS->MeshElements(aShapeFace);
if ( aSubMeshDSFace ) {
SMDS_ElemIteratorPtr iteratorElem = aSubMeshDSFace->GetElements();
while ( iteratorElem->more() ) { // loop on elements on a face
const SMDS_MeshElement* face = iteratorElem->next();
Handle(TColgp_HSequenceOfPnt) aContour = new TColgp_HSequenceOfPnt;
SMDS_ElemIteratorPtr nodeIt = face->nodesIterator();
if( !face->IsQuadratic() ) {
while ( nodeIt->more() ) {
const SMDS_MeshNode* node = static_cast<const SMDS_MeshNode*>( nodeIt->next() );
aContour->Append(gp_Pnt(node->X(), node->Y(), node->Z()));
}
}
else {
int nn = 0;
while ( nodeIt->more() ) {
nn++;
const SMDS_MeshNode* node = static_cast<const SMDS_MeshNode*>( nodeIt->next() );
aContour->Append(gp_Pnt(node->X(), node->Y(), node->Z()));
if(nn==face->NbNodes()/2) break;
}
}
if( HasIntersection(P, PC, Pres, aContour) ) {
res = true;
double tmp = PC.Distance(Pres);
if(tmp<dist) {
Pint = Pres;
dist = tmp;
}
}
}
}
}
return res;
}
//=======================================================================
//function : CompareTrias
//purpose : Auxilare for Compute()
//=======================================================================
static bool CompareTrias(const SMDS_MeshElement* F1,const SMDS_MeshElement* F2)
{
SMDS_ElemIteratorPtr nIt = F1->nodesIterator();
const SMDS_MeshNode* Ns1[3];
int k = 0;
while( nIt->more() ) {
Ns1[k] = static_cast<const SMDS_MeshNode*>( nIt->next() );
k++;
}
nIt = F2->nodesIterator();
const SMDS_MeshNode* Ns2[3];
k = 0;
while( nIt->more() ) {
Ns2[k] = static_cast<const SMDS_MeshNode*>( nIt->next() );
k++;
}
if( ( Ns1[1]==Ns2[1] && Ns1[2]==Ns2[2] ) ||
( Ns1[1]==Ns2[2] && Ns1[2]==Ns2[1] ) )
return true;
return false;
}
//=======================================================================
//function : IsDegenarate
//purpose : Auxilare for Preparation()
//=======================================================================
static int IsDegenarate(const Handle(TColgp_HArray1OfPnt)& PN)
{
int i = 1;
for(; i<4; i++) {
int j = i+1;
for(; j<=4; j++) {
if( PN->Value(i).Distance(PN->Value(j)) < 1.e-6 )
return j;
}
}
return 0;
}
//=======================================================================
//function : Preparation
//purpose : Auxilare for Compute()
// : Return 0 if given face is not quad,
// 1 if given face is quad,
// 2 if given face is degenerate quad (two nodes are coincided)
//=======================================================================
int StdMeshers_QuadToTriaAdaptor::Preparation(const SMDS_MeshElement* face,
Handle(TColgp_HArray1OfPnt) PN,
Handle(TColgp_HArray1OfVec) VN,
std::vector<const SMDS_MeshNode*>& FNodes,
gp_Pnt& PC, gp_Vec& VNorm)
{
int i = 0;
double xc=0., yc=0., zc=0.;
SMDS_ElemIteratorPtr nodeIt = face->nodesIterator();
if( !face->IsQuadratic() ) {
if( face->NbNodes() != 4 )
return 0;
while ( nodeIt->more() ) {
i++;
const SMDS_MeshNode* node = static_cast<const SMDS_MeshNode*>( nodeIt->next() );
FNodes[i-1] = node;
PN->SetValue( i, gp_Pnt(node->X(), node->Y(), node->Z()) );
xc += node->X();
yc += node->Y();
zc += node->Z();
}
}
else {
if( face->NbNodes() != 8)
return 0;
while ( nodeIt->more() ) {
i++;
const SMDS_MeshNode* node = static_cast<const SMDS_MeshNode*>( nodeIt->next() );
FNodes[i-1] = node;
PN->SetValue( i, gp_Pnt(node->X(), node->Y(), node->Z()) );
xc += node->X();
yc += node->Y();
zc += node->Z();
if(i==4) break;
}
}
int nbp = 4;
int j = 0;
for(i=1; i<4; i++) {
j = i+1;
for(; j<=4; j++) {
if( PN->Value(i).Distance(PN->Value(j)) < 1.e-6 )
break;
}
if(j<=4) break;
}
//int deg_num = IsDegenarate(PN);
//if(deg_num>0) {
bool hasdeg = false;
if(i<4) {
//cout<<"find degeneration"<<endl;
hasdeg = true;
gp_Pnt Pdeg = PN->Value(i);
std::list< const SMDS_MeshNode* >::iterator itdg = myDegNodes.begin();
const SMDS_MeshNode* DegNode = 0;
for(; itdg!=myDegNodes.end(); itdg++) {
const SMDS_MeshNode* N = (*itdg);
gp_Pnt Ptmp(N->X(),N->Y(),N->Z());
if(Pdeg.Distance(Ptmp)<1.e-6) {
DegNode = N;
//DegNode = const_cast<SMDS_MeshNode*>(N);
break;
}
}
if(!DegNode) {
DegNode = FNodes[i-1];
myDegNodes.push_back(DegNode);
}
else {
FNodes[i-1] = DegNode;
}
for(i=j; i<4; i++) {
PN->SetValue(i,PN->Value(i+1));
FNodes[i-1] = FNodes[i];
}
nbp = 3;
//PC = gp_Pnt( PN->Value(1).X() + PN.Value
}
PC = gp_Pnt(xc/4., yc/4., zc/4.);
//cout<<" PC("<<PC.X()<<","<<PC.Y()<<","<<PC.Z()<<")"<<endl;
//PN->SetValue(5,PN->Value(1));
PN->SetValue(nbp+1,PN->Value(1));
//FNodes[4] = FNodes[0];
FNodes[nbp] = FNodes[0];
// find normal direction
//gp_Vec V1(PC,PN->Value(4));
gp_Vec V1(PC,PN->Value(nbp));
gp_Vec V2(PC,PN->Value(1));
VNorm = V1.Crossed(V2);
//VN->SetValue(4,VNorm);
VN->SetValue(nbp,VNorm);
//for(i=1; i<4; i++) {
for(i=1; i<nbp; i++) {
V1 = gp_Vec(PC,PN->Value(i));
V2 = gp_Vec(PC,PN->Value(i+1));
gp_Vec Vtmp = V1.Crossed(V2);
VN->SetValue(i,Vtmp);
VNorm += Vtmp;
}
//cout<<" VNorm("<<VNorm.X()<<","<<VNorm.Y()<<","<<VNorm.Z()<<")"<<endl;
if(hasdeg) return 2;
return 1;
}
//=======================================================================
//function : Compute
//purpose :
//=======================================================================
bool StdMeshers_QuadToTriaAdaptor::Compute(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape)
{
myResMap.clear();
myMapFPyram.clear();
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
for (TopExp_Explorer exp(aShape,TopAbs_FACE);exp.More();exp.Next()) {
const TopoDS_Shape& aShapeFace = exp.Current();
const SMESHDS_SubMesh * aSubMeshDSFace = meshDS->MeshElements( aShapeFace );
if ( aSubMeshDSFace ) {
bool isRev = SMESH_Algo::IsReversedSubMesh( TopoDS::Face(aShapeFace), meshDS );
SMDS_ElemIteratorPtr iteratorElem = aSubMeshDSFace->GetElements();
while ( iteratorElem->more() ) { // loop on elements on a face
const SMDS_MeshElement* face = iteratorElem->next();
//cout<<endl<<"================= face->GetID() = "<<face->GetID()<<endl;
// preparation step using face info
Handle(TColgp_HArray1OfPnt) PN = new TColgp_HArray1OfPnt(1,5);
Handle(TColgp_HArray1OfVec) VN = new TColgp_HArray1OfVec(1,4);
std::vector<const SMDS_MeshNode*> FNodes(5);
gp_Pnt PC;
gp_Vec VNorm;
int stat = Preparation(face, PN, VN, FNodes, PC, VNorm);
if(stat==0)
continue;
if(stat==2) {
// degenerate face
// add triangles to result map
std::list<const SMDS_FaceOfNodes*> aList;
SMDS_FaceOfNodes* NewFace;
if(!isRev)
NewFace = new SMDS_FaceOfNodes( FNodes[0], FNodes[1], FNodes[2] );
else
NewFace = new SMDS_FaceOfNodes( FNodes[0], FNodes[2], FNodes[1] );
aList.push_back(NewFace);
myResMap.insert(make_pair(face,aList));
continue;
}
if(!isRev) VNorm.Reverse();
double xc = 0., yc = 0., zc = 0.;
int i = 1;
for(; i<=4; i++) {
gp_Pnt Pbest;
if(!isRev)
Pbest = FindBestPoint(PN->Value(i), PN->Value(i+1), PC, VN->Value(i).Reversed());
else
Pbest = FindBestPoint(PN->Value(i), PN->Value(i+1), PC, VN->Value(i));
xc += Pbest.X();
yc += Pbest.Y();
zc += Pbest.Z();
}
gp_Pnt PCbest(xc/4., yc/4., zc/4.);
// check PCbest
double height = PCbest.Distance(PC);
if(height<1.e-6) {
// create new PCbest using a bit shift along VNorm
PCbest = gp_Pnt( PC.X() + VNorm.X()*0.001,
PC.Y() + VNorm.Y()*0.001,
PC.Z() + VNorm.Z()*0.001);
}
else {
// check possible intersection with other faces
gp_Pnt Pint;
bool check = CheckIntersection(PCbest, PC, Pint, aMesh, aShape, aShapeFace);
if(check) {
//cout<<"--PC("<<PC.X()<<","<<PC.Y()<<","<<PC.Z()<<")"<<endl;
//cout<<" PCbest("<<PCbest.X()<<","<<PCbest.Y()<<","<<PCbest.Z()<<")"<<endl;
double dist = PC.Distance(Pint)/3.;
gp_Dir aDir(gp_Vec(PC,PCbest));
PCbest = gp_Pnt( PC.X() + aDir.X()*dist,
PC.Y() + aDir.Y()*dist,
PC.Z() + aDir.Z()*dist );
}
else {
gp_Vec VB(PC,PCbest);
gp_Pnt PCbestTmp(PC.X()+VB.X()*3, PC.X()+VB.X()*3, PC.X()+VB.X()*3);
bool check = CheckIntersection(PCbestTmp, PC, Pint, aMesh, aShape, aShapeFace);
if(check) {
double dist = PC.Distance(Pint)/3.;
if(dist<height) {
gp_Dir aDir(gp_Vec(PC,PCbest));
PCbest = gp_Pnt( PC.X() + aDir.X()*dist,
PC.Y() + aDir.Y()*dist,
PC.Z() + aDir.Z()*dist );
}
}
}
}
// create node for PCbest
SMDS_MeshNode* NewNode = meshDS->AddNode( PCbest.X(), PCbest.Y(), PCbest.Z() );
// add triangles to result map
std::list<const SMDS_FaceOfNodes*> aList;
for(i=0; i<4; i++) {
SMDS_FaceOfNodes* NewFace = new SMDS_FaceOfNodes( NewNode, FNodes[i], FNodes[i+1] );
aList.push_back(NewFace);
}
myResMap.insert(make_pair(face,aList));
// create pyramid
SMDS_MeshVolume* aPyram =
meshDS->AddVolume( FNodes[0], FNodes[1], FNodes[2], FNodes[3], NewNode );
myMapFPyram.insert(make_pair(face,aPyram));
} // end loop on elements on a face
}
} // end for(TopExp_Explorer exp(aShape,TopAbs_FACE);exp.More();exp.Next()) {
return Compute2ndPart(aMesh);
}
//=======================================================================
//function : Compute
//purpose :
//=======================================================================
bool StdMeshers_QuadToTriaAdaptor::Compute(SMESH_Mesh& aMesh)
{
myResMap.clear();
myMapFPyram.clear();
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
SMDS_FaceIteratorPtr itFace = meshDS->facesIterator();
while(itFace->more()) {
const SMDS_MeshElement* face = itFace->next();
if ( !face ) continue;
//cout<<endl<<"================= face->GetID() = "<<face->GetID()<<endl;
// preparation step using face info
Handle(TColgp_HArray1OfPnt) PN = new TColgp_HArray1OfPnt(1,5);
Handle(TColgp_HArray1OfVec) VN = new TColgp_HArray1OfVec(1,4);
std::vector<const SMDS_MeshNode*> FNodes(5);
gp_Pnt PC;
gp_Vec VNorm;
int stat = Preparation(face, PN, VN, FNodes, PC, VNorm);
if(stat==0)
continue;
if(stat==2) {
// degenerate face
// add triangles to result map
std::list<const SMDS_FaceOfNodes*> aList;
SMDS_FaceOfNodes* NewFace;
// check orientation
double tmp = PN->Value(1).Distance(PN->Value(2)) +
PN->Value(2).Distance(PN->Value(3));
gp_Dir tmpDir(VNorm);
gp_Pnt Ptmp1( PC.X() + tmpDir.X()*tmp*1.e6,
PC.Y() + tmpDir.Y()*tmp*1.e6,
PC.Z() + tmpDir.Z()*tmp*1.e6 );
gp_Pnt Ptmp2( PC.X() + tmpDir.Reversed().X()*tmp*1.e6,
PC.Y() + tmpDir.Reversed().Y()*tmp*1.e6,
PC.Z() + tmpDir.Reversed().Z()*tmp*1.e6 );
// check intersection for Ptmp1 and Ptmp2
bool IsRev = false;
bool IsOK1 = false;
bool IsOK2 = false;
double dist1 = RealLast();
double dist2 = RealLast();
gp_Pnt Pres1,Pres2;
SMDS_FaceIteratorPtr itf = meshDS->facesIterator();
while(itf->more()) {
const SMDS_MeshElement* F = itf->next();
if(F==face) continue;
Handle(TColgp_HSequenceOfPnt) aContour = new TColgp_HSequenceOfPnt;
SMDS_ElemIteratorPtr nodeIt = F->nodesIterator();
if( !F->IsQuadratic() ) {
while ( nodeIt->more() ) {
const SMDS_MeshNode* node = static_cast<const SMDS_MeshNode*>( nodeIt->next() );
aContour->Append(gp_Pnt(node->X(), node->Y(), node->Z()));
}
}
else {
int nn = 0;
while ( nodeIt->more() ) {
nn++;
const SMDS_MeshNode* node = static_cast<const SMDS_MeshNode*>( nodeIt->next() );
aContour->Append(gp_Pnt(node->X(), node->Y(), node->Z()));
if(nn==face->NbNodes()/2) break;
}
}
gp_Pnt PPP;
if( HasIntersection(Ptmp1, PC, PPP, aContour) ) {
IsOK1 = true;
double tmp = PC.Distance(PPP);
if(tmp<dist1) {
Pres1 = PPP;
dist1 = tmp;
}
}
if( HasIntersection(Ptmp2, PC, PPP, aContour) ) {
IsOK2 = true;
double tmp = PC.Distance(PPP);
if(tmp<dist2) {
Pres2 = PPP;
dist2 = tmp;
}
}
}
if( IsOK1 && !IsOK2 ) {
// using existed direction
}
else if( !IsOK1 && IsOK2 ) {
// using opposite direction
IsRev = true;
}
else { // IsOK1 && IsOK2
double tmp1 = PC.Distance(Pres1)/3.;
double tmp2 = PC.Distance(Pres2)/3.;
if(tmp1<tmp2) {
// using existed direction
}
else {
// using opposite direction
IsRev = true;
}
}
if(!IsRev)
NewFace = new SMDS_FaceOfNodes( FNodes[0], FNodes[1], FNodes[2] );
else
NewFace = new SMDS_FaceOfNodes( FNodes[0], FNodes[2], FNodes[1] );
aList.push_back(NewFace);
myResMap.insert(make_pair(face,aList));
continue;
}
double xc = 0., yc = 0., zc = 0.;
int i = 1;
for(; i<=4; i++) {
gp_Pnt Pbest = FindBestPoint(PN->Value(i), PN->Value(i+1), PC, VN->Value(i));
xc += Pbest.X();
yc += Pbest.Y();
zc += Pbest.Z();
}
gp_Pnt PCbest(xc/4., yc/4., zc/4.);
double height = PCbest.Distance(PC);
if(height<1.e-6) {
// create new PCbest using a bit shift along VNorm
PCbest = gp_Pnt( PC.X() + VNorm.X()*0.001,
PC.Y() + VNorm.Y()*0.001,
PC.Z() + VNorm.Z()*0.001);
height = PCbest.Distance(PC);
}
//cout<<" PCbest("<<PCbest.X()<<","<<PCbest.Y()<<","<<PCbest.Z()<<")"<<endl;
gp_Vec V1(PC,PCbest);
double tmp = PN->Value(1).Distance(PN->Value(3)) +
PN->Value(2).Distance(PN->Value(4));
gp_Dir tmpDir(V1);
gp_Pnt Ptmp1( PC.X() + tmpDir.X()*tmp*1.e6,
PC.Y() + tmpDir.Y()*tmp*1.e6,
PC.Z() + tmpDir.Z()*tmp*1.e6 );
gp_Pnt Ptmp2( PC.X() + tmpDir.Reversed().X()*tmp*1.e6,
PC.Y() + tmpDir.Reversed().Y()*tmp*1.e6,
PC.Z() + tmpDir.Reversed().Z()*tmp*1.e6 );
// check intersection for Ptmp1 and Ptmp2
bool IsRev = false;
bool IsOK1 = false;
bool IsOK2 = false;
double dist1 = RealLast();
double dist2 = RealLast();
gp_Pnt Pres1,Pres2;
SMDS_FaceIteratorPtr itf = meshDS->facesIterator();
while(itf->more()) {
const SMDS_MeshElement* F = itf->next();
if(F==face) continue;
Handle(TColgp_HSequenceOfPnt) aContour = new TColgp_HSequenceOfPnt;
SMDS_ElemIteratorPtr nodeIt = F->nodesIterator();
if( !F->IsQuadratic() ) {
while ( nodeIt->more() ) {
const SMDS_MeshNode* node = static_cast<const SMDS_MeshNode*>( nodeIt->next() );
aContour->Append(gp_Pnt(node->X(), node->Y(), node->Z()));
}
}
else {
int nn = 0;
while ( nodeIt->more() ) {
nn++;
const SMDS_MeshNode* node = static_cast<const SMDS_MeshNode*>( nodeIt->next() );
aContour->Append(gp_Pnt(node->X(), node->Y(), node->Z()));
if(nn==face->NbNodes()/2) break;
}
}
gp_Pnt PPP;
if( HasIntersection(Ptmp1, PC, PPP, aContour) ) {
IsOK1 = true;
double tmp = PC.Distance(PPP);
if(tmp<dist1) {
Pres1 = PPP;
dist1 = tmp;
}
}
if( HasIntersection(Ptmp2, PC, PPP, aContour) ) {
IsOK2 = true;
double tmp = PC.Distance(PPP);
if(tmp<dist2) {
Pres2 = PPP;
dist2 = tmp;
}
}
}
if( IsOK1 && !IsOK2 ) {
// using existed direction
double tmp = PC.Distance(Pres1)/3.;
if( height > tmp ) {
height = tmp;
PCbest = gp_Pnt( PC.X() + tmpDir.X()*height,
PC.Y() + tmpDir.Y()*height,
PC.Z() + tmpDir.Z()*height );
}
}
else if( !IsOK1 && IsOK2 ) {
// using opposite direction
IsRev = true;
double tmp = PC.Distance(Pres2)/3.;
if( height > tmp ) height = tmp;
PCbest = gp_Pnt( PC.X() + tmpDir.Reversed().X()*height,
PC.Y() + tmpDir.Reversed().Y()*height,
PC.Z() + tmpDir.Reversed().Z()*height );
}
else { // IsOK1 && IsOK2
double tmp1 = PC.Distance(Pres1)/3.;
double tmp2 = PC.Distance(Pres2)/3.;
if(tmp1<tmp2) {
// using existed direction
if( height > tmp1 ) {
height = tmp1;
PCbest = gp_Pnt( PC.X() + tmpDir.X()*height,
PC.Y() + tmpDir.Y()*height,
PC.Z() + tmpDir.Z()*height );
}
}
else {
// using opposite direction
IsRev = true;
if( height > tmp2 ) height = tmp2;
PCbest = gp_Pnt( PC.X() + tmpDir.Reversed().X()*height,
PC.Y() + tmpDir.Reversed().Y()*height,
PC.Z() + tmpDir.Reversed().Z()*height );
}
}
// create node for PCbest
SMDS_MeshNode* NewNode = meshDS->AddNode( PCbest.X(), PCbest.Y(), PCbest.Z() );
// add triangles to result map
std::list<const SMDS_FaceOfNodes*> aList;
for(i=0; i<4; i++) {
SMDS_FaceOfNodes* NewFace;
if(IsRev)
NewFace = new SMDS_FaceOfNodes( NewNode, FNodes[i], FNodes[i+1] );
else
NewFace = new SMDS_FaceOfNodes( NewNode, FNodes[i+1], FNodes[i] );
aList.push_back(NewFace);
}
myResMap.insert(make_pair(face,aList));
// create pyramid
SMDS_MeshVolume* aPyram;
if(IsRev)
aPyram = meshDS->AddVolume( FNodes[0], FNodes[1], FNodes[2], FNodes[3], NewNode );
else
aPyram = meshDS->AddVolume( FNodes[0], FNodes[3], FNodes[2], FNodes[1], NewNode );
myMapFPyram.insert(make_pair(face,aPyram));
} // end loop on elements on a face
return Compute2ndPart(aMesh);
}
//=======================================================================
//function : Compute2ndPart
//purpose :
//=======================================================================
bool StdMeshers_QuadToTriaAdaptor::Compute2ndPart(SMESH_Mesh& aMesh)
{
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
// check intersections between created pyramids
int NbPyram = myMapFPyram.size();
//cout<<"NbPyram = "<<NbPyram<<endl;
if(NbPyram==0)
return true;
std::vector< const SMDS_MeshElement* > Pyrams(NbPyram);
std::vector< const SMDS_MeshElement* > Faces(NbPyram);
std::map< const SMDS_MeshElement*,
const SMDS_MeshElement* >::iterator itp = myMapFPyram.begin();
int i = 0;
for(; itp!=myMapFPyram.end(); itp++, i++) {
Faces[i] = (*itp).first;
Pyrams[i] = (*itp).second;
}
StdMeshers_Array1OfSequenceOfInteger MergesInfo(0,NbPyram-1);
for(i=0; i<NbPyram; i++) {
TColStd_SequenceOfInteger aMerges;
aMerges.Append(i);
MergesInfo.SetValue(i,aMerges);
}
for(i=0; i<NbPyram-1; i++) {
const SMDS_MeshElement* Prm1 = Pyrams[i];
SMDS_ElemIteratorPtr nIt = Prm1->nodesIterator();
std::vector<gp_Pnt> Ps1(5);
const SMDS_MeshNode* Ns1[5];
int k = 0;
while( nIt->more() ) {
const SMDS_MeshNode* node = static_cast<const SMDS_MeshNode*>( nIt->next() );
Ns1[k] = node;
Ps1[k] = gp_Pnt(node->X(), node->Y(), node->Z());
k++;
}
bool NeedMove = false;
for(int j=i+1; j<NbPyram; j++) {
//cout<<" i="<<i<<" j="<<j<<endl;
const TColStd_SequenceOfInteger& aMergesI = MergesInfo.Value(i);
int nbI = aMergesI.Length();
const TColStd_SequenceOfInteger& aMergesJ = MergesInfo.Value(j);
int nbJ = aMergesJ.Length();
int k = 2;
bool NeedCont = false;
for(; k<=nbI; k++) {
if(aMergesI.Value(k)==j) {
NeedCont = true;
break;
}
}
if(NeedCont) continue;
const SMDS_MeshElement* Prm2 = Pyrams[j];
nIt = Prm2->nodesIterator();
std::vector<gp_Pnt> Ps2(5);
const SMDS_MeshNode* Ns2[5];
k = 0;
while( nIt->more() ) {
const SMDS_MeshNode* node = static_cast<const SMDS_MeshNode*>( nIt->next() );
Ns2[k] = node;
Ps2[k] = gp_Pnt(node->X(), node->Y(), node->Z());
k++;
}
bool hasInt = false;
gp_Pnt Pint;
for(k=0; k<4; k++) {
gp_Vec Vtmp(Ps1[k],Ps1[4]);
gp_Pnt Pshift( Ps1[k].X() + Vtmp.X()*0.01,
Ps1[k].Y() + Vtmp.Y()*0.01,
Ps1[k].Z() + Vtmp.Z()*0.01 );
int m=0;
for(; m<3; m++) {
if( HasIntersection3( Pshift, Ps1[4], Pint, Ps2[m], Ps2[m+1], Ps2[4]) ) {
hasInt = true;
break;
}
}
if( HasIntersection3( Pshift, Ps1[4], Pint, Ps2[3], Ps2[0], Ps2[4]) ) {
hasInt = true;
}
if(hasInt) break;
}
if(!hasInt) {
for(k=0; k<4; k++) {
gp_Vec Vtmp(Ps2[k],Ps2[4]);
gp_Pnt Pshift( Ps2[k].X() + Vtmp.X()*0.01,
Ps2[k].Y() + Vtmp.Y()*0.01,
Ps2[k].Z() + Vtmp.Z()*0.01 );
int m=0;
for(; m<3; m++) {
if( HasIntersection3( Pshift, Ps2[4], Pint, Ps1[m], Ps1[m+1], Ps1[4]) ) {
hasInt = true;
break;
}
}
if( HasIntersection3( Pshift, Ps2[4], Pint, Ps1[3], Ps1[0], Ps1[4]) ) {
hasInt = true;
}
if(hasInt) break;
}
}
if(hasInt) {
//cout<<" has intersec for i="<<i<<" j="<<j<<endl;
// check if MeshFaces have 2 common node
int nbc = 0;
for(k=0; k<4; k++) {
for(int m=0; m<4; m++) {
if( Ns1[k]==Ns2[m] ) nbc++;
}
}
//cout<<" nbc = "<<nbc<<endl;
if(nbc>0) {
// create common node
SMDS_MeshNode* CommonNode = const_cast<SMDS_MeshNode*>(Ns1[4]);
CommonNode->setXYZ( ( nbI*Ps1[4].X() + nbJ*Ps2[4].X() ) / (nbI+nbJ),
( nbI*Ps1[4].Y() + nbJ*Ps2[4].Y() ) / (nbI+nbJ),
( nbI*Ps1[4].Z() + nbJ*Ps2[4].Z() ) / (nbI+nbJ) );
NeedMove = true;
//cout<<" CommonNode: "<<CommonNode;
const SMDS_MeshNode* Nrem = Ns2[4];
Ns2[4] = CommonNode;
meshDS->ChangeElementNodes(Prm2, Ns2, 5);
// update pyramids for J
for(k=2; k<=nbJ; k++) {
const SMDS_MeshElement* tmpPrm = Pyrams[aMergesJ.Value(k)];
SMDS_ElemIteratorPtr tmpIt = tmpPrm->nodesIterator();
const SMDS_MeshNode* Ns[5];
int m = 0;
while( tmpIt->more() ) {
Ns[m] = static_cast<const SMDS_MeshNode*>( tmpIt->next() );
m++;
}
Ns[4] = CommonNode;
meshDS->ChangeElementNodes(tmpPrm, Ns, 5);
}
// update MergesInfo
for(k=1; k<=nbI; k++) {
int num = aMergesI.Value(k);
const TColStd_SequenceOfInteger& aSeq = MergesInfo.Value(num);
TColStd_SequenceOfInteger tmpSeq;
int m = 1;
for(; m<=aSeq.Length(); m++) {
tmpSeq.Append(aSeq.Value(m));
}
for(m=1; m<=nbJ; m++) {
tmpSeq.Append(aMergesJ.Value(m));
}
MergesInfo.SetValue(num,tmpSeq);
}
for(k=1; k<=nbJ; k++) {
int num = aMergesJ.Value(k);
const TColStd_SequenceOfInteger& aSeq = MergesInfo.Value(num);
TColStd_SequenceOfInteger tmpSeq;
int m = 1;
for(; m<=aSeq.Length(); m++) {
tmpSeq.Append(aSeq.Value(m));
}
for(m=1; m<=nbI; m++) {
tmpSeq.Append(aMergesI.Value(m));
}
MergesInfo.SetValue(num,tmpSeq);
}
// update triangles for aMergesJ
for(k=1; k<=nbJ; k++) {
std::list< std::list< const SMDS_MeshNode* > > aFNodes;
std::list< const SMDS_MeshElement* > aFFaces;
int num = aMergesJ.Value(k);
std::map< const SMDS_MeshElement*,
std::list<const SMDS_FaceOfNodes*> >::iterator itrm = myResMap.find(Faces[num]);
std::list<const SMDS_FaceOfNodes*> trias = (*itrm).second;
std::list<const SMDS_FaceOfNodes*>::iterator itt = trias.begin();
for(; itt!=trias.end(); itt++) {
int nn = -1;
SMDS_ElemIteratorPtr nodeIt = (*itt)->nodesIterator();
const SMDS_MeshNode* NF[3];
while ( nodeIt->more() ) {
nn++;
NF[nn] = static_cast<const SMDS_MeshNode*>( nodeIt->next() );
}
NF[0] = CommonNode;
SMDS_FaceOfNodes* Ftria = const_cast< SMDS_FaceOfNodes*>( (*itt) );
Ftria->ChangeNodes(NF, 3);
}
}
// check and remove coincided faces
TColStd_SequenceOfInteger IdRemovedTrias;
int i1 = 1;
for(; i1<=nbI; i1++) {
int numI = aMergesI.Value(i1);
std::map< const SMDS_MeshElement*,
std::list<const SMDS_FaceOfNodes*> >::iterator itrmI = myResMap.find(Faces[numI]);
std::list<const SMDS_FaceOfNodes*> triasI = (*itrmI).second;
std::list<const SMDS_FaceOfNodes*>::iterator ittI = triasI.begin();
int nbfI = triasI.size();
std::vector<const SMDS_FaceOfNodes*> FsI(nbfI);
k = 0;
for(; ittI!=triasI.end(); ittI++) {
FsI[k] = (*ittI);
k++;
}
int i2 = 0;
for(; i2<nbfI; i2++) {
const SMDS_FaceOfNodes* FI = FsI[i2];
if(FI==0) continue;
int j1 = 1;
for(; j1<=nbJ; j1++) {
int numJ = aMergesJ.Value(j1);
std::map< const SMDS_MeshElement*,
std::list<const SMDS_FaceOfNodes*> >::iterator itrmJ = myResMap.find(Faces[numJ]);
std::list<const SMDS_FaceOfNodes*> triasJ = (*itrmJ).second;
std::list<const SMDS_FaceOfNodes*>::iterator ittJ = triasJ.begin();
int nbfJ = triasJ.size();
std::vector<const SMDS_FaceOfNodes*> FsJ(nbfJ);
k = 0;
for(; ittJ!=triasJ.end(); ittJ++) {
FsJ[k] = (*ittJ);
k++;
}
int j2 = 0;
for(; j2<nbfJ; j2++) {
const SMDS_FaceOfNodes* FJ = FsJ[j2];
// compare triangles
if( CompareTrias(FI,FJ) ) {
IdRemovedTrias.Append( FI->GetID() );
IdRemovedTrias.Append( FJ->GetID() );
FsI[i2] = 0;
FsJ[j2] = 0;
std::list<const SMDS_FaceOfNodes*> new_triasI;
for(k=0; k<nbfI; k++) {
if( FsI[k]==0 ) continue;
new_triasI.push_back( FsI[k] );
}
(*itrmI).second = new_triasI;
triasI = new_triasI;
std::list<const SMDS_FaceOfNodes*> new_triasJ;
for(k=0; k<nbfJ; k++) {
if( FsJ[k]==0 ) continue;
new_triasJ.push_back( FsJ[k] );
}
(*itrmJ).second = new_triasJ;
triasJ = new_triasJ;
// remove faces
delete FI;
delete FJ;
// close for j2 and j1
j1 = nbJ;
break;
}
} // j2
} // j1
} // i2
} // i1
// removing node
meshDS->RemoveNode(Nrem);
}
else { // nbc==0
//cout<<"decrease height of pyramids"<<endl;
// decrease height of pyramids
double xc1 = 0., yc1 = 0., zc1 = 0.;
double xc2 = 0., yc2 = 0., zc2 = 0.;
for(k=0; k<4; k++) {
xc1 += Ps1[k].X();
yc1 += Ps1[k].Y();
zc1 += Ps1[k].Z();
xc2 += Ps2[k].X();
yc2 += Ps2[k].Y();
zc2 += Ps2[k].Z();
}
gp_Pnt PC1(xc1/4.,yc1/4.,zc1/4.);
gp_Pnt PC2(xc2/4.,yc2/4.,zc2/4.);
gp_Vec VN1(PC1,Ps1[4]);
gp_Vec VI1(PC1,Pint);
gp_Vec VN2(PC2,Ps2[4]);
gp_Vec VI2(PC2,Pint);
double ang1 = fabs(VN1.Angle(VI1));
double ang2 = fabs(VN2.Angle(VI2));
double h1,h2;
if(ang1>PI/3.)
h1 = VI1.Magnitude()/2;
else
h1 = VI1.Magnitude()*cos(ang1);
if(ang2>PI/3.)
h2 = VI2.Magnitude()/2;
else
h2 = VI2.Magnitude()*cos(ang2);
double coef1 = 0.5;
if(ang1<PI/3)
coef1 -= cos(ang1)*0.25;
double coef2 = 0.5;
if(ang2<PI/3)
coef2 -= cos(ang1)*0.25;
SMDS_MeshNode* aNode1 = const_cast<SMDS_MeshNode*>(Ns1[4]);
VN1.Scale(coef1);
aNode1->setXYZ( PC1.X()+VN1.X(), PC1.Y()+VN1.Y(), PC1.Z()+VN1.Z() );
SMDS_MeshNode* aNode2 = const_cast<SMDS_MeshNode*>(Ns2[4]);
VN2.Scale(coef2);
aNode2->setXYZ( PC2.X()+VN2.X(), PC2.Y()+VN2.Y(), PC2.Z()+VN2.Z() );
NeedMove = true;
}
} // end if(hasInt)
else {
//cout<<" no intersec for i="<<i<<" j="<<j<<endl;
}
}
if( NeedMove && !meshDS->IsEmbeddedMode() ) {
meshDS->MoveNode( Ns1[4], Ns1[4]->X(), Ns1[4]->Y(), Ns1[4]->Z() );
}
}
return true;
}
//================================================================================
/*!
* \brief Return list of created triangles for given face
*/
//================================================================================
std::list<const SMDS_FaceOfNodes*> StdMeshers_QuadToTriaAdaptor::GetTriangles
(const SMDS_MeshElement* aFace)
{
std::list<const SMDS_FaceOfNodes*> aRes;
std::map< const SMDS_MeshElement*,
std::list<const SMDS_FaceOfNodes*> >::iterator it = myResMap.find(aFace);
if( it != myResMap.end() ) {
aRes = (*it).second;
}
return aRes;
}
//================================================================================
/*!
* \brief Remove all create auxilary faces
*/
//================================================================================
//void StdMeshers_QuadToTriaAdaptor::RemoveFaces(SMESH_Mesh& aMesh)
//{
// SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
// std::map< const SMDS_MeshElement*,
// std::list<const SMDS_MeshElement*> >::iterator it = myResMap.begin();
// for(; it != myResMap.end(); it++ ) {
// std::list<const SMDS_MeshElement*> aFaces = (*it).second;
// std::list<const SMDS_MeshElement*>::iterator itf = aFaces.begin();
// for(; itf!=aFaces.end(); itf++ ) {
// meshDS->RemoveElement( (*itf) );
// }
// }
//}