smesh/src/SMESH_SWIG/smeshDC.py

4343 lines
198 KiB
Python
Raw Normal View History

2012-08-09 16:03:55 +06:00
# Copyright (C) 2007-2012 CEA/DEN, EDF R&D, OPEN CASCADE
2009-02-17 10:27:49 +05:00
#
2012-08-09 16:03:55 +06:00
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License.
#
2012-08-09 16:03:55 +06:00
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
2012-08-09 16:03:55 +06:00
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
2012-08-09 16:03:55 +06:00
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
#
# File : smesh.py
# Author : Francis KLOSS, OCC
# Module : SMESH
2012-08-09 16:03:55 +06:00
2012-10-08 17:56:59 +06:00
## @package smesh
# Python API for SALOME %Mesh module
2009-02-17 10:27:49 +05:00
## @defgroup l1_auxiliary Auxiliary methods and structures
## @defgroup l1_creating Creating meshes
## @{
## @defgroup l2_impexp Importing and exporting meshes
## @defgroup l2_construct Constructing meshes
## @defgroup l2_algorithms Defining Algorithms
## @{
## @defgroup l3_algos_basic Basic meshing algorithms
## @defgroup l3_algos_proj Projection Algorithms
## @defgroup l3_algos_radialp Radial Prism
## @defgroup l3_algos_segmarv Segments around Vertex
## @defgroup l3_algos_3dextr 3D extrusion meshing algorithm
## @}
## @defgroup l2_hypotheses Defining hypotheses
## @{
## @defgroup l3_hypos_1dhyps 1D Meshing Hypotheses
## @defgroup l3_hypos_2dhyps 2D Meshing Hypotheses
## @defgroup l3_hypos_maxvol Max Element Volume hypothesis
2012-08-09 16:03:55 +06:00
## @defgroup l3_hypos_quad Quadrangle Parameters hypothesis
2009-02-17 10:27:49 +05:00
## @defgroup l3_hypos_additi Additional Hypotheses
## @}
## @defgroup l2_submeshes Constructing submeshes
## @defgroup l2_compounds Building Compounds
## @defgroup l2_editing Editing Meshes
## @}
## @defgroup l1_meshinfo Mesh Information
## @defgroup l1_controls Quality controls and Filtering
## @defgroup l1_grouping Grouping elements
## @{
## @defgroup l2_grps_create Creating groups
## @defgroup l2_grps_edit Editing groups
## @defgroup l2_grps_operon Using operations on groups
## @defgroup l2_grps_delete Deleting Groups
## @}
## @defgroup l1_modifying Modifying meshes
## @{
## @defgroup l2_modif_add Adding nodes and elements
## @defgroup l2_modif_del Removing nodes and elements
## @defgroup l2_modif_edit Modifying nodes and elements
## @defgroup l2_modif_renumber Renumbering nodes and elements
## @defgroup l2_modif_trsf Transforming meshes (Translation, Rotation, Symmetry, Sewing, Merging)
## @defgroup l2_modif_movenode Moving nodes
## @defgroup l2_modif_throughp Mesh through point
## @defgroup l2_modif_invdiag Diagonal inversion of elements
## @defgroup l2_modif_unitetri Uniting triangles
## @defgroup l2_modif_changori Changing orientation of elements
## @defgroup l2_modif_cutquadr Cutting quadrangles
## @defgroup l2_modif_smooth Smoothing
## @defgroup l2_modif_extrurev Extrusion and Revolution
## @defgroup l2_modif_patterns Pattern mapping
## @defgroup l2_modif_tofromqu Convert to/from Quadratic Mesh
## @}
2012-08-09 16:03:55 +06:00
## @defgroup l1_measurements Measurements
import salome
import geompyDC
2009-02-17 10:27:49 +05:00
import SMESH # This is necessary for back compatibility
from SMESH import *
2012-10-08 17:56:59 +06:00
from smesh_algorithm import Mesh_Algorithm
import SALOME
2012-08-09 16:03:55 +06:00
import SALOMEDS
2009-02-17 10:27:49 +05:00
## @addtogroup l1_auxiliary
## @{
# MirrorType enumeration
POINT = SMESH_MeshEditor.POINT
AXIS = SMESH_MeshEditor.AXIS
PLANE = SMESH_MeshEditor.PLANE
# Smooth_Method enumeration
LAPLACIAN_SMOOTH = SMESH_MeshEditor.LAPLACIAN_SMOOTH
CENTROIDAL_SMOOTH = SMESH_MeshEditor.CENTROIDAL_SMOOTH
2012-08-09 16:03:55 +06:00
PrecisionConfusion = 1e-07
2009-02-17 10:27:49 +05:00
2012-08-09 16:03:55 +06:00
# TopAbs_State enumeration
[TopAbs_IN, TopAbs_OUT, TopAbs_ON, TopAbs_UNKNOWN] = range(4)
2012-08-09 16:03:55 +06:00
# Methods of splitting a hexahedron into tetrahedra
Hex_5Tet, Hex_6Tet, Hex_24Tet = 1, 2, 3
2009-02-17 10:27:49 +05:00
## Converts an angle from degrees to radians
def DegreesToRadians(AngleInDegrees):
from math import pi
return AngleInDegrees * pi / 180.0
2012-08-09 16:03:55 +06:00
import salome_notebook
notebook = salome_notebook.notebook
2009-02-17 10:27:49 +05:00
# Salome notebook variable separator
var_separator = ":"
2012-08-09 16:03:55 +06:00
## Return list of variable values from salome notebook.
# The last argument, if is callable, is used to modify values got from notebook
def ParseParameters(*args):
2009-02-17 10:27:49 +05:00
Result = []
Parameters = ""
2012-08-09 16:03:55 +06:00
hasVariables = False
varModifFun=None
if args and callable( args[-1] ):
args, varModifFun = args[:-1], args[-1]
for parameter in args:
Parameters += str(parameter) + var_separator
if isinstance(parameter,str):
# check if there is an inexistent variable name
if not notebook.isVariable(parameter):
raise ValueError, "Variable with name '" + parameter + "' doesn't exist!!!"
parameter = notebook.get(parameter)
hasVariables = True
if varModifFun:
parameter = varModifFun(parameter)
pass
2009-02-17 10:27:49 +05:00
pass
2012-08-09 16:03:55 +06:00
Result.append(parameter)
2009-02-17 10:27:49 +05:00
pass
2012-08-09 16:03:55 +06:00
Parameters = Parameters[:-1]
Result.append( Parameters )
Result.append( hasVariables )
return Result
# Parse parameters converting variables to radians
def ParseAngles(*args):
return ParseParameters( *( args + (DegreesToRadians, )))
# Substitute PointStruct.__init__() to create SMESH.PointStruct using notebook variables.
# Parameters are stored in PointStruct.parameters attribute
def __initPointStruct(point,*args):
point.x, point.y, point.z, point.parameters,hasVars = ParseParameters(*args)
pass
SMESH.PointStruct.__init__ = __initPointStruct
# Substitute AxisStruct.__init__() to create SMESH.AxisStruct using notebook variables.
# Parameters are stored in AxisStruct.parameters attribute
def __initAxisStruct(ax,*args):
ax.x, ax.y, ax.z, ax.vx, ax.vy, ax.vz, ax.parameters,hasVars = ParseParameters(*args)
pass
SMESH.AxisStruct.__init__ = __initAxisStruct
def IsEqual(val1, val2, tol=PrecisionConfusion):
if abs(val1 - val2) < tol:
return True
return False
NO_NAME = "NoName"
## Gets object name
def GetName(obj):
2012-08-09 16:03:55 +06:00
if obj:
# object not null
if isinstance(obj, SALOMEDS._objref_SObject):
# study object
return obj.GetName()
2013-02-12 20:37:44 +06:00
try:
ior = salome.orb.object_to_string(obj)
except:
ior = None
2012-08-09 16:03:55 +06:00
if ior:
# CORBA object
studies = salome.myStudyManager.GetOpenStudies()
for sname in studies:
s = salome.myStudyManager.GetStudyByName(sname)
if not s: continue
sobj = s.FindObjectIOR(ior)
if not sobj: continue
return sobj.GetName()
if hasattr(obj, "GetName"):
# unknown CORBA object, having GetName() method
return obj.GetName()
else:
# unknown CORBA object, no GetName() method
return NO_NAME
pass
if hasattr(obj, "GetName"):
# unknown non-CORBA object, having GetName() method
return obj.GetName()
pass
raise RuntimeError, "Null or invalid object"
2009-02-17 10:27:49 +05:00
## Prints error message if a hypothesis was not assigned.
def TreatHypoStatus(status, hypName, geomName, isAlgo):
if isAlgo:
hypType = "algorithm"
else:
hypType = "hypothesis"
pass
if status == HYP_UNKNOWN_FATAL :
reason = "for unknown reason"
elif status == HYP_INCOMPATIBLE :
2009-02-17 10:27:49 +05:00
reason = "this hypothesis mismatches the algorithm"
elif status == HYP_NOTCONFORM :
2009-02-17 10:27:49 +05:00
reason = "a non-conform mesh would be built"
elif status == HYP_ALREADY_EXIST :
2012-08-09 16:03:55 +06:00
if isAlgo: return # it does not influence anything
2009-02-17 10:27:49 +05:00
reason = hypType + " of the same dimension is already assigned to this shape"
elif status == HYP_BAD_DIM :
2009-02-17 10:27:49 +05:00
reason = hypType + " mismatches the shape"
elif status == HYP_CONCURENT :
reason = "there are concurrent hypotheses on sub-shapes"
elif status == HYP_BAD_SUBSHAPE :
2012-08-09 16:03:55 +06:00
reason = "the shape is neither the main one, nor its sub-shape, nor a valid group"
elif status == HYP_BAD_GEOMETRY:
2009-02-17 10:27:49 +05:00
reason = "geometry mismatches the expectation of the algorithm"
elif status == HYP_HIDDEN_ALGO:
2009-02-17 10:27:49 +05:00
reason = "it is hidden by an algorithm of an upper dimension, which generates elements of all dimensions"
elif status == HYP_HIDING_ALGO:
2009-02-17 10:27:49 +05:00
reason = "it hides algorithms of lower dimensions by generating elements of all dimensions"
elif status == HYP_NEED_SHAPE:
reason = "Algorithm can't work without shape"
else:
return
hypName = '"' + hypName + '"'
geomName= '"' + geomName+ '"'
2012-08-09 16:03:55 +06:00
if status < HYP_UNKNOWN_FATAL and not geomName =='""':
print hypName, "was assigned to", geomName,"but", reason
2012-08-09 16:03:55 +06:00
elif not geomName == '""':
print hypName, "was not assigned to",geomName,":", reason
2012-08-09 16:03:55 +06:00
else:
print hypName, "was not assigned:", reason
pass
2012-08-09 16:03:55 +06:00
## Private method. Add geom (sub-shape of the main shape) into the study if not yet there
def AssureGeomPublished(mesh, geom, name=''):
if not isinstance( geom, geompyDC.GEOM._objref_GEOM_Object ):
return
2012-12-13 17:41:29 +06:00
if not geom.GetStudyEntry() and \
2012-08-09 16:03:55 +06:00
mesh.smeshpyD.GetCurrentStudy():
## set the study
studyID = mesh.smeshpyD.GetCurrentStudy()._get_StudyId()
if studyID != mesh.geompyD.myStudyId:
mesh.geompyD.init_geom( mesh.smeshpyD.GetCurrentStudy())
## get a name
if not name and geom.GetShapeType() != geompyDC.GEOM.COMPOUND:
# for all groups SubShapeName() returns "Compound_-1"
name = mesh.geompyD.SubShapeName(geom, mesh.geom)
if not name:
name = "%s_%s"%(geom.GetShapeType(), id(geom)%10000)
## publish
mesh.geompyD.addToStudyInFather( mesh.geom, geom, name )
return
## Return the first vertex of a geomertical edge by ignoring orienation
def FirstVertexOnCurve(edge):
2013-03-15 20:59:29 +06:00
from geompy import SubShapeAll, ShapeType, MakeVertexOnCurve, PointCoordinates
2012-08-09 16:03:55 +06:00
vv = SubShapeAll( edge, ShapeType["VERTEX"])
if not vv:
raise TypeError, "Given object has no vertices"
if len( vv ) == 1: return vv[0]
2013-03-15 20:59:29 +06:00
v0 = MakeVertexOnCurve(edge,0.)
xyz = PointCoordinates( v0 ) # coords of the first vertex
xyz1 = PointCoordinates( vv[0] )
xyz2 = PointCoordinates( vv[1] )
2012-08-09 16:03:55 +06:00
dist1, dist2 = 0,0
for i in range(3):
dist1 += abs( xyz[i] - xyz1[i] )
dist2 += abs( xyz[i] - xyz2[i] )
if dist1 < dist2:
return vv[0]
else:
return vv[1]
2009-02-17 10:27:49 +05:00
# end of l1_auxiliary
## @}
# All methods of this class are accessible directly from the smesh.py package.
class smeshDC(SMESH._objref_SMESH_Gen):
2012-08-09 16:03:55 +06:00
## Dump component to the Python script
# This method overrides IDL function to allow default values for the parameters.
def DumpPython(self, theStudy, theIsPublished=True, theIsMultiFile=True):
return SMESH._objref_SMESH_Gen.DumpPython(self, theStudy, theIsPublished, theIsMultiFile)
## Set mode of DumpPython(), \a historical or \a snapshot.
# In the \a historical mode, the Python Dump script includes all commands
# performed by SMESH engine. In the \a snapshot mode, commands
# relating to objects removed from the Study are excluded from the script
# as well as commands not influencing the current state of meshes
def SetDumpPythonHistorical(self, isHistorical):
if isHistorical: val = "true"
else: val = "false"
SMESH._objref_SMESH_Gen.SetOption(self, "historical_python_dump", val)
2009-02-17 10:27:49 +05:00
## Sets the current study and Geometry component
# @ingroup l1_auxiliary
def init_smesh(self,theStudy,geompyD):
2009-02-17 10:27:49 +05:00
self.SetCurrentStudy(theStudy,geompyD)
## Creates an empty Mesh. This mesh can have an underlying geometry.
# @param obj the Geometrical object on which the mesh is built. If not defined,
# the mesh will have no underlying geometry.
# @param name the name for the new mesh.
# @return an instance of Mesh class.
# @ingroup l2_construct
def Mesh(self, obj=0, name=0):
2012-08-09 16:03:55 +06:00
if isinstance(obj,str):
obj,name = name,obj
return Mesh(self,self.geompyD,obj,name)
2009-02-17 10:27:49 +05:00
## Returns a long value from enumeration
# @ingroup l1_controls
def EnumToLong(self,theItem):
return theItem._v
2012-08-09 16:03:55 +06:00
## Returns a string representation of the color.
# To be used with filters.
# @param c color value (SALOMEDS.Color)
# @ingroup l1_controls
def ColorToString(self,c):
val = ""
if isinstance(c, SALOMEDS.Color):
val = "%s;%s;%s" % (c.R, c.G, c.B)
elif isinstance(c, str):
val = c
else:
raise ValueError, "Color value should be of string or SALOMEDS.Color type"
return val
2009-02-17 10:27:49 +05:00
## Gets PointStruct from vertex
# @param theVertex a GEOM object(vertex)
# @return SMESH.PointStruct
2009-02-17 10:27:49 +05:00
# @ingroup l1_auxiliary
def GetPointStruct(self,theVertex):
[x, y, z] = self.geompyD.PointCoordinates(theVertex)
return PointStruct(x,y,z)
2009-02-17 10:27:49 +05:00
## Gets DirStruct from vector
# @param theVector a GEOM object(vector)
# @return SMESH.DirStruct
2009-02-17 10:27:49 +05:00
# @ingroup l1_auxiliary
def GetDirStruct(self,theVector):
vertices = self.geompyD.SubShapeAll( theVector, geompyDC.ShapeType["VERTEX"] )
if(len(vertices) != 2):
print "Error: vector object is incorrect."
return None
p1 = self.geompyD.PointCoordinates(vertices[0])
p2 = self.geompyD.PointCoordinates(vertices[1])
pnt = PointStruct(p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
dirst = DirStruct(pnt)
return dirst
2009-02-17 10:27:49 +05:00
## Makes DirStruct from a triplet
# @param x,y,z vector components
# @return SMESH.DirStruct
2009-02-17 10:27:49 +05:00
# @ingroup l1_auxiliary
def MakeDirStruct(self,x,y,z):
pnt = PointStruct(x,y,z)
return DirStruct(pnt)
## Get AxisStruct from object
2009-02-17 10:27:49 +05:00
# @param theObj a GEOM object (line or plane)
# @return SMESH.AxisStruct
2009-02-17 10:27:49 +05:00
# @ingroup l1_auxiliary
def GetAxisStruct(self,theObj):
edges = self.geompyD.SubShapeAll( theObj, geompyDC.ShapeType["EDGE"] )
if len(edges) > 1:
vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geompyDC.ShapeType["VERTEX"] )
vertex3, vertex4 = self.geompyD.SubShapeAll( edges[1], geompyDC.ShapeType["VERTEX"] )
vertex1 = self.geompyD.PointCoordinates(vertex1)
vertex2 = self.geompyD.PointCoordinates(vertex2)
vertex3 = self.geompyD.PointCoordinates(vertex3)
vertex4 = self.geompyD.PointCoordinates(vertex4)
v1 = [vertex2[0]-vertex1[0], vertex2[1]-vertex1[1], vertex2[2]-vertex1[2]]
v2 = [vertex4[0]-vertex3[0], vertex4[1]-vertex3[1], vertex4[2]-vertex3[2]]
normal = [ v1[1]*v2[2]-v2[1]*v1[2], v1[2]*v2[0]-v2[2]*v1[0], v1[0]*v2[1]-v2[0]*v1[1] ]
axis = AxisStruct(vertex1[0], vertex1[1], vertex1[2], normal[0], normal[1], normal[2])
return axis
elif len(edges) == 1:
vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geompyDC.ShapeType["VERTEX"] )
p1 = self.geompyD.PointCoordinates( vertex1 )
p2 = self.geompyD.PointCoordinates( vertex2 )
axis = AxisStruct(p1[0], p1[1], p1[2], p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
return axis
return None
# From SMESH_Gen interface:
# ------------------------
2009-02-17 10:27:49 +05:00
## Sets the given name to the object
# @param obj the object to rename
# @param name a new object name
# @ingroup l1_auxiliary
def SetName(self, obj, name):
if isinstance( obj, Mesh ):
obj = obj.GetMesh()
elif isinstance( obj, Mesh_Algorithm ):
obj = obj.GetAlgorithm()
ior = salome.orb.object_to_string(obj)
SMESH._objref_SMESH_Gen.SetName(self, ior, name)
## Sets the current mode
# @ingroup l1_auxiliary
def SetEmbeddedMode( self,theMode ):
#self.SetEmbeddedMode(theMode)
SMESH._objref_SMESH_Gen.SetEmbeddedMode(self,theMode)
2009-02-17 10:27:49 +05:00
## Gets the current mode
# @ingroup l1_auxiliary
def IsEmbeddedMode(self):
#return self.IsEmbeddedMode()
return SMESH._objref_SMESH_Gen.IsEmbeddedMode(self)
2009-02-17 10:27:49 +05:00
## Sets the current study
# @ingroup l1_auxiliary
def SetCurrentStudy( self, theStudy, geompyD = None ):
#self.SetCurrentStudy(theStudy)
2009-02-17 10:27:49 +05:00
if not geompyD:
import geompy
geompyD = geompy.geom
pass
self.geompyD=geompyD
self.SetGeomEngine(geompyD)
SMESH._objref_SMESH_Gen.SetCurrentStudy(self,theStudy)
2012-08-09 16:03:55 +06:00
global notebook
if theStudy:
notebook = salome_notebook.NoteBook( theStudy )
else:
notebook = salome_notebook.NoteBook( salome_notebook.PseudoStudyForNoteBook() )
2009-02-17 10:27:49 +05:00
## Gets the current study
# @ingroup l1_auxiliary
def GetCurrentStudy(self):
#return self.GetCurrentStudy()
return SMESH._objref_SMESH_Gen.GetCurrentStudy(self)
2009-02-17 10:27:49 +05:00
## Creates a Mesh object importing data from the given UNV file
# @return an instance of Mesh class
2009-02-17 10:27:49 +05:00
# @ingroup l2_impexp
def CreateMeshesFromUNV( self,theFileName ):
aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromUNV(self,theFileName)
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
return aMesh
2009-02-17 10:27:49 +05:00
## Creates a Mesh object(s) importing data from the given MED file
# @return a list of Mesh class instances
2009-02-17 10:27:49 +05:00
# @ingroup l2_impexp
def CreateMeshesFromMED( self,theFileName ):
aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromMED(self,theFileName)
aMeshes = []
for iMesh in range(len(aSmeshMeshes)) :
aMesh = Mesh(self, self.geompyD, aSmeshMeshes[iMesh])
aMeshes.append(aMesh)
return aMeshes, aStatus
2012-08-09 16:03:55 +06:00
## Creates a Mesh object(s) importing data from the given SAUV file
# @return a list of Mesh class instances
# @ingroup l2_impexp
def CreateMeshesFromSAUV( self,theFileName ):
aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromSAUV(self,theFileName)
aMeshes = []
for iMesh in range(len(aSmeshMeshes)) :
aMesh = Mesh(self, self.geompyD, aSmeshMeshes[iMesh])
aMeshes.append(aMesh)
return aMeshes, aStatus
2009-02-17 10:27:49 +05:00
## Creates a Mesh object importing data from the given STL file
# @return an instance of Mesh class
2009-02-17 10:27:49 +05:00
# @ingroup l2_impexp
def CreateMeshesFromSTL( self, theFileName ):
aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromSTL(self,theFileName)
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
return aMesh
2012-08-09 16:03:55 +06:00
## Creates Mesh objects importing data from the given CGNS file
# @return an instance of Mesh class
# @ingroup l2_impexp
def CreateMeshesFromCGNS( self, theFileName ):
aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromCGNS(self,theFileName)
aMeshes = []
for iMesh in range(len(aSmeshMeshes)) :
aMesh = Mesh(self, self.geompyD, aSmeshMeshes[iMesh])
aMeshes.append(aMesh)
return aMeshes, aStatus
2012-10-08 17:56:59 +06:00
## Creates a Mesh object importing data from the given GMF file
# @return [ an instance of Mesh class, SMESH::ComputeError ]
# @ingroup l2_impexp
def CreateMeshesFromGMF( self, theFileName ):
2012-12-13 17:41:29 +06:00
aSmeshMesh, error = SMESH._objref_SMESH_Gen.CreateMeshesFromGMF(self,
theFileName,
True)
2012-10-08 17:56:59 +06:00
if error.comment: print "*** CreateMeshesFromGMF() errors:\n", error.comment
return Mesh(self, self.geompyD, aSmeshMesh), error
2009-02-17 10:27:49 +05:00
## Concatenate the given meshes into one mesh.
# @return an instance of Mesh class
# @param meshes the meshes to combine into one mesh
# @param uniteIdenticalGroups if true, groups with same names are united, else they are renamed
# @param mergeNodesAndElements if true, equal nodes and elements aremerged
# @param mergeTolerance tolerance for merging nodes
# @param allGroups forces creation of groups of all elements
2013-02-12 20:37:44 +06:00
# @param name name of a new mesh
2009-02-17 10:27:49 +05:00
def Concatenate( self, meshes, uniteIdenticalGroups,
2013-02-12 20:37:44 +06:00
mergeNodesAndElements = False, mergeTolerance = 1e-5, allGroups = False,
name = ""):
2012-08-09 16:03:55 +06:00
if not meshes: return None
for i,m in enumerate(meshes):
if isinstance(m, Mesh):
meshes[i] = m.GetMesh()
mergeTolerance,Parameters,hasVars = ParseParameters(mergeTolerance)
meshes[0].SetParameters(Parameters)
2009-02-17 10:27:49 +05:00
if allGroups:
aSmeshMesh = SMESH._objref_SMESH_Gen.ConcatenateWithGroups(
self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
else:
aSmeshMesh = SMESH._objref_SMESH_Gen.Concatenate(
self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
2013-02-12 20:37:44 +06:00
aMesh = Mesh(self, self.geompyD, aSmeshMesh, name=name)
2009-02-17 10:27:49 +05:00
return aMesh
2012-08-09 16:03:55 +06:00
## Create a mesh by copying a part of another mesh.
# @param meshPart a part of mesh to copy, either a Mesh, a sub-mesh or a group;
# to copy nodes or elements not contained in any mesh object,
# pass result of Mesh.GetIDSource( list_of_ids, type ) as meshPart
# @param meshName a name of the new mesh
# @param toCopyGroups to create in the new mesh groups the copied elements belongs to
# @param toKeepIDs to preserve IDs of the copied elements or not
# @return an instance of Mesh class
def CopyMesh( self, meshPart, meshName, toCopyGroups=False, toKeepIDs=False):
if (isinstance( meshPart, Mesh )):
meshPart = meshPart.GetMesh()
mesh = SMESH._objref_SMESH_Gen.CopyMesh( self,meshPart,meshName,toCopyGroups,toKeepIDs )
return Mesh(self, self.geompyD, mesh)
## From SMESH_Gen interface
2009-02-17 10:27:49 +05:00
# @return the list of integer values
# @ingroup l1_auxiliary
def GetSubShapesId( self, theMainObject, theListOfSubObjects ):
return SMESH._objref_SMESH_Gen.GetSubShapesId(self,theMainObject, theListOfSubObjects)
2009-02-17 10:27:49 +05:00
## From SMESH_Gen interface. Creates a pattern
# @return an instance of SMESH_Pattern
#
# <a href="../tui_modifying_meshes_page.html#tui_pattern_mapping">Example of Patterns usage</a>
# @ingroup l2_modif_patterns
def GetPattern(self):
return SMESH._objref_SMESH_Gen.GetPattern(self)
2009-02-17 10:27:49 +05:00
## Sets number of segments per diagonal of boundary box of geometry by which
# default segment length of appropriate 1D hypotheses is defined.
# Default value is 10
# @ingroup l1_auxiliary
def SetBoundaryBoxSegmentation(self, nbSegments):
SMESH._objref_SMESH_Gen.SetBoundaryBoxSegmentation(self,nbSegments)
# Filtering. Auxiliary functions:
# ------------------------------
## Creates an empty criterion
# @return SMESH.Filter.Criterion
2009-02-17 10:27:49 +05:00
# @ingroup l1_controls
def GetEmptyCriterion(self):
Type = self.EnumToLong(FT_Undefined)
Compare = self.EnumToLong(FT_Undefined)
Threshold = 0
ThresholdStr = ""
ThresholdID = ""
UnaryOp = self.EnumToLong(FT_Undefined)
BinaryOp = self.EnumToLong(FT_Undefined)
Tolerance = 1e-07
TypeOfElement = ALL
Precision = -1 ##@1e-07
return Filter.Criterion(Type, Compare, Threshold, ThresholdStr, ThresholdID,
UnaryOp, BinaryOp, Tolerance, TypeOfElement, Precision)
2009-02-17 10:27:49 +05:00
## Creates a criterion by the given parameters
2012-08-09 16:03:55 +06:00
# \n Criterion structures allow to define complex filters by combining them with logical operations (AND / OR) (see example below)
2009-02-17 10:27:49 +05:00
# @param elementType the type of elements(NODE, EDGE, FACE, VOLUME)
# @param CritType the type of criterion (FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc.)
# @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
2012-08-09 16:03:55 +06:00
# @param Threshold the threshold value (range of ids as string, shape, numeric)
2009-02-17 10:27:49 +05:00
# @param UnaryOp FT_LogicalNOT or FT_Undefined
# @param BinaryOp a binary logical operation FT_LogicalAND, FT_LogicalOR or
# FT_Undefined (must be for the last criterion of all criteria)
2012-08-09 16:03:55 +06:00
# @param Tolerance the tolerance used by FT_BelongToGeom, FT_BelongToSurface,
# FT_LyingOnGeom, FT_CoplanarFaces criteria
# @return SMESH.Filter.Criterion
2012-08-09 16:03:55 +06:00
#
# <a href="../tui_filters_page.html#combining_filters">Example of Criteria usage</a>
2009-02-17 10:27:49 +05:00
# @ingroup l1_controls
def GetCriterion(self,elementType,
CritType,
Compare = FT_EqualTo,
2012-08-09 16:03:55 +06:00
Threshold="",
UnaryOp=FT_Undefined,
2012-08-09 16:03:55 +06:00
BinaryOp=FT_Undefined,
Tolerance=1e-07):
if not CritType in SMESH.FunctorType._items:
raise TypeError, "CritType should be of SMESH.FunctorType"
aCriterion = self.GetEmptyCriterion()
aCriterion.TypeOfElement = elementType
aCriterion.Type = self.EnumToLong(CritType)
2012-08-09 16:03:55 +06:00
aCriterion.Tolerance = Tolerance
2012-08-09 16:03:55 +06:00
aThreshold = Threshold
if Compare in [FT_LessThan, FT_MoreThan, FT_EqualTo]:
aCriterion.Compare = self.EnumToLong(Compare)
elif Compare == "=" or Compare == "==":
aCriterion.Compare = self.EnumToLong(FT_EqualTo)
elif Compare == "<":
aCriterion.Compare = self.EnumToLong(FT_LessThan)
elif Compare == ">":
aCriterion.Compare = self.EnumToLong(FT_MoreThan)
2012-08-09 16:03:55 +06:00
elif Compare != FT_Undefined:
aCriterion.Compare = self.EnumToLong(FT_EqualTo)
2012-08-09 16:03:55 +06:00
aThreshold = Compare
if CritType in [FT_BelongToGeom, FT_BelongToPlane, FT_BelongToGenSurface,
FT_BelongToCylinder, FT_LyingOnGeom]:
2012-08-09 16:03:55 +06:00
# Checks that Threshold is GEOM object
if isinstance(aThreshold, geompyDC.GEOM._objref_GEOM_Object):
aCriterion.ThresholdStr = GetName(aThreshold)
2012-12-13 17:41:29 +06:00
aCriterion.ThresholdID = aThreshold.GetStudyEntry()
2012-08-09 16:03:55 +06:00
if not aCriterion.ThresholdID:
2012-12-13 17:41:29 +06:00
name = aCriterion.ThresholdStr
if not name:
name = "%s_%s"%(aThreshold.GetShapeType(), id(aThreshold)%10000)
aCriterion.ThresholdID = self.geompyD.addToStudy( aThreshold, name )
#raise RuntimeError, "Threshold shape must be published"
else:
2012-08-09 16:03:55 +06:00
print "Error: The Threshold should be a shape."
return None
2012-08-09 16:03:55 +06:00
if isinstance(UnaryOp,float):
aCriterion.Tolerance = UnaryOp
UnaryOp = FT_Undefined
pass
elif CritType == FT_RangeOfIds:
2012-08-09 16:03:55 +06:00
# Checks that Threshold is string
if isinstance(aThreshold, str):
aCriterion.ThresholdStr = aThreshold
else:
2012-08-09 16:03:55 +06:00
print "Error: The Threshold should be a string."
return None
elif CritType == FT_CoplanarFaces:
# Checks the Threshold
if isinstance(aThreshold, int):
aCriterion.ThresholdID = str(aThreshold)
elif isinstance(aThreshold, str):
ID = int(aThreshold)
if ID < 1:
raise ValueError, "Invalid ID of mesh face: '%s'"%aThreshold
aCriterion.ThresholdID = aThreshold
else:
raise ValueError,\
"The Threshold should be an ID of mesh face and not '%s'"%aThreshold
elif CritType == FT_ElemGeomType:
# Checks the Threshold
try:
aCriterion.Threshold = self.EnumToLong(aThreshold)
assert( aThreshold in SMESH.GeometryType._items )
except:
if isinstance(aThreshold, int):
aCriterion.Threshold = aThreshold
else:
print "Error: The Threshold should be an integer or SMESH.GeometryType."
return None
pass
pass
2013-03-06 19:57:01 +06:00
elif CritType == FT_EntityType:
# Checks the Threshold
try:
aCriterion.Threshold = self.EnumToLong(aThreshold)
assert( aThreshold in SMESH.EntityType._items )
except:
if isinstance(aThreshold, int):
aCriterion.Threshold = aThreshold
else:
print "Error: The Threshold should be an integer or SMESH.EntityType."
return None
pass
pass
2012-08-09 16:03:55 +06:00
elif CritType == FT_GroupColor:
# Checks the Threshold
try:
aCriterion.ThresholdStr = self.ColorToString(aThreshold)
except:
print "Error: The threshold value should be of SALOMEDS.Color type"
return None
2012-08-09 16:03:55 +06:00
pass
elif CritType in [FT_FreeBorders, FT_FreeEdges, FT_FreeNodes, FT_FreeFaces,
FT_LinearOrQuadratic, FT_BadOrientedVolume,
FT_BareBorderFace, FT_BareBorderVolume,
FT_OverConstrainedFace, FT_OverConstrainedVolume,
FT_EqualNodes,FT_EqualEdges,FT_EqualFaces,FT_EqualVolumes ]:
# At this point the Threshold is unnecessary
if aThreshold == FT_LogicalNOT:
aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
2012-08-09 16:03:55 +06:00
elif aThreshold in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = aThreshold
else:
2012-08-09 16:03:55 +06:00
# Check Threshold
try:
2012-08-09 16:03:55 +06:00
aThreshold = float(aThreshold)
aCriterion.Threshold = aThreshold
except:
2012-08-09 16:03:55 +06:00
print "Error: The Threshold should be a number."
return None
2012-08-09 16:03:55 +06:00
if Threshold == FT_LogicalNOT or UnaryOp == FT_LogicalNOT:
aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
2012-08-09 16:03:55 +06:00
if Threshold in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = self.EnumToLong(Threshold)
if UnaryOp in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = self.EnumToLong(UnaryOp)
if BinaryOp in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = self.EnumToLong(BinaryOp)
return aCriterion
2009-02-17 10:27:49 +05:00
## Creates a filter with the given parameters
# @param elementType the type of elements in the group
# @param CritType the type of criterion ( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
# @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
2012-08-09 16:03:55 +06:00
# @param Threshold the threshold value (range of id ids as string, shape, numeric)
2009-02-17 10:27:49 +05:00
# @param UnaryOp FT_LogicalNOT or FT_Undefined
2012-08-09 16:03:55 +06:00
# @param Tolerance the tolerance used by FT_BelongToGeom, FT_BelongToSurface,
# FT_LyingOnGeom, FT_CoplanarFaces and FT_EqualNodes criteria
# @return SMESH_Filter
2012-08-09 16:03:55 +06:00
#
# <a href="../tui_filters_page.html#tui_filters">Example of Filters usage</a>
2009-02-17 10:27:49 +05:00
# @ingroup l1_controls
def GetFilter(self,elementType,
CritType=FT_Undefined,
Compare=FT_EqualTo,
2012-08-09 16:03:55 +06:00
Threshold="",
UnaryOp=FT_Undefined,
Tolerance=1e-07):
aCriterion = self.GetCriterion(elementType, CritType, Compare, Threshold, UnaryOp, FT_Undefined,Tolerance)
aFilterMgr = self.CreateFilterManager()
aFilter = aFilterMgr.CreateFilter()
aCriteria = []
aCriteria.append(aCriterion)
aFilter.SetCriteria(aCriteria)
2012-08-09 16:03:55 +06:00
aFilterMgr.UnRegister()
return aFilter
## Creates a filter from criteria
# @param criteria a list of criteria
# @return SMESH_Filter
#
# <a href="../tui_filters_page.html#tui_filters">Example of Filters usage</a>
# @ingroup l1_controls
def GetFilterFromCriteria(self,criteria):
aFilterMgr = self.CreateFilterManager()
aFilter = aFilterMgr.CreateFilter()
aFilter.SetCriteria(criteria)
aFilterMgr.UnRegister()
return aFilter
2009-02-17 10:27:49 +05:00
## Creates a numerical functor by its type
# @param theCriterion FT_...; functor type
# @return SMESH_NumericalFunctor
2009-02-17 10:27:49 +05:00
# @ingroup l1_controls
def GetFunctor(self,theCriterion):
2012-12-13 17:41:29 +06:00
if isinstance( theCriterion, SMESH._objref_NumericalFunctor ):
return theCriterion
aFilterMgr = self.CreateFilterManager()
2013-02-12 20:37:44 +06:00
functor = None
if theCriterion == FT_AspectRatio:
2013-02-12 20:37:44 +06:00
functor = aFilterMgr.CreateAspectRatio()
elif theCriterion == FT_AspectRatio3D:
2013-02-12 20:37:44 +06:00
functor = aFilterMgr.CreateAspectRatio3D()
elif theCriterion == FT_Warping:
2013-02-12 20:37:44 +06:00
functor = aFilterMgr.CreateWarping()
elif theCriterion == FT_MinimumAngle:
2013-02-12 20:37:44 +06:00
functor = aFilterMgr.CreateMinimumAngle()
elif theCriterion == FT_Taper:
2013-02-12 20:37:44 +06:00
functor = aFilterMgr.CreateTaper()
elif theCriterion == FT_Skew:
2013-02-12 20:37:44 +06:00
functor = aFilterMgr.CreateSkew()
elif theCriterion == FT_Area:
2013-02-12 20:37:44 +06:00
functor = aFilterMgr.CreateArea()
elif theCriterion == FT_Volume3D:
2013-02-12 20:37:44 +06:00
functor = aFilterMgr.CreateVolume3D()
2012-08-09 16:03:55 +06:00
elif theCriterion == FT_MaxElementLength2D:
2013-02-12 20:37:44 +06:00
functor = aFilterMgr.CreateMaxElementLength2D()
2012-08-09 16:03:55 +06:00
elif theCriterion == FT_MaxElementLength3D:
2013-02-12 20:37:44 +06:00
functor = aFilterMgr.CreateMaxElementLength3D()
elif theCriterion == FT_MultiConnection:
2013-02-12 20:37:44 +06:00
functor = aFilterMgr.CreateMultiConnection()
elif theCriterion == FT_MultiConnection2D:
2013-02-12 20:37:44 +06:00
functor = aFilterMgr.CreateMultiConnection2D()
elif theCriterion == FT_Length:
2013-02-12 20:37:44 +06:00
functor = aFilterMgr.CreateLength()
elif theCriterion == FT_Length2D:
2013-02-12 20:37:44 +06:00
functor = aFilterMgr.CreateLength2D()
else:
2012-08-09 16:03:55 +06:00
print "Error: given parameter is not numerical functor type."
2013-02-12 20:37:44 +06:00
aFilterMgr.UnRegister()
return functor
2009-02-17 10:27:49 +05:00
## Creates hypothesis
2012-08-09 16:03:55 +06:00
# @param theHType mesh hypothesis type (string)
# @param theLibName mesh plug-in library name
2009-02-17 10:27:49 +05:00
# @return created hypothesis instance
def CreateHypothesis(self, theHType, theLibName="libStdMeshersEngine.so"):
2012-08-09 16:03:55 +06:00
hyp = SMESH._objref_SMESH_Gen.CreateHypothesis(self, theHType, theLibName )
if isinstance( hyp, SMESH._objref_SMESH_Algo ):
return hyp
# wrap hypothesis methods
#print "HYPOTHESIS", theHType
for meth_name in dir( hyp.__class__ ):
if not meth_name.startswith("Get") and \
not meth_name in dir ( SMESH._objref_SMESH_Hypothesis ):
method = getattr ( hyp.__class__, meth_name )
if callable(method):
setattr( hyp, meth_name, hypMethodWrapper( hyp, method ))
return hyp
## Gets the mesh statistic
# @return dictionary "element type" - "count of elements"
# @ingroup l1_meshinfo
def GetMeshInfo(self, obj):
if isinstance( obj, Mesh ):
obj = obj.GetMesh()
d = {}
if hasattr(obj, "GetMeshInfo"):
values = obj.GetMeshInfo()
for i in range(SMESH.Entity_Last._v):
if i < len(values): d[SMESH.EntityType._item(i)]=values[i]
pass
return d
## Get minimum distance between two objects
#
# If @a src2 is None, and @a id2 = 0, distance from @a src1 / @a id1 to the origin is computed.
# If @a src2 is None, and @a id2 != 0, it is assumed that both @a id1 and @a id2 belong to @a src1.
#
# @param src1 first source object
# @param src2 second source object
# @param id1 node/element id from the first source
# @param id2 node/element id from the second (or first) source
# @param isElem1 @c True if @a id1 is element id, @c False if it is node id
# @param isElem2 @c True if @a id2 is element id, @c False if it is node id
# @return minimum distance value
# @sa GetMinDistance()
# @ingroup l1_measurements
def MinDistance(self, src1, src2=None, id1=0, id2=0, isElem1=False, isElem2=False):
result = self.GetMinDistance(src1, src2, id1, id2, isElem1, isElem2)
if result is None:
result = 0.0
else:
result = result.value
return result
## Get measure structure specifying minimum distance data between two objects
#
# If @a src2 is None, and @a id2 = 0, distance from @a src1 / @a id1 to the origin is computed.
# If @a src2 is None, and @a id2 != 0, it is assumed that both @a id1 and @a id2 belong to @a src1.
#
# @param src1 first source object
# @param src2 second source object
# @param id1 node/element id from the first source
# @param id2 node/element id from the second (or first) source
# @param isElem1 @c True if @a id1 is element id, @c False if it is node id
# @param isElem2 @c True if @a id2 is element id, @c False if it is node id
# @return Measure structure or None if input data is invalid
# @sa MinDistance()
# @ingroup l1_measurements
def GetMinDistance(self, src1, src2=None, id1=0, id2=0, isElem1=False, isElem2=False):
if isinstance(src1, Mesh): src1 = src1.mesh
if isinstance(src2, Mesh): src2 = src2.mesh
if src2 is None and id2 != 0: src2 = src1
if not hasattr(src1, "_narrow"): return None
src1 = src1._narrow(SMESH.SMESH_IDSource)
if not src1: return None
if id1 != 0:
m = src1.GetMesh()
e = m.GetMeshEditor()
if isElem1:
src1 = e.MakeIDSource([id1], SMESH.FACE)
else:
src1 = e.MakeIDSource([id1], SMESH.NODE)
pass
if hasattr(src2, "_narrow"):
src2 = src2._narrow(SMESH.SMESH_IDSource)
if src2 and id2 != 0:
m = src2.GetMesh()
e = m.GetMeshEditor()
if isElem2:
src2 = e.MakeIDSource([id2], SMESH.FACE)
else:
src2 = e.MakeIDSource([id2], SMESH.NODE)
pass
pass
aMeasurements = self.CreateMeasurements()
result = aMeasurements.MinDistance(src1, src2)
aMeasurements.UnRegister()
return result
## Get bounding box of the specified object(s)
# @param objects single source object or list of source objects
# @return tuple of six values (minX, minY, minZ, maxX, maxY, maxZ)
# @sa GetBoundingBox()
# @ingroup l1_measurements
def BoundingBox(self, objects):
result = self.GetBoundingBox(objects)
if result is None:
result = (0.0,)*6
else:
result = (result.minX, result.minY, result.minZ, result.maxX, result.maxY, result.maxZ)
return result
## Get measure structure specifying bounding box data of the specified object(s)
# @param objects single source object or list of source objects
# @return Measure structure
# @sa BoundingBox()
# @ingroup l1_measurements
def GetBoundingBox(self, objects):
if isinstance(objects, tuple):
objects = list(objects)
if not isinstance(objects, list):
objects = [objects]
srclist = []
for o in objects:
if isinstance(o, Mesh):
srclist.append(o.mesh)
elif hasattr(o, "_narrow"):
src = o._narrow(SMESH.SMESH_IDSource)
if src: srclist.append(src)
pass
pass
aMeasurements = self.CreateMeasurements()
result = aMeasurements.BoundingBox(srclist)
aMeasurements.UnRegister()
return result
2009-02-17 10:27:49 +05:00
import omniORB
2009-02-17 10:27:49 +05:00
#Registering the new proxy for SMESH_Gen
omniORB.registerObjref(SMESH._objref_SMESH_Gen._NP_RepositoryId, smeshDC)
# Public class: Mesh
# ==================
2009-02-17 10:27:49 +05:00
## This class allows defining and managing a mesh.
# It has a set of methods to build a mesh on the given geometry, including the definition of sub-meshes.
# It also has methods to define groups of mesh elements, to modify a mesh (by addition of
# new nodes and elements and by changing the existing entities), to get information
# about a mesh and to export a mesh into different formats.
class Mesh:
geom = 0
mesh = 0
editor = 0
## Constructor
#
2009-02-17 10:27:49 +05:00
# Creates a mesh on the shape \a obj (or an empty mesh if \a obj is equal to 0) and
# sets the GUI name of this mesh to \a name.
# @param smeshpyD an instance of smeshDC class
# @param geompyD an instance of geompyDC class
# @param obj Shape to be meshed or SMESH_Mesh object
# @param name Study name of the mesh
2009-02-17 10:27:49 +05:00
# @ingroup l2_construct
def __init__(self, smeshpyD, geompyD, obj=0, name=0):
self.smeshpyD=smeshpyD
self.geompyD=geompyD
if obj is None:
obj = 0
2013-02-12 20:37:44 +06:00
objHasName = False
if obj != 0:
if isinstance(obj, geompyDC.GEOM._objref_GEOM_Object):
self.geom = obj
2013-02-12 20:37:44 +06:00
objHasName = True
2012-08-09 16:03:55 +06:00
# publish geom of mesh (issue 0021122)
if not self.geom.GetStudyEntry() and smeshpyD.GetCurrentStudy():
objHasName = False
studyID = smeshpyD.GetCurrentStudy()._get_StudyId()
if studyID != geompyD.myStudyId:
geompyD.init_geom( smeshpyD.GetCurrentStudy())
pass
2012-10-08 17:56:59 +06:00
if name:
2013-02-12 20:37:44 +06:00
geo_name = name + " shape"
2012-10-08 17:56:59 +06:00
else:
2013-02-12 20:37:44 +06:00
geo_name = "%s_%s to mesh"%(self.geom.GetShapeType(), id(self.geom)%100)
2012-08-09 16:03:55 +06:00
geompyD.addToStudy( self.geom, geo_name )
self.mesh = self.smeshpyD.CreateMesh(self.geom)
2012-08-09 16:03:55 +06:00
elif isinstance(obj, SMESH._objref_SMESH_Mesh):
self.SetMesh(obj)
else:
self.mesh = self.smeshpyD.CreateEmptyMesh()
2013-02-12 20:37:44 +06:00
if name:
2009-02-17 10:27:49 +05:00
self.smeshpyD.SetName(self.mesh, name)
2013-02-12 20:37:44 +06:00
elif objHasName:
self.smeshpyD.SetName(self.mesh, GetName(obj)) # + " mesh"
2009-02-17 10:27:49 +05:00
if not self.geom:
self.geom = self.mesh.GetShapeToMesh()
2012-12-13 17:41:29 +06:00
self.editor = self.mesh.GetMeshEditor()
self.functors = [None] * SMESH.FT_Undefined._v
2012-08-09 16:03:55 +06:00
# set self to algoCreator's
for attrName in dir(self):
attr = getattr( self, attrName )
if isinstance( attr, algoCreator ):
setattr( self, attrName, attr.copy( self ))
2009-02-17 10:27:49 +05:00
## Initializes the Mesh object from an instance of SMESH_Mesh interface
# @param theMesh a SMESH_Mesh object
# @ingroup l2_construct
def SetMesh(self, theMesh):
2013-02-12 20:37:44 +06:00
if self.mesh: self.mesh.UnRegister()
self.mesh = theMesh
2013-02-12 20:37:44 +06:00
if self.mesh:
self.mesh.Register()
self.geom = self.mesh.GetShapeToMesh()
2009-02-17 10:27:49 +05:00
## Returns the mesh, that is an instance of SMESH_Mesh interface
# @return a SMESH_Mesh object
# @ingroup l2_construct
def GetMesh(self):
return self.mesh
2009-02-17 10:27:49 +05:00
## Gets the name of the mesh
# @return the name of the mesh as a string
# @ingroup l2_construct
def GetName(self):
name = GetName(self.GetMesh())
return name
2009-02-17 10:27:49 +05:00
## Sets a name to the mesh
# @param name a new name of the mesh
# @ingroup l2_construct
def SetName(self, name):
2009-02-17 10:27:49 +05:00
self.smeshpyD.SetName(self.GetMesh(), name)
## Gets the subMesh object associated to a \a theSubObject geometrical object.
# The subMesh object gives access to the IDs of nodes and elements.
2012-08-09 16:03:55 +06:00
# @param geom a geometrical object (shape)
# @param name a name for the submesh
2009-02-17 10:27:49 +05:00
# @return an object of type SMESH_SubMesh, representing a part of mesh, which lies on the given shape
# @ingroup l2_submeshes
2012-08-09 16:03:55 +06:00
def GetSubMesh(self, geom, name):
AssureGeomPublished( self, geom, name )
submesh = self.mesh.GetSubMesh( geom, name )
return submesh
2009-02-17 10:27:49 +05:00
## Returns the shape associated to the mesh
# @return a GEOM_Object
# @ingroup l2_construct
def GetShape(self):
return self.geom
2009-02-17 10:27:49 +05:00
## Associates the given shape to the mesh (entails the recreation of the mesh)
# @param geom the shape to be meshed (GEOM_Object)
# @ingroup l2_construct
def SetShape(self, geom):
self.mesh = self.smeshpyD.CreateMesh(geom)
2012-08-09 16:03:55 +06:00
## Loads mesh from the study after opening the study
def Load(self):
self.mesh.Load()
2009-02-17 10:27:49 +05:00
## Returns true if the hypotheses are defined well
2012-08-09 16:03:55 +06:00
# @param theSubObject a sub-shape of a mesh shape
# @return True or False
2009-02-17 10:27:49 +05:00
# @ingroup l2_construct
def IsReadyToCompute(self, theSubObject):
return self.smeshpyD.IsReadyToCompute(self.mesh, theSubObject)
2009-02-17 10:27:49 +05:00
## Returns errors of hypotheses definition.
# The list of errors is empty if everything is OK.
2012-08-09 16:03:55 +06:00
# @param theSubObject a sub-shape of a mesh shape
# @return a list of errors
2009-02-17 10:27:49 +05:00
# @ingroup l2_construct
def GetAlgoState(self, theSubObject):
return self.smeshpyD.GetAlgoState(self.mesh, theSubObject)
2009-02-17 10:27:49 +05:00
## Returns a geometrical object on which the given element was built.
# The returned geometrical object, if not nil, is either found in the
2009-02-17 10:27:49 +05:00
# study or published by this method with the given name
# @param theElementID the id of the mesh element
# @param theGeomName the user-defined name of the geometrical object
# @return GEOM::GEOM_Object instance
2009-02-17 10:27:49 +05:00
# @ingroup l2_construct
def GetGeometryByMeshElement(self, theElementID, theGeomName):
return self.smeshpyD.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName )
2009-02-17 10:27:49 +05:00
## Returns the mesh dimension depending on the dimension of the underlying shape
2013-02-12 20:37:44 +06:00
# or, if the mesh is not based on any shape, basing on deimension of elements
# @return mesh dimension as an integer value [0,3]
2009-02-17 10:27:49 +05:00
# @ingroup l1_auxiliary
def MeshDimension(self):
2013-02-12 20:37:44 +06:00
if self.mesh.HasShapeToMesh():
shells = self.geompyD.SubShapeAllIDs( self.geom, geompyDC.ShapeType["SOLID"] )
if len( shells ) > 0 :
return 3
elif self.geompyD.NumberOfFaces( self.geom ) > 0 :
return 2
elif self.geompyD.NumberOfEdges( self.geom ) > 0 :
return 1
else:
return 0;
else:
2013-02-12 20:37:44 +06:00
if self.NbVolumes() > 0: return 3
if self.NbFaces() > 0: return 2
if self.NbEdges() > 0: return 1
return 0
2012-08-09 16:03:55 +06:00
## Evaluates size of prospective mesh on a shape
# @return a list where i-th element is a number of elements of i-th SMESH.EntityType
# To know predicted number of e.g. edges, inquire it this way
# Evaluate()[ EnumToLong( Entity_Edge )]
def Evaluate(self, geom=0):
if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object):
if self.geom == 0:
geom = self.mesh.GetShapeToMesh()
else:
geom = self.geom
return self.smeshpyD.Evaluate(self.mesh, geom)
2009-02-17 10:27:49 +05:00
## Computes the mesh and returns the status of the computation
2012-08-09 16:03:55 +06:00
# @param geom geomtrical shape on which mesh data should be computed
# @param discardModifs if True and the mesh has been edited since
# a last total re-compute and that may prevent successful partial re-compute,
# then the mesh is cleaned before Compute()
# @return True or False
2009-02-17 10:27:49 +05:00
# @ingroup l2_construct
2012-08-09 16:03:55 +06:00
def Compute(self, geom=0, discardModifs=False):
if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object):
if self.geom == 0:
2009-02-17 10:27:49 +05:00
geom = self.mesh.GetShapeToMesh()
else:
geom = self.geom
ok = False
try:
2012-08-09 16:03:55 +06:00
if discardModifs and self.mesh.HasModificationsToDiscard(): # issue 0020693
self.mesh.Clear()
ok = self.smeshpyD.Compute(self.mesh, geom)
except SALOME.SALOME_Exception, ex:
print "Mesh computation failed, exception caught:"
print " ", ex.details.text
except:
import traceback
print "Mesh computation failed, exception caught:"
traceback.print_exc()
2009-02-17 10:27:49 +05:00
if True:#not ok:
allReasons = ""
2012-08-09 16:03:55 +06:00
# Treat compute errors
computeErrors = self.smeshpyD.GetComputeErrors( self.mesh, geom )
for err in computeErrors:
shapeText = ""
if self.mesh.HasShapeToMesh():
try:
mainIOR = salome.orb.object_to_string(geom)
for sname in salome.myStudyManager.GetOpenStudies():
s = salome.myStudyManager.GetStudyByName(sname)
if not s: continue
mainSO = s.FindObjectIOR(mainIOR)
if not mainSO: continue
if err.subShapeID == 1:
shapeText = ' on "%s"' % mainSO.GetName()
subIt = s.NewChildIterator(mainSO)
while subIt.More():
subSO = subIt.Value()
subIt.Next()
obj = subSO.GetObject()
if not obj: continue
go = obj._narrow( geompyDC.GEOM._objref_GEOM_Object )
if not go: continue
ids = go.GetSubShapeIndices()
if len(ids) == 1 and ids[0] == err.subShapeID:
shapeText = ' on "%s"' % subSO.GetName()
break
if not shapeText:
shape = self.geompyD.GetSubShape( geom, [err.subShapeID])
if shape:
shapeText = " on %s #%s" % (shape.GetShapeType(), err.subShapeID)
else:
shapeText = " on subshape #%s" % (err.subShapeID)
except:
shapeText = " on subshape #%s" % (err.subShapeID)
errText = ""
2012-10-08 17:56:59 +06:00
stdErrors = ["OK", #COMPERR_OK
"Invalid input mesh", #COMPERR_BAD_INPUT_MESH
"std::exception", #COMPERR_STD_EXCEPTION
"OCC exception", #COMPERR_OCC_EXCEPTION
2013-02-12 20:37:44 +06:00
"..", #COMPERR_SLM_EXCEPTION
2012-10-08 17:56:59 +06:00
"Unknown exception", #COMPERR_EXCEPTION
2012-08-09 16:03:55 +06:00
"Memory allocation problem", #COMPERR_MEMORY_PB
2012-10-08 17:56:59 +06:00
"Algorithm failed", #COMPERR_ALGO_FAILED
"Unexpected geometry", #COMPERR_BAD_SHAPE
"Warning", #COMPERR_WARNING
"Computation cancelled",#COMPERR_CANCELED
"No mesh on sub-shape"] #COMPERR_NO_MESH_ON_SHAPE
2012-08-09 16:03:55 +06:00
if err.code > 0:
if err.code < len(stdErrors): errText = stdErrors[err.code]
else:
errText = "code %s" % -err.code
if errText: errText += ". "
errText += err.comment
if allReasons != "":allReasons += "\n"
allReasons += '- "%s" failed%s. Error: %s' %(err.algoName, shapeText, errText)
pass
# Treat hyp errors
errors = self.smeshpyD.GetAlgoState( self.mesh, geom )
for err in errors:
if err.isGlobalAlgo:
glob = "global"
else:
glob = "local"
pass
dim = err.algoDim
name = err.algoName
if len(name) == 0:
reason = '%s %sD algorithm is missing' % (glob, dim)
elif err.state == HYP_MISSING:
reason = ('%s %sD algorithm "%s" misses %sD hypothesis'
% (glob, dim, name, dim))
elif err.state == HYP_NOTCONFORM:
reason = 'Global "Not Conform mesh allowed" hypothesis is missing'
elif err.state == HYP_BAD_PARAMETER:
reason = ('Hypothesis of %s %sD algorithm "%s" has a bad parameter value'
% ( glob, dim, name ))
elif err.state == HYP_BAD_GEOMETRY:
2009-02-17 10:27:49 +05:00
reason = ('%s %sD algorithm "%s" is assigned to mismatching'
'geometry' % ( glob, dim, name ))
2012-12-13 17:41:29 +06:00
elif err.state == HYP_HIDDEN_ALGO:
reason = ('%s %sD algorithm "%s" is ignored due to presence of a %s '
'algorithm of upper dimension generating %sD mesh'
% ( glob, dim, name, glob, dim ))
else:
2012-12-13 17:41:29 +06:00
reason = ("For unknown reason. "
"Developer, revise Mesh.Compute() implementation in smeshDC.py!")
pass
2012-08-09 16:03:55 +06:00
if allReasons != "":allReasons += "\n"
allReasons += "- " + reason
pass
2012-08-09 16:03:55 +06:00
if not ok or allReasons != "":
msg = '"' + GetName(self.mesh) + '"'
if ok: msg += " has been computed with warnings"
else: msg += " has not been computed"
if allReasons != "": msg += ":"
else: msg += "."
print msg
print allReasons
pass
2012-08-09 16:03:55 +06:00
if salome.sg.hasDesktop() and self.mesh.GetStudyId() >= 0:
smeshgui = salome.ImportComponentGUI("SMESH")
2012-08-09 16:03:55 +06:00
smeshgui.Init(self.mesh.GetStudyId())
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), ok, (self.NbNodes()==0) )
salome.sg.updateObjBrowser(1)
pass
return ok
2012-08-09 16:03:55 +06:00
## Return submesh objects list in meshing order
# @return list of list of submesh objects
# @ingroup l2_construct
def GetMeshOrder(self):
return self.mesh.GetMeshOrder()
## Return submesh objects list in meshing order
# @return list of list of submesh objects
# @ingroup l2_construct
def SetMeshOrder(self, submeshes):
return self.mesh.SetMeshOrder(submeshes)
2009-02-17 10:27:49 +05:00
## Removes all nodes and elements
# @ingroup l2_construct
def Clear(self):
self.mesh.Clear()
2013-02-12 20:37:44 +06:00
if ( salome.sg.hasDesktop() and
salome.myStudyManager.GetStudyByID( self.mesh.GetStudyId() )):
2009-02-17 10:27:49 +05:00
smeshgui = salome.ImportComponentGUI("SMESH")
2012-08-09 16:03:55 +06:00
smeshgui.Init(self.mesh.GetStudyId())
2009-02-17 10:27:49 +05:00
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), False, True )
salome.sg.updateObjBrowser(1)
## Removes all nodes and elements of indicated shape
# @ingroup l2_construct
def ClearSubMesh(self, geomId):
self.mesh.ClearSubMesh(geomId)
if salome.sg.hasDesktop():
smeshgui = salome.ImportComponentGUI("SMESH")
2012-08-09 16:03:55 +06:00
smeshgui.Init(self.mesh.GetStudyId())
2009-02-17 10:27:49 +05:00
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), False, True )
salome.sg.updateObjBrowser(1)
## Computes a tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN
2012-08-09 16:03:55 +06:00
# @param fineness [0.0,1.0] defines mesh fineness
# @return True or False
2009-02-17 10:27:49 +05:00
# @ingroup l3_algos_basic
def AutomaticTetrahedralization(self, fineness=0):
dim = self.MeshDimension()
# assign hypotheses
self.RemoveGlobalHypotheses()
self.Segment().AutomaticLength(fineness)
if dim > 1 :
self.Triangle().LengthFromEdges()
pass
if dim > 2 :
2012-08-09 16:03:55 +06:00
from NETGENPluginDC import NETGEN
self.Tetrahedron(NETGEN)
pass
return self.Compute()
2009-02-17 10:27:49 +05:00
## Computes an hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
2012-08-09 16:03:55 +06:00
# @param fineness [0.0, 1.0] defines mesh fineness
# @return True or False
2009-02-17 10:27:49 +05:00
# @ingroup l3_algos_basic
def AutomaticHexahedralization(self, fineness=0):
dim = self.MeshDimension()
2009-02-17 10:27:49 +05:00
# assign the hypotheses
self.RemoveGlobalHypotheses()
self.Segment().AutomaticLength(fineness)
if dim > 1 :
self.Quadrangle()
pass
if dim > 2 :
self.Hexahedron()
pass
return self.Compute()
2009-02-17 10:27:49 +05:00
## Assigns a hypothesis
# @param hyp a hypothesis to assign
# @param geom a subhape of mesh geometry
# @return SMESH.Hypothesis_Status
2009-02-17 10:27:49 +05:00
# @ingroup l2_hypotheses
def AddHypothesis(self, hyp, geom=0):
if isinstance( hyp, Mesh_Algorithm ):
hyp = hyp.GetAlgorithm()
pass
if not geom:
geom = self.geom
2009-02-17 10:27:49 +05:00
if not geom:
geom = self.mesh.GetShapeToMesh()
pass
2012-08-09 16:03:55 +06:00
AssureGeomPublished( self, geom, "shape for %s" % hyp.GetName())
status = self.mesh.AddHypothesis(geom, hyp)
isAlgo = hyp._narrow( SMESH_Algo )
2012-08-09 16:03:55 +06:00
hyp_name = GetName( hyp )
geom_name = ""
if geom:
geom_name = GetName( geom )
TreatHypoStatus( status, hyp_name, geom_name, isAlgo )
return status
2012-08-09 16:03:55 +06:00
## Return True if an algorithm of hypothesis is assigned to a given shape
# @param hyp a hypothesis to check
# @param geom a subhape of mesh geometry
# @return True of False
# @ingroup l2_hypotheses
def IsUsedHypothesis(self, hyp, geom):
2013-02-12 20:37:44 +06:00
if not hyp: # or not geom
2012-08-09 16:03:55 +06:00
return False
if isinstance( hyp, Mesh_Algorithm ):
hyp = hyp.GetAlgorithm()
pass
hyps = self.GetHypothesisList(geom)
for h in hyps:
if h.GetId() == hyp.GetId():
return True
return False
2009-02-17 10:27:49 +05:00
## Unassigns a hypothesis
# @param hyp a hypothesis to unassign
2012-08-09 16:03:55 +06:00
# @param geom a sub-shape of mesh geometry
# @return SMESH.Hypothesis_Status
2009-02-17 10:27:49 +05:00
# @ingroup l2_hypotheses
def RemoveHypothesis(self, hyp, geom=0):
if isinstance( hyp, Mesh_Algorithm ):
hyp = hyp.GetAlgorithm()
pass
2013-02-12 20:37:44 +06:00
shape = geom
if not shape:
shape = self.geom
pass
2013-02-12 20:37:44 +06:00
if self.IsUsedHypothesis( hyp, shape ):
return self.mesh.RemoveHypothesis( shape, hyp )
hypName = GetName( hyp )
geoName = GetName( shape )
print "WARNING: RemoveHypothesis() failed as '%s' is not assigned to '%s' shape" % ( hypName, geoName )
return None
2009-02-17 10:27:49 +05:00
## Gets the list of hypotheses added on a geometry
2012-08-09 16:03:55 +06:00
# @param geom a sub-shape of mesh geometry
2009-02-17 10:27:49 +05:00
# @return the sequence of SMESH_Hypothesis
# @ingroup l2_hypotheses
def GetHypothesisList(self, geom):
return self.mesh.GetHypothesisList( geom )
## Removes all global hypotheses
2009-02-17 10:27:49 +05:00
# @ingroup l2_hypotheses
def RemoveGlobalHypotheses(self):
current_hyps = self.mesh.GetHypothesisList( self.geom )
for hyp in current_hyps:
self.mesh.RemoveHypothesis( self.geom, hyp )
pass
pass
2012-08-09 16:03:55 +06:00
## Exports the mesh in a file in MED format and chooses the \a version of MED format
## allowing to overwrite the file if it exists or add the exported data to its contents
# @param f is the file name
# @param auto_groups boolean parameter for creating/not creating
# the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
# the typical use is auto_groups=false.
# @param version MED format version(MED_V2_1 or MED_V2_2)
# @param overwrite boolean parameter for overwriting/not overwriting the file
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
2009-02-17 10:27:49 +05:00
# @ingroup l2_impexp
2012-08-09 16:03:55 +06:00
def ExportMED(self, f, auto_groups=0, version=MED_V2_2, overwrite=1, meshPart=None):
if meshPart:
if isinstance( meshPart, list ):
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
self.mesh.ExportPartToMED( meshPart, f, auto_groups, version, overwrite )
else:
self.mesh.ExportToMEDX(f, auto_groups, version, overwrite)
2012-08-09 16:03:55 +06:00
## Exports the mesh in a file in SAUV format
# @param f is the file name
# @param auto_groups boolean parameter for creating/not creating
# the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
# the typical use is auto_groups=false.
2009-02-17 10:27:49 +05:00
# @ingroup l2_impexp
2012-08-09 16:03:55 +06:00
def ExportSAUV(self, f, auto_groups=0):
self.mesh.ExportSAUV(f, auto_groups)
2009-02-17 10:27:49 +05:00
## Exports the mesh in a file in DAT format
# @param f the file name
2012-08-09 16:03:55 +06:00
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
2009-02-17 10:27:49 +05:00
# @ingroup l2_impexp
2012-08-09 16:03:55 +06:00
def ExportDAT(self, f, meshPart=None):
if meshPart:
if isinstance( meshPart, list ):
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
self.mesh.ExportPartToDAT( meshPart, f )
else:
self.mesh.ExportDAT(f)
2009-02-17 10:27:49 +05:00
## Exports the mesh in a file in UNV format
# @param f the file name
2012-08-09 16:03:55 +06:00
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
2009-02-17 10:27:49 +05:00
# @ingroup l2_impexp
2012-08-09 16:03:55 +06:00
def ExportUNV(self, f, meshPart=None):
if meshPart:
if isinstance( meshPart, list ):
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
self.mesh.ExportPartToUNV( meshPart, f )
else:
self.mesh.ExportUNV(f)
2009-02-17 10:27:49 +05:00
## Export the mesh in a file in STL format
# @param f the file name
# @param ascii defines the file encoding
2012-08-09 16:03:55 +06:00
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
2009-02-17 10:27:49 +05:00
# @ingroup l2_impexp
2012-08-09 16:03:55 +06:00
def ExportSTL(self, f, ascii=1, meshPart=None):
if meshPart:
if isinstance( meshPart, list ):
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
self.mesh.ExportPartToSTL( meshPart, f, ascii )
else:
self.mesh.ExportSTL(f, ascii)
2012-08-09 16:03:55 +06:00
## Exports the mesh in a file in CGNS format
# @param f is the file name
# @param overwrite boolean parameter for overwriting/not overwriting the file
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
# @ingroup l2_impexp
def ExportCGNS(self, f, overwrite=1, meshPart=None):
if isinstance( meshPart, list ):
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
if isinstance( meshPart, Mesh ):
meshPart = meshPart.mesh
elif not meshPart:
meshPart = self.mesh
self.mesh.ExportCGNS(meshPart, f, overwrite)
2012-10-08 17:56:59 +06:00
## Exports the mesh in a file in GMF format
# @param f is the file name
# @param meshPart a part of mesh (group, sub-mesh) to export instead of the mesh
# @ingroup l2_impexp
def ExportGMF(self, f, meshPart=None):
if isinstance( meshPart, list ):
meshPart = self.GetIDSource( meshPart, SMESH.ALL )
if isinstance( meshPart, Mesh ):
meshPart = meshPart.mesh
elif not meshPart:
meshPart = self.mesh
2012-12-13 17:41:29 +06:00
self.mesh.ExportGMF(meshPart, f, True)
2012-10-08 17:56:59 +06:00
2012-08-09 16:03:55 +06:00
## Deprecated, used only for compatibility! Please, use ExportToMEDX() method instead.
# Exports the mesh in a file in MED format and chooses the \a version of MED format
## allowing to overwrite the file if it exists or add the exported data to its contents
# @param f the file name
# @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2
# @param opt boolean parameter for creating/not creating
# the groups Group_On_All_Nodes, Group_On_All_Faces, ...
# @param overwrite boolean parameter for overwriting/not overwriting the file
# @ingroup l2_impexp
def ExportToMED(self, f, version, opt=0, overwrite=1):
self.mesh.ExportToMEDX(f, opt, version, overwrite)
# Operations with groups:
# ----------------------
## Creates an empty mesh group
2009-02-17 10:27:49 +05:00
# @param elementType the type of elements in the group
# @param name the name of the mesh group
# @return SMESH_Group
2009-02-17 10:27:49 +05:00
# @ingroup l2_grps_create
def CreateEmptyGroup(self, elementType, name):
return self.mesh.CreateGroup(elementType, name)
2012-08-09 16:03:55 +06:00
## Creates a mesh group based on the geometric object \a grp
# and gives a \a name, \n if this parameter is not defined
# the name is the same as the geometric group name \n
# Note: Works like GroupOnGeom().
# @param grp a geometric group, a vertex, an edge, a face or a solid
# @param name the name of the mesh group
# @return SMESH_GroupOnGeom
# @ingroup l2_grps_create
def Group(self, grp, name=""):
return self.GroupOnGeom(grp, name)
2009-02-17 10:27:49 +05:00
## Creates a mesh group based on the geometrical object \a grp
# and gives a \a name, \n if this parameter is not defined
# the name is the same as the geometrical group name
# @param grp a geometrical group, a vertex, an edge, a face or a solid
# @param name the name of the mesh group
# @param typ the type of elements in the group. If not set, it is
# automatically detected by the type of the geometry
# @return SMESH_GroupOnGeom
2009-02-17 10:27:49 +05:00
# @ingroup l2_grps_create
def GroupOnGeom(self, grp, name="", typ=None):
2012-08-09 16:03:55 +06:00
AssureGeomPublished( self, grp, name )
if name == "":
name = grp.GetName()
2012-08-09 16:03:55 +06:00
if not typ:
typ = self._groupTypeFromShape( grp )
return self.mesh.CreateGroupFromGEOM(typ, name, grp)
## Pivate method to get a type of group on geometry
def _groupTypeFromShape( self, shape ):
tgeo = str(shape.GetShapeType())
if tgeo == "VERTEX":
typ = NODE
elif tgeo == "EDGE":
typ = EDGE
elif tgeo == "FACE" or tgeo == "SHELL":
typ = FACE
elif tgeo == "SOLID" or tgeo == "COMPSOLID":
typ = VOLUME
elif tgeo == "COMPOUND":
sub = self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SHAPE"])
if not sub:
raise ValueError,"_groupTypeFromShape(): empty geometric group or compound '%s'" % GetName(shape)
return self._groupTypeFromShape( sub[0] )
else:
2012-08-09 16:03:55 +06:00
raise ValueError, \
"_groupTypeFromShape(): invalid geometry '%s'" % GetName(shape)
return typ
## Creates a mesh group with given \a name based on the \a filter which
## is a special type of group dynamically updating it's contents during
## mesh modification
# @param typ the type of elements in the group
# @param name the name of the mesh group
# @param filter the filter defining group contents
# @return SMESH_GroupOnFilter
# @ingroup l2_grps_create
def GroupOnFilter(self, typ, name, filter):
return self.mesh.CreateGroupFromFilter(typ, name, filter)
2009-02-17 10:27:49 +05:00
## Creates a mesh group by the given ids of elements
# @param groupName the name of the mesh group
# @param elementType the type of elements in the group
# @param elemIDs the list of ids
# @return SMESH_Group
2009-02-17 10:27:49 +05:00
# @ingroup l2_grps_create
def MakeGroupByIds(self, groupName, elementType, elemIDs):
group = self.mesh.CreateGroup(elementType, groupName)
group.Add(elemIDs)
return group
2009-02-17 10:27:49 +05:00
## Creates a mesh group by the given conditions
# @param groupName the name of the mesh group
# @param elementType the type of elements in the group
# @param CritType the type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
# @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
2012-08-09 16:03:55 +06:00
# @param Threshold the threshold value (range of id ids as string, shape, numeric)
2009-02-17 10:27:49 +05:00
# @param UnaryOp FT_LogicalNOT or FT_Undefined
2012-08-09 16:03:55 +06:00
# @param Tolerance the tolerance used by FT_BelongToGeom, FT_BelongToSurface,
# FT_LyingOnGeom, FT_CoplanarFaces criteria
# @return SMESH_Group
2009-02-17 10:27:49 +05:00
# @ingroup l2_grps_create
def MakeGroup(self,
groupName,
elementType,
CritType=FT_Undefined,
Compare=FT_EqualTo,
2012-08-09 16:03:55 +06:00
Threshold="",
UnaryOp=FT_Undefined,
Tolerance=1e-07):
aCriterion = self.smeshpyD.GetCriterion(elementType, CritType, Compare, Threshold, UnaryOp, FT_Undefined,Tolerance)
group = self.MakeGroupByCriterion(groupName, aCriterion)
return group
2009-02-17 10:27:49 +05:00
## Creates a mesh group by the given criterion
# @param groupName the name of the mesh group
# @param Criterion the instance of Criterion class
# @return SMESH_Group
2009-02-17 10:27:49 +05:00
# @ingroup l2_grps_create
def MakeGroupByCriterion(self, groupName, Criterion):
aFilterMgr = self.smeshpyD.CreateFilterManager()
aFilter = aFilterMgr.CreateFilter()
aCriteria = []
aCriteria.append(Criterion)
aFilter.SetCriteria(aCriteria)
group = self.MakeGroupByFilter(groupName, aFilter)
2012-08-09 16:03:55 +06:00
aFilterMgr.UnRegister()
return group
2009-02-17 10:27:49 +05:00
## Creates a mesh group by the given criteria (list of criteria)
# @param groupName the name of the mesh group
# @param theCriteria the list of criteria
# @return SMESH_Group
2009-02-17 10:27:49 +05:00
# @ingroup l2_grps_create
def MakeGroupByCriteria(self, groupName, theCriteria):
aFilterMgr = self.smeshpyD.CreateFilterManager()
aFilter = aFilterMgr.CreateFilter()
aFilter.SetCriteria(theCriteria)
group = self.MakeGroupByFilter(groupName, aFilter)
2012-08-09 16:03:55 +06:00
aFilterMgr.UnRegister()
return group
2009-02-17 10:27:49 +05:00
## Creates a mesh group by the given filter
# @param groupName the name of the mesh group
# @param theFilter the instance of Filter class
# @return SMESH_Group
2009-02-17 10:27:49 +05:00
# @ingroup l2_grps_create
def MakeGroupByFilter(self, groupName, theFilter):
2012-08-09 16:03:55 +06:00
group = self.CreateEmptyGroup(theFilter.GetElementType(), groupName)
theFilter.SetMesh( self.mesh )
group.AddFrom( theFilter )
return group
2009-02-17 10:27:49 +05:00
## Removes a group
# @ingroup l2_grps_delete
def RemoveGroup(self, group):
self.mesh.RemoveGroup(group)
2009-02-17 10:27:49 +05:00
## Removes a group with its contents
# @ingroup l2_grps_delete
def RemoveGroupWithContents(self, group):
self.mesh.RemoveGroupWithContents(group)
2009-02-17 10:27:49 +05:00
## Gets the list of groups existing in the mesh
# @return a sequence of SMESH_GroupBase
# @ingroup l2_grps_create
def GetGroups(self):
return self.mesh.GetGroups()
2009-02-17 10:27:49 +05:00
## Gets the number of groups existing in the mesh
# @return the quantity of groups as an integer value
# @ingroup l2_grps_create
def NbGroups(self):
return self.mesh.NbGroups()
2009-02-17 10:27:49 +05:00
## Gets the list of names of groups existing in the mesh
# @return list of strings
2009-02-17 10:27:49 +05:00
# @ingroup l2_grps_create
def GetGroupNames(self):
groups = self.GetGroups()
names = []
for group in groups:
names.append(group.GetName())
return names
2009-02-17 10:27:49 +05:00
## Produces a union of two groups
# A new group is created. All mesh elements that are
# present in the initial groups are added to the new one
# @return an instance of SMESH_Group
2009-02-17 10:27:49 +05:00
# @ingroup l2_grps_operon
def UnionGroups(self, group1, group2, name):
return self.mesh.UnionGroups(group1, group2, name)
2012-08-09 16:03:55 +06:00
2009-02-17 10:27:49 +05:00
## Produces a union list of groups
2012-08-09 16:03:55 +06:00
# New group is created. All mesh elements that are present in
2009-02-17 10:27:49 +05:00
# initial groups are added to the new one
# @return an instance of SMESH_Group
# @ingroup l2_grps_operon
def UnionListOfGroups(self, groups, name):
return self.mesh.UnionListOfGroups(groups, name)
2012-08-09 16:03:55 +06:00
2009-02-17 10:27:49 +05:00
## Prodices an intersection of two groups
# A new group is created. All mesh elements that are common
# for the two initial groups are added to the new one.
# @return an instance of SMESH_Group
2009-02-17 10:27:49 +05:00
# @ingroup l2_grps_operon
def IntersectGroups(self, group1, group2, name):
return self.mesh.IntersectGroups(group1, group2, name)
2012-08-09 16:03:55 +06:00
2009-02-17 10:27:49 +05:00
## Produces an intersection of groups
2012-08-09 16:03:55 +06:00
# New group is created. All mesh elements that are present in all
2009-02-17 10:27:49 +05:00
# initial groups simultaneously are added to the new one
# @return an instance of SMESH_Group
# @ingroup l2_grps_operon
def IntersectListOfGroups(self, groups, name):
return self.mesh.IntersectListOfGroups(groups, name)
2009-02-17 10:27:49 +05:00
## Produces a cut of two groups
# A new group is created. All mesh elements that are present in
# the main group but are not present in the tool group are added to the new one
# @return an instance of SMESH_Group
# @ingroup l2_grps_operon
def CutGroups(self, main_group, tool_group, name):
return self.mesh.CutGroups(main_group, tool_group, name)
2012-08-09 16:03:55 +06:00
2009-02-17 10:27:49 +05:00
## Produces a cut of groups
2012-08-09 16:03:55 +06:00
# A new group is created. All mesh elements that are present in main groups
2009-02-17 10:27:49 +05:00
# but do not present in tool groups are added to the new one
# @return an instance of SMESH_Group
2009-02-17 10:27:49 +05:00
# @ingroup l2_grps_operon
def CutListOfGroups(self, main_groups, tool_groups, name):
return self.mesh.CutListOfGroups(main_groups, tool_groups, name)
2012-08-09 16:03:55 +06:00
## Produces a group of elements of specified type using list of existing groups
# A new group is created. System
# 1) extracts all nodes on which groups elements are built
# 2) combines all elements of specified dimension laying on these nodes
2009-02-17 10:27:49 +05:00
# @return an instance of SMESH_Group
# @ingroup l2_grps_operon
def CreateDimGroup(self, groups, elem_type, name):
return self.mesh.CreateDimGroup(groups, elem_type, name)
2009-02-17 10:27:49 +05:00
## Convert group on geom into standalone group
# @ingroup l2_grps_delete
def ConvertToStandalone(self, group):
return self.mesh.ConvertToStandalone(group)
# Get some info about mesh:
# ------------------------
2009-02-17 10:27:49 +05:00
## Returns the log of nodes and elements added or removed
# since the previous clear of the log.
# @param clearAfterGet log is emptied after Get (safe if concurrents access)
# @return list of log_block structures:
# commandType
# number
# coords
# indexes
2009-02-17 10:27:49 +05:00
# @ingroup l1_auxiliary
def GetLog(self, clearAfterGet):
return self.mesh.GetLog(clearAfterGet)
2009-02-17 10:27:49 +05:00
## Clears the log of nodes and elements added or removed since the previous
# clear. Must be used immediately after GetLog if clearAfterGet is false.
2009-02-17 10:27:49 +05:00
# @ingroup l1_auxiliary
def ClearLog(self):
self.mesh.ClearLog()
2009-02-17 10:27:49 +05:00
## Toggles auto color mode on the object.
# @param theAutoColor the flag which toggles auto color mode.
# @ingroup l1_auxiliary
def SetAutoColor(self, theAutoColor):
self.mesh.SetAutoColor(theAutoColor)
2009-02-17 10:27:49 +05:00
## Gets flag of object auto color mode.
# @return True or False
2009-02-17 10:27:49 +05:00
# @ingroup l1_auxiliary
def GetAutoColor(self):
return self.mesh.GetAutoColor()
2009-02-17 10:27:49 +05:00
## Gets the internal ID
# @return integer value, which is the internal Id of the mesh
2009-02-17 10:27:49 +05:00
# @ingroup l1_auxiliary
def GetId(self):
return self.mesh.GetId()
## Get the study Id
# @return integer value, which is the study Id of the mesh
2009-02-17 10:27:49 +05:00
# @ingroup l1_auxiliary
def GetStudyId(self):
return self.mesh.GetStudyId()
2009-02-17 10:27:49 +05:00
## Checks the group names for duplications.
# Consider the maximum group name length stored in MED file.
# @return True or False
2009-02-17 10:27:49 +05:00
# @ingroup l1_auxiliary
def HasDuplicatedGroupNamesMED(self):
return self.mesh.HasDuplicatedGroupNamesMED()
2009-02-17 10:27:49 +05:00
## Obtains the mesh editor tool
# @return an instance of SMESH_MeshEditor
2009-02-17 10:27:49 +05:00
# @ingroup l1_modifying
def GetMeshEditor(self):
2012-10-08 17:56:59 +06:00
return self.editor
2012-08-09 16:03:55 +06:00
## Wrap a list of IDs of elements or nodes into SMESH_IDSource which
# can be passed as argument to a method accepting mesh, group or sub-mesh
# @return an instance of SMESH_IDSource
# @ingroup l1_auxiliary
def GetIDSource(self, ids, elemType):
2012-10-08 17:56:59 +06:00
return self.editor.MakeIDSource(ids, elemType)
2012-08-09 16:03:55 +06:00
2009-02-17 10:27:49 +05:00
## Gets MED Mesh
# @return an instance of SALOME_MED::MESH
2009-02-17 10:27:49 +05:00
# @ingroup l1_auxiliary
def GetMEDMesh(self):
return self.mesh.GetMEDMesh()
# Get informations about mesh contents:
# ------------------------------------
2012-08-09 16:03:55 +06:00
## Gets the mesh stattistic
# @return dictionary type element - count of elements
# @ingroup l1_meshinfo
def GetMeshInfo(self, obj = None):
if not obj: obj = self.mesh
return self.smeshpyD.GetMeshInfo(obj)
2009-02-17 10:27:49 +05:00
## Returns the number of nodes in the mesh
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbNodes(self):
return self.mesh.NbNodes()
2009-02-17 10:27:49 +05:00
## Returns the number of elements in the mesh
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbElements(self):
return self.mesh.NbElements()
2012-08-09 16:03:55 +06:00
## Returns the number of 0d elements in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def Nb0DElements(self):
return self.mesh.Nb0DElements()
## Returns the number of ball discrete elements in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def NbBalls(self):
return self.mesh.NbBalls()
2009-02-17 10:27:49 +05:00
## Returns the number of edges in the mesh
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbEdges(self):
return self.mesh.NbEdges()
2009-02-17 10:27:49 +05:00
## Returns the number of edges with the given order in the mesh
# @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbEdgesOfOrder(self, elementOrder):
return self.mesh.NbEdgesOfOrder(elementOrder)
2009-02-17 10:27:49 +05:00
## Returns the number of faces in the mesh
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbFaces(self):
return self.mesh.NbFaces()
2009-02-17 10:27:49 +05:00
## Returns the number of faces with the given order in the mesh
# @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbFacesOfOrder(self, elementOrder):
return self.mesh.NbFacesOfOrder(elementOrder)
2009-02-17 10:27:49 +05:00
## Returns the number of triangles in the mesh
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbTriangles(self):
return self.mesh.NbTriangles()
2009-02-17 10:27:49 +05:00
## Returns the number of triangles with the given order in the mesh
# @param elementOrder is the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbTrianglesOfOrder(self, elementOrder):
return self.mesh.NbTrianglesOfOrder(elementOrder)
2009-02-17 10:27:49 +05:00
## Returns the number of quadrangles in the mesh
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbQuadrangles(self):
return self.mesh.NbQuadrangles()
2009-02-17 10:27:49 +05:00
## Returns the number of quadrangles with the given order in the mesh
# @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbQuadranglesOfOrder(self, elementOrder):
return self.mesh.NbQuadranglesOfOrder(elementOrder)
2012-08-09 16:03:55 +06:00
## Returns the number of biquadratic quadrangles in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def NbBiQuadQuadrangles(self):
return self.mesh.NbBiQuadQuadrangles()
2009-02-17 10:27:49 +05:00
## Returns the number of polygons in the mesh
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbPolygons(self):
return self.mesh.NbPolygons()
2009-02-17 10:27:49 +05:00
## Returns the number of volumes in the mesh
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbVolumes(self):
return self.mesh.NbVolumes()
2009-02-17 10:27:49 +05:00
## Returns the number of volumes with the given order in the mesh
# @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbVolumesOfOrder(self, elementOrder):
return self.mesh.NbVolumesOfOrder(elementOrder)
2009-02-17 10:27:49 +05:00
## Returns the number of tetrahedrons in the mesh
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbTetras(self):
return self.mesh.NbTetras()
2009-02-17 10:27:49 +05:00
## Returns the number of tetrahedrons with the given order in the mesh
# @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbTetrasOfOrder(self, elementOrder):
return self.mesh.NbTetrasOfOrder(elementOrder)
2009-02-17 10:27:49 +05:00
## Returns the number of hexahedrons in the mesh
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbHexas(self):
return self.mesh.NbHexas()
2009-02-17 10:27:49 +05:00
## Returns the number of hexahedrons with the given order in the mesh
# @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbHexasOfOrder(self, elementOrder):
return self.mesh.NbHexasOfOrder(elementOrder)
2012-08-09 16:03:55 +06:00
## Returns the number of triquadratic hexahedrons in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def NbTriQuadraticHexas(self):
return self.mesh.NbTriQuadraticHexas()
2009-02-17 10:27:49 +05:00
## Returns the number of pyramids in the mesh
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbPyramids(self):
return self.mesh.NbPyramids()
2009-02-17 10:27:49 +05:00
## Returns the number of pyramids with the given order in the mesh
# @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbPyramidsOfOrder(self, elementOrder):
return self.mesh.NbPyramidsOfOrder(elementOrder)
2009-02-17 10:27:49 +05:00
## Returns the number of prisms in the mesh
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbPrisms(self):
return self.mesh.NbPrisms()
2009-02-17 10:27:49 +05:00
## Returns the number of prisms with the given order in the mesh
# @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbPrismsOfOrder(self, elementOrder):
return self.mesh.NbPrismsOfOrder(elementOrder)
2012-08-09 16:03:55 +06:00
## Returns the number of hexagonal prisms in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def NbHexagonalPrisms(self):
return self.mesh.NbHexagonalPrisms()
2009-02-17 10:27:49 +05:00
## Returns the number of polyhedrons in the mesh
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbPolyhedrons(self):
return self.mesh.NbPolyhedrons()
2009-02-17 10:27:49 +05:00
## Returns the number of submeshes in the mesh
# @return an integer value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def NbSubMesh(self):
return self.mesh.NbSubMesh()
2009-02-17 10:27:49 +05:00
## Returns the list of mesh elements IDs
# @return the list of integer values
# @ingroup l1_meshinfo
def GetElementsId(self):
return self.mesh.GetElementsId()
2009-02-17 10:27:49 +05:00
## Returns the list of IDs of mesh elements with the given type
2012-08-09 16:03:55 +06:00
# @param elementType the required type of elements (SMESH.NODE, SMESH.EDGE, SMESH.FACE or SMESH.VOLUME)
# @return list of integer values
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def GetElementsByType(self, elementType):
return self.mesh.GetElementsByType(elementType)
2009-02-17 10:27:49 +05:00
## Returns the list of mesh nodes IDs
# @return the list of integer values
# @ingroup l1_meshinfo
def GetNodesId(self):
return self.mesh.GetNodesId()
2009-02-17 10:27:49 +05:00
# Get the information about mesh elements:
# ------------------------------------
2009-02-17 10:27:49 +05:00
## Returns the type of mesh element
# @return the value from SMESH::ElementType enumeration
# @ingroup l1_meshinfo
def GetElementType(self, id, iselem):
return self.mesh.GetElementType(id, iselem)
2012-08-09 16:03:55 +06:00
## Returns the geometric type of mesh element
# @return the value from SMESH::EntityType enumeration
# @ingroup l1_meshinfo
def GetElementGeomType(self, id):
return self.mesh.GetElementGeomType(id)
2009-02-17 10:27:49 +05:00
## Returns the list of submesh elements IDs
2012-08-09 16:03:55 +06:00
# @param Shape a geom object(sub-shape) IOR
# Shape must be the sub-shape of a ShapeToMesh()
2009-02-17 10:27:49 +05:00
# @return the list of integer values
# @ingroup l1_meshinfo
def GetSubMeshElementsId(self, Shape):
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
ShapeID = Shape.GetSubShapeIndices()[0]
else:
ShapeID = Shape
return self.mesh.GetSubMeshElementsId(ShapeID)
2009-02-17 10:27:49 +05:00
## Returns the list of submesh nodes IDs
2012-08-09 16:03:55 +06:00
# @param Shape a geom object(sub-shape) IOR
# Shape must be the sub-shape of a ShapeToMesh()
2009-02-17 10:27:49 +05:00
# @param all If true, gives all nodes of submesh elements, otherwise gives only submesh nodes
# @return the list of integer values
# @ingroup l1_meshinfo
def GetSubMeshNodesId(self, Shape, all):
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
2012-08-09 16:03:55 +06:00
ShapeID = self.geompyD.GetSubShapeID( self.geom, Shape )
else:
ShapeID = Shape
return self.mesh.GetSubMeshNodesId(ShapeID, all)
2012-08-09 16:03:55 +06:00
## Returns type of elements on given shape
# @param Shape a geom object(sub-shape) IOR
# Shape must be a sub-shape of a ShapeToMesh()
# @return element type
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def GetSubMeshElementType(self, Shape):
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
ShapeID = Shape.GetSubShapeIndices()[0]
else:
ShapeID = Shape
return self.mesh.GetSubMeshElementType(ShapeID)
2009-02-17 10:27:49 +05:00
## Gets the mesh description
# @return string value
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def Dump(self):
return self.mesh.Dump()
2009-02-17 10:27:49 +05:00
# Get the information about nodes and elements of a mesh by its IDs:
# -----------------------------------------------------------
2009-02-17 10:27:49 +05:00
## Gets XYZ coordinates of a node
# \n If there is no nodes for the given ID - returns an empty list
# @return a list of double precision values
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def GetNodeXYZ(self, id):
return self.mesh.GetNodeXYZ(id)
2009-02-17 10:27:49 +05:00
## Returns list of IDs of inverse elements for the given node
# \n If there is no node for the given ID - returns an empty list
# @return a list of integer values
# @ingroup l1_meshinfo
def GetNodeInverseElements(self, id):
return self.mesh.GetNodeInverseElements(id)
2009-02-17 10:27:49 +05:00
## @brief Returns the position of a node on the shape
# @return SMESH::NodePosition
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def GetNodePosition(self,NodeID):
return self.mesh.GetNodePosition(NodeID)
2013-02-12 20:37:44 +06:00
## @brief Returns the position of an element on the shape
# @return SMESH::ElementPosition
# @ingroup l1_meshinfo
def GetElementPosition(self,ElemID):
return self.mesh.GetElementPosition(ElemID)
2009-02-17 10:27:49 +05:00
## If the given element is a node, returns the ID of shape
# \n If there is no node for the given ID - returns -1
# @return an integer value
# @ingroup l1_meshinfo
def GetShapeID(self, id):
return self.mesh.GetShapeID(id)
2009-02-17 10:27:49 +05:00
## Returns the ID of the result shape after
# FindShape() from SMESH_MeshEditor for the given element
# \n If there is no element for the given ID - returns -1
# @return an integer value
# @ingroup l1_meshinfo
def GetShapeIDForElem(self,id):
return self.mesh.GetShapeIDForElem(id)
2009-02-17 10:27:49 +05:00
## Returns the number of nodes for the given element
# \n If there is no element for the given ID - returns -1
# @return an integer value
# @ingroup l1_meshinfo
def GetElemNbNodes(self, id):
return self.mesh.GetElemNbNodes(id)
2013-03-06 19:57:01 +06:00
## Returns the node ID the given (zero based) index for the given element
2009-02-17 10:27:49 +05:00
# \n If there is no element for the given ID - returns -1
# \n If there is no node for the given index - returns -2
# @return an integer value
# @ingroup l1_meshinfo
def GetElemNode(self, id, index):
return self.mesh.GetElemNode(id, index)
2009-02-17 10:27:49 +05:00
## Returns the IDs of nodes of the given element
# @return a list of integer values
# @ingroup l1_meshinfo
def GetElemNodes(self, id):
return self.mesh.GetElemNodes(id)
2009-02-17 10:27:49 +05:00
## Returns true if the given node is the medium node in the given quadratic element
# @ingroup l1_meshinfo
def IsMediumNode(self, elementID, nodeID):
return self.mesh.IsMediumNode(elementID, nodeID)
2009-02-17 10:27:49 +05:00
## Returns true if the given node is the medium node in one of quadratic elements
# @ingroup l1_meshinfo
def IsMediumNodeOfAnyElem(self, nodeID, elementType):
return self.mesh.IsMediumNodeOfAnyElem(nodeID, elementType)
2009-02-17 10:27:49 +05:00
## Returns the number of edges for the given element
# @ingroup l1_meshinfo
def ElemNbEdges(self, id):
return self.mesh.ElemNbEdges(id)
2009-02-17 10:27:49 +05:00
## Returns the number of faces for the given element
# @ingroup l1_meshinfo
def ElemNbFaces(self, id):
return self.mesh.ElemNbFaces(id)
2012-08-09 16:03:55 +06:00
## Returns nodes of given face (counted from zero) for given volumic element.
# @ingroup l1_meshinfo
def GetElemFaceNodes(self,elemId, faceIndex):
return self.mesh.GetElemFaceNodes(elemId, faceIndex)
## Returns an element based on all given nodes.
# @ingroup l1_meshinfo
def FindElementByNodes(self,nodes):
return self.mesh.FindElementByNodes(nodes)
2009-02-17 10:27:49 +05:00
## Returns true if the given element is a polygon
# @ingroup l1_meshinfo
def IsPoly(self, id):
return self.mesh.IsPoly(id)
2009-02-17 10:27:49 +05:00
## Returns true if the given element is quadratic
# @ingroup l1_meshinfo
def IsQuadratic(self, id):
return self.mesh.IsQuadratic(id)
2012-08-09 16:03:55 +06:00
## Returns diameter of a ball discrete element or zero in case of an invalid \a id
# @ingroup l1_meshinfo
def GetBallDiameter(self, id):
return self.mesh.GetBallDiameter(id)
2009-02-17 10:27:49 +05:00
## Returns XYZ coordinates of the barycenter of the given element
# \n If there is no element for the given ID - returns an empty list
# @return a list of three double values
2009-02-17 10:27:49 +05:00
# @ingroup l1_meshinfo
def BaryCenter(self, id):
return self.mesh.BaryCenter(id)
2012-08-09 16:03:55 +06:00
## Passes mesh elements through the given filter and return IDs of fitting elements
# @param theFilter SMESH_Filter
# @return a list of ids
# @ingroup l1_controls
def GetIdsFromFilter(self, theFilter):
theFilter.SetMesh( self.mesh )
return theFilter.GetIDs()
## Verifies whether a 2D mesh element has free edges (edges connected to one face only)\n
# Returns a list of special structures (borders).
# @return a list of SMESH.FreeEdges.Border structure: edge id and ids of two its nodes.
# @ingroup l1_controls
def GetFreeBorders(self):
aFilterMgr = self.smeshpyD.CreateFilterManager()
aPredicate = aFilterMgr.CreateFreeEdges()
aPredicate.SetMesh(self.mesh)
aBorders = aPredicate.GetBorders()
aFilterMgr.UnRegister()
return aBorders
# Get mesh measurements information:
# ------------------------------------
## Get minimum distance between two nodes, elements or distance to the origin
# @param id1 first node/element id
# @param id2 second node/element id (if 0, distance from @a id1 to the origin is computed)
# @param isElem1 @c True if @a id1 is element id, @c False if it is node id
# @param isElem2 @c True if @a id2 is element id, @c False if it is node id
# @return minimum distance value
# @sa GetMinDistance()
def MinDistance(self, id1, id2=0, isElem1=False, isElem2=False):
aMeasure = self.GetMinDistance(id1, id2, isElem1, isElem2)
return aMeasure.value
## Get measure structure specifying minimum distance data between two objects
# @param id1 first node/element id
# @param id2 second node/element id (if 0, distance from @a id1 to the origin is computed)
# @param isElem1 @c True if @a id1 is element id, @c False if it is node id
# @param isElem2 @c True if @a id2 is element id, @c False if it is node id
# @return Measure structure
# @sa MinDistance()
def GetMinDistance(self, id1, id2=0, isElem1=False, isElem2=False):
if isElem1:
id1 = self.editor.MakeIDSource([id1], SMESH.FACE)
else:
id1 = self.editor.MakeIDSource([id1], SMESH.NODE)
if id2 != 0:
if isElem2:
id2 = self.editor.MakeIDSource([id2], SMESH.FACE)
else:
id2 = self.editor.MakeIDSource([id2], SMESH.NODE)
pass
else:
id2 = None
aMeasurements = self.smeshpyD.CreateMeasurements()
aMeasure = aMeasurements.MinDistance(id1, id2)
aMeasurements.UnRegister()
return aMeasure
## Get bounding box of the specified object(s)
# @param objects single source object or list of source objects or list of nodes/elements IDs
# @param isElem if @a objects is a list of IDs, @c True value in this parameters specifies that @a objects are elements,
# @c False specifies that @a objects are nodes
# @return tuple of six values (minX, minY, minZ, maxX, maxY, maxZ)
# @sa GetBoundingBox()
def BoundingBox(self, objects=None, isElem=False):
result = self.GetBoundingBox(objects, isElem)
if result is None:
result = (0.0,)*6
else:
result = (result.minX, result.minY, result.minZ, result.maxX, result.maxY, result.maxZ)
return result
## Get measure structure specifying bounding box data of the specified object(s)
# @param IDs single source object or list of source objects or list of nodes/elements IDs
# @param isElem if @a objects is a list of IDs, @c True value in this parameters specifies that @a objects are elements,
# @c False specifies that @a objects are nodes
# @return Measure structure
# @sa BoundingBox()
def GetBoundingBox(self, IDs=None, isElem=False):
if IDs is None:
IDs = [self.mesh]
elif isinstance(IDs, tuple):
IDs = list(IDs)
if not isinstance(IDs, list):
IDs = [IDs]
if len(IDs) > 0 and isinstance(IDs[0], int):
IDs = [IDs]
srclist = []
for o in IDs:
if isinstance(o, Mesh):
srclist.append(o.mesh)
elif hasattr(o, "_narrow"):
src = o._narrow(SMESH.SMESH_IDSource)
if src: srclist.append(src)
pass
elif isinstance(o, list):
if isElem:
srclist.append(self.editor.MakeIDSource(o, SMESH.FACE))
else:
srclist.append(self.editor.MakeIDSource(o, SMESH.NODE))
pass
pass
aMeasurements = self.smeshpyD.CreateMeasurements()
aMeasure = aMeasurements.BoundingBox(srclist)
aMeasurements.UnRegister()
return aMeasure
# Mesh edition (SMESH_MeshEditor functionality):
# ---------------------------------------------
2009-02-17 10:27:49 +05:00
## Removes the elements from the mesh by ids
# @param IDsOfElements is a list of ids of elements to remove
# @return True or False
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_del
def RemoveElements(self, IDsOfElements):
return self.editor.RemoveElements(IDsOfElements)
## Removes nodes from mesh by ids
2009-02-17 10:27:49 +05:00
# @param IDsOfNodes is a list of ids of nodes to remove
# @return True or False
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_del
def RemoveNodes(self, IDsOfNodes):
return self.editor.RemoveNodes(IDsOfNodes)
2012-08-09 16:03:55 +06:00
## Removes all orphan (free) nodes from mesh
# @return number of the removed nodes
# @ingroup l2_modif_del
def RemoveOrphanNodes(self):
return self.editor.RemoveOrphanNodes()
2009-02-17 10:27:49 +05:00
## Add a node to the mesh by coordinates
# @return Id of the new node
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_add
def AddNode(self, x, y, z):
2012-08-09 16:03:55 +06:00
x,y,z,Parameters,hasVars = ParseParameters(x,y,z)
if hasVars: self.mesh.SetParameters(Parameters)
return self.editor.AddNode( x, y, z)
2012-08-09 16:03:55 +06:00
## Creates a 0D element on a node with given number.
# @param IDOfNode the ID of node for creation of the element.
# @return the Id of the new 0D element
# @ingroup l2_modif_add
def Add0DElement(self, IDOfNode):
return self.editor.Add0DElement(IDOfNode)
2012-12-13 17:41:29 +06:00
## Create 0D elements on all nodes of the given elements except those
# nodes on which a 0D element already exists.
# @param theObject an object on whose nodes 0D elements will be created.
# It can be mesh, sub-mesh, group, list of element IDs or a holder
# of nodes IDs created by calling mesh.GetIDSource( nodes, SMESH.NODE )
# @param theGroupName optional name of a group to add 0D elements created
# and/or found on nodes of \a theObject.
# @return an object (a new group or a temporary SMESH_IDSource) holding
# IDs of new and/or found 0D elements. IDs of 0D elements
# can be retrieved from the returned object by calling GetIDs()
# @ingroup l2_modif_add
def Add0DElementsToAllNodes(self, theObject, theGroupName=""):
if isinstance( theObject, Mesh ):
theObject = theObject.GetMesh()
if isinstance( theObject, list ):
theObject = self.GetIDSource( theObject, SMESH.ALL )
return self.editor.Create0DElementsOnAllNodes( theObject, theGroupName )
2012-08-09 16:03:55 +06:00
## Creates a ball element on a node with given ID.
# @param IDOfNode the ID of node for creation of the element.
# @param diameter the bal diameter.
# @return the Id of the new ball element
# @ingroup l2_modif_add
def AddBall(self, IDOfNode, diameter):
return self.editor.AddBall( IDOfNode, diameter )
2009-02-17 10:27:49 +05:00
## Creates a linear or quadratic edge (this is determined
# by the number of given nodes).
# @param IDsOfNodes the list of node IDs for creation of the element.
# The order of nodes in this list should correspond to the description
# of MED. \n This description is located by the following link:
2012-08-09 16:03:55 +06:00
# http://www.code-aster.org/outils/med/html/modele_de_donnees.html#3.
2009-02-17 10:27:49 +05:00
# @return the Id of the new edge
# @ingroup l2_modif_add
def AddEdge(self, IDsOfNodes):
return self.editor.AddEdge(IDsOfNodes)
2009-02-17 10:27:49 +05:00
## Creates a linear or quadratic face (this is determined
# by the number of given nodes).
# @param IDsOfNodes the list of node IDs for creation of the element.
# The order of nodes in this list should correspond to the description
# of MED. \n This description is located by the following link:
2012-08-09 16:03:55 +06:00
# http://www.code-aster.org/outils/med/html/modele_de_donnees.html#3.
2009-02-17 10:27:49 +05:00
# @return the Id of the new face
# @ingroup l2_modif_add
def AddFace(self, IDsOfNodes):
return self.editor.AddFace(IDsOfNodes)
2009-02-17 10:27:49 +05:00
## Adds a polygonal face to the mesh by the list of node IDs
# @param IdsOfNodes the list of node IDs for creation of the element.
# @return the Id of the new face
# @ingroup l2_modif_add
def AddPolygonalFace(self, IdsOfNodes):
return self.editor.AddPolygonalFace(IdsOfNodes)
2009-02-17 10:27:49 +05:00
## Creates both simple and quadratic volume (this is determined
# by the number of given nodes).
# @param IDsOfNodes the list of node IDs for creation of the element.
# The order of nodes in this list should correspond to the description
# of MED. \n This description is located by the following link:
2012-08-09 16:03:55 +06:00
# http://www.code-aster.org/outils/med/html/modele_de_donnees.html#3.
2009-02-17 10:27:49 +05:00
# @return the Id of the new volumic element
# @ingroup l2_modif_add
def AddVolume(self, IDsOfNodes):
return self.editor.AddVolume(IDsOfNodes)
2009-02-17 10:27:49 +05:00
## Creates a volume of many faces, giving nodes for each face.
# @param IdsOfNodes the list of node IDs for volume creation face by face.
# @param Quantities the list of integer values, Quantities[i]
# gives the quantity of nodes in face number i.
# @return the Id of the new volumic element
# @ingroup l2_modif_add
def AddPolyhedralVolume (self, IdsOfNodes, Quantities):
return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities)
2009-02-17 10:27:49 +05:00
## Creates a volume of many faces, giving the IDs of the existing faces.
# @param IdsOfFaces the list of face IDs for volume creation.
#
2009-02-17 10:27:49 +05:00
# Note: The created volume will refer only to the nodes
# of the given faces, not to the faces themselves.
# @return the Id of the new volumic element
# @ingroup l2_modif_add
def AddPolyhedralVolumeByFaces (self, IdsOfFaces):
return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces)
2009-02-17 10:27:49 +05:00
## @brief Binds a node to a vertex
# @param NodeID a node ID
# @param Vertex a vertex or vertex ID
# @return True if succeed else raises an exception
# @ingroup l2_modif_add
def SetNodeOnVertex(self, NodeID, Vertex):
if ( isinstance( Vertex, geompyDC.GEOM._objref_GEOM_Object)):
VertexID = Vertex.GetSubShapeIndices()[0]
else:
VertexID = Vertex
try:
self.editor.SetNodeOnVertex(NodeID, VertexID)
except SALOME.SALOME_Exception, inst:
raise ValueError, inst.details.text
return True
2009-02-17 10:27:49 +05:00
## @brief Stores the node position on an edge
# @param NodeID a node ID
# @param Edge an edge or edge ID
# @param paramOnEdge a parameter on the edge where the node is located
# @return True if succeed else raises an exception
# @ingroup l2_modif_add
def SetNodeOnEdge(self, NodeID, Edge, paramOnEdge):
if ( isinstance( Edge, geompyDC.GEOM._objref_GEOM_Object)):
EdgeID = Edge.GetSubShapeIndices()[0]
else:
EdgeID = Edge
try:
self.editor.SetNodeOnEdge(NodeID, EdgeID, paramOnEdge)
except SALOME.SALOME_Exception, inst:
raise ValueError, inst.details.text
return True
2009-02-17 10:27:49 +05:00
## @brief Stores node position on a face
# @param NodeID a node ID
# @param Face a face or face ID
# @param u U parameter on the face where the node is located
# @param v V parameter on the face where the node is located
# @return True if succeed else raises an exception
# @ingroup l2_modif_add
def SetNodeOnFace(self, NodeID, Face, u, v):
if ( isinstance( Face, geompyDC.GEOM._objref_GEOM_Object)):
FaceID = Face.GetSubShapeIndices()[0]
else:
FaceID = Face
try:
self.editor.SetNodeOnFace(NodeID, FaceID, u, v)
except SALOME.SALOME_Exception, inst:
raise ValueError, inst.details.text
return True
2009-02-17 10:27:49 +05:00
## @brief Binds a node to a solid
# @param NodeID a node ID
# @param Solid a solid or solid ID
# @return True if succeed else raises an exception
# @ingroup l2_modif_add
def SetNodeInVolume(self, NodeID, Solid):
if ( isinstance( Solid, geompyDC.GEOM._objref_GEOM_Object)):
SolidID = Solid.GetSubShapeIndices()[0]
else:
SolidID = Solid
try:
self.editor.SetNodeInVolume(NodeID, SolidID)
except SALOME.SALOME_Exception, inst:
raise ValueError, inst.details.text
return True
## @brief Bind an element to a shape
2009-02-17 10:27:49 +05:00
# @param ElementID an element ID
# @param Shape a shape or shape ID
# @return True if succeed else raises an exception
# @ingroup l2_modif_add
def SetMeshElementOnShape(self, ElementID, Shape):
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
ShapeID = Shape.GetSubShapeIndices()[0]
else:
ShapeID = Shape
try:
self.editor.SetMeshElementOnShape(ElementID, ShapeID)
except SALOME.SALOME_Exception, inst:
raise ValueError, inst.details.text
return True
2009-02-17 10:27:49 +05:00
## Moves the node with the given id
# @param NodeID the id of the node
# @param x a new X coordinate
# @param y a new Y coordinate
# @param z a new Z coordinate
# @return True if succeed else False
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_movenode
def MoveNode(self, NodeID, x, y, z):
2012-08-09 16:03:55 +06:00
x,y,z,Parameters,hasVars = ParseParameters(x,y,z)
if hasVars: self.mesh.SetParameters(Parameters)
return self.editor.MoveNode(NodeID, x, y, z)
2009-02-17 10:27:49 +05:00
## Finds the node closest to a point and moves it to a point location
# @param x the X coordinate of a point
# @param y the Y coordinate of a point
# @param z the Z coordinate of a point
2012-08-09 16:03:55 +06:00
# @param NodeID if specified (>0), the node with this ID is moved,
# otherwise, the node closest to point (@a x,@a y,@a z) is moved
2009-02-17 10:27:49 +05:00
# @return the ID of a node
# @ingroup l2_modif_throughp
def MoveClosestNodeToPoint(self, x, y, z, NodeID):
2012-08-09 16:03:55 +06:00
x,y,z,Parameters,hasVars = ParseParameters(x,y,z)
if hasVars: self.mesh.SetParameters(Parameters)
2009-02-17 10:27:49 +05:00
return self.editor.MoveClosestNodeToPoint(x, y, z, NodeID)
## Finds the node closest to a point
# @param x the X coordinate of a point
# @param y the Y coordinate of a point
# @param z the Z coordinate of a point
# @return the ID of a node
# @ingroup l2_modif_throughp
def FindNodeClosestTo(self, x, y, z):
2012-08-09 16:03:55 +06:00
#preview = self.mesh.GetMeshEditPreviewer()
#return preview.MoveClosestNodeToPoint(x, y, z, -1)
return self.editor.FindNodeClosestTo(x, y, z)
## Finds the elements where a point lays IN or ON
# @param x the X coordinate of a point
# @param y the Y coordinate of a point
# @param z the Z coordinate of a point
# @param elementType type of elements to find (SMESH.ALL type
# means elements of any type excluding nodes, discrete and 0D elements)
# @param meshPart a part of mesh (group, sub-mesh) to search within
# @return list of IDs of found elements
# @ingroup l2_modif_throughp
def FindElementsByPoint(self, x, y, z, elementType = SMESH.ALL, meshPart=None):
if meshPart:
return self.editor.FindAmongElementsByPoint( meshPart, x, y, z, elementType );
else:
return self.editor.FindElementsByPoint(x, y, z, elementType)
# Return point state in a closed 2D mesh in terms of TopAbs_State enumeration:
# 0-IN, 1-OUT, 2-ON, 3-UNKNOWN
# TopAbs_UNKNOWN state means that either mesh is wrong or the analysis fails.
def GetPointState(self, x, y, z):
return self.editor.GetPointState(x, y, z)
2009-02-17 10:27:49 +05:00
## Finds the node closest to a point and moves it to a point location
# @param x the X coordinate of a point
# @param y the Y coordinate of a point
# @param z the Z coordinate of a point
# @return the ID of a moved node
# @ingroup l2_modif_throughp
def MeshToPassThroughAPoint(self, x, y, z):
return self.editor.MoveClosestNodeToPoint(x, y, z, -1)
2009-02-17 10:27:49 +05:00
## Replaces two neighbour triangles sharing Node1-Node2 link
# with the triangles built on the same 4 nodes but having other common link.
# @param NodeID1 the ID of the first node
# @param NodeID2 the ID of the second node
# @return false if proper faces were not found
# @ingroup l2_modif_invdiag
def InverseDiag(self, NodeID1, NodeID2):
return self.editor.InverseDiag(NodeID1, NodeID2)
2009-02-17 10:27:49 +05:00
## Replaces two neighbour triangles sharing Node1-Node2 link
# with a quadrangle built on the same 4 nodes.
2009-02-17 10:27:49 +05:00
# @param NodeID1 the ID of the first node
# @param NodeID2 the ID of the second node
# @return false if proper faces were not found
# @ingroup l2_modif_unitetri
def DeleteDiag(self, NodeID1, NodeID2):
return self.editor.DeleteDiag(NodeID1, NodeID2)
2009-02-17 10:27:49 +05:00
## Reorients elements by ids
# @param IDsOfElements if undefined reorients all mesh elements
# @return True if succeed else False
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_changori
def Reorient(self, IDsOfElements=None):
if IDsOfElements == None:
IDsOfElements = self.GetElementsId()
return self.editor.Reorient(IDsOfElements)
2009-02-17 10:27:49 +05:00
## Reorients all elements of the object
# @param theObject mesh, submesh or group
# @return True if succeed else False
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_changori
def ReorientObject(self, theObject):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.ReorientObject(theObject)
2012-08-09 16:03:55 +06:00
## Reorient faces contained in \a the2DObject.
# @param the2DObject is a mesh, sub-mesh, group or list of IDs of 2D elements
# @param theDirection is a desired direction of normal of \a theFace.
# It can be either a GEOM vector or a list of coordinates [x,y,z].
# @param theFaceOrPoint defines a face of \a the2DObject whose normal will be
# compared with theDirection. It can be either ID of face or a point
# by which the face will be found. The point can be given as either
# a GEOM vertex or a list of point coordinates.
# @return number of reoriented faces
# @ingroup l2_modif_changori
def Reorient2D(self, the2DObject, theDirection, theFaceOrPoint ):
# check the2DObject
if isinstance( the2DObject, Mesh ):
the2DObject = the2DObject.GetMesh()
if isinstance( the2DObject, list ):
the2DObject = self.GetIDSource( the2DObject, SMESH.FACE )
# check theDirection
if isinstance( theDirection, geompyDC.GEOM._objref_GEOM_Object):
theDirection = self.smeshpyD.GetDirStruct( theDirection )
if isinstance( theDirection, list ):
theDirection = self.smeshpyD.MakeDirStruct( *theDirection )
# prepare theFace and thePoint
theFace = theFaceOrPoint
thePoint = PointStruct(0,0,0)
if isinstance( theFaceOrPoint, geompyDC.GEOM._objref_GEOM_Object):
thePoint = self.smeshpyD.GetPointStruct( theFaceOrPoint )
theFace = -1
if isinstance( theFaceOrPoint, list ):
thePoint = PointStruct( *theFaceOrPoint )
theFace = -1
if isinstance( theFaceOrPoint, PointStruct ):
thePoint = theFaceOrPoint
theFace = -1
return self.editor.Reorient2D( the2DObject, theDirection, theFace, thePoint )
2009-02-17 10:27:49 +05:00
## Fuses the neighbouring triangles into quadrangles.
# @param IDsOfElements The triangles to be fused,
2012-12-13 17:41:29 +06:00
# @param theCriterion is a numerical functor, in terms of enum SMESH.FunctorType, used to
# choose a neighbour to fuse with.
2009-02-17 10:27:49 +05:00
# @param MaxAngle is the maximum angle between element normals at which the fusion
# is still performed; theMaxAngle is mesured in radians.
2009-02-17 10:27:49 +05:00
# Also it could be a name of variable which defines angle in degrees.
# @return TRUE in case of success, FALSE otherwise.
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_unitetri
def TriToQuad(self, IDsOfElements, theCriterion, MaxAngle):
2012-08-09 16:03:55 +06:00
MaxAngle,Parameters,hasVars = ParseAngles(MaxAngle)
2009-02-17 10:27:49 +05:00
self.mesh.SetParameters(Parameters)
2012-08-09 16:03:55 +06:00
if not IDsOfElements:
IDsOfElements = self.GetElementsId()
2012-12-13 17:41:29 +06:00
Functor = self.smeshpyD.GetFunctor(theCriterion)
2009-02-17 10:27:49 +05:00
return self.editor.TriToQuad(IDsOfElements, Functor, MaxAngle)
2009-02-17 10:27:49 +05:00
## Fuses the neighbouring triangles of the object into quadrangles
# @param theObject is mesh, submesh or group
2012-12-13 17:41:29 +06:00
# @param theCriterion is a numerical functor, in terms of enum SMESH.FunctorType, used to
# choose a neighbour to fuse with.
2009-02-17 10:27:49 +05:00
# @param MaxAngle a max angle between element normals at which the fusion
# is still performed; theMaxAngle is mesured in radians.
# @return TRUE in case of success, FALSE otherwise.
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_unitetri
def TriToQuadObject (self, theObject, theCriterion, MaxAngle):
2012-08-09 16:03:55 +06:00
MaxAngle,Parameters,hasVars = ParseAngles(MaxAngle)
self.mesh.SetParameters(Parameters)
2012-12-13 17:41:29 +06:00
if isinstance( theObject, Mesh ):
theObject = theObject.GetMesh()
2012-12-13 17:41:29 +06:00
Functor = self.smeshpyD.GetFunctor(theCriterion)
return self.editor.TriToQuadObject(theObject, Functor, MaxAngle)
2009-02-17 10:27:49 +05:00
## Splits quadrangles into triangles.
2012-12-13 17:41:29 +06:00
#
# @param IDsOfElements the faces to be splitted.
2012-12-13 17:41:29 +06:00
# @param theCriterion is a numerical functor, in terms of enum SMESH.FunctorType, used to
# choose a diagonal for splitting. If @a theCriterion is None, which is a default
# value, then quadrangles will be split by the smallest diagonal.
# @return TRUE in case of success, FALSE otherwise.
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_cutquadr
2012-12-13 17:41:29 +06:00
def QuadToTri (self, IDsOfElements, theCriterion = None):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
2012-12-13 17:41:29 +06:00
if theCriterion is None:
theCriterion = FT_MaxElementLength2D
Functor = self.smeshpyD.GetFunctor(theCriterion)
return self.editor.QuadToTri(IDsOfElements, Functor)
2009-02-17 10:27:49 +05:00
## Splits quadrangles into triangles.
2012-12-13 17:41:29 +06:00
# @param theObject the object from which the list of elements is taken,
# this is mesh, submesh or group
# @param theCriterion is a numerical functor, in terms of enum SMESH.FunctorType, used to
# choose a diagonal for splitting. If @a theCriterion is None, which is a default
# value, then quadrangles will be split by the smallest diagonal.
# @return TRUE in case of success, FALSE otherwise.
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_cutquadr
2012-12-13 17:41:29 +06:00
def QuadToTriObject (self, theObject, theCriterion = None):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
2012-12-13 17:41:29 +06:00
if theCriterion is None:
theCriterion = FT_MaxElementLength2D
Functor = self.smeshpyD.GetFunctor(theCriterion)
return self.editor.QuadToTriObject(theObject, Functor)
2009-02-17 10:27:49 +05:00
## Splits quadrangles into triangles.
# @param IDsOfElements the faces to be splitted
# @param Diag13 is used to choose a diagonal for splitting.
# @return TRUE in case of success, FALSE otherwise.
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_cutquadr
def SplitQuad (self, IDsOfElements, Diag13):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
return self.editor.SplitQuad(IDsOfElements, Diag13)
2009-02-17 10:27:49 +05:00
## Splits quadrangles into triangles.
2012-12-13 17:41:29 +06:00
# @param theObject the object from which the list of elements is taken,
# this is mesh, submesh or group
2009-02-17 10:27:49 +05:00
# @param Diag13 is used to choose a diagonal for splitting.
# @return TRUE in case of success, FALSE otherwise.
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_cutquadr
def SplitQuadObject (self, theObject, Diag13):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.SplitQuadObject(theObject, Diag13)
2009-02-17 10:27:49 +05:00
## Finds a better splitting of the given quadrangle.
# @param IDOfQuad the ID of the quadrangle to be splitted.
2012-12-13 17:41:29 +06:00
# @param theCriterion is a numerical functor, in terms of enum SMESH.FunctorType, used to
# choose a diagonal for splitting.
# @return 1 if 1-3 diagonal is better, 2 if 2-4
# diagonal is better, 0 if error occurs.
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_cutquadr
def BestSplit (self, IDOfQuad, theCriterion):
return self.editor.BestSplit(IDOfQuad, self.smeshpyD.GetFunctor(theCriterion))
2012-08-09 16:03:55 +06:00
## Splits volumic elements into tetrahedrons
# @param elemIDs either list of elements or mesh or group or submesh
# @param method flags passing splitting method: Hex_5Tet, Hex_6Tet, Hex_24Tet
# Hex_5Tet - split the hexahedron into 5 tetrahedrons, etc
# @ingroup l2_modif_cutquadr
def SplitVolumesIntoTetra(self, elemIDs, method=Hex_5Tet ):
if isinstance( elemIDs, Mesh ):
elemIDs = elemIDs.GetMesh()
if ( isinstance( elemIDs, list )):
elemIDs = self.editor.MakeIDSource(elemIDs, SMESH.VOLUME)
self.editor.SplitVolumesIntoTetra(elemIDs, method)
2009-02-17 10:27:49 +05:00
## Splits quadrangle faces near triangular facets of volumes
#
2009-02-17 10:27:49 +05:00
# @ingroup l1_auxiliary
def SplitQuadsNearTriangularFacets(self):
faces_array = self.GetElementsByType(SMESH.FACE)
for face_id in faces_array:
if self.GetElemNbNodes(face_id) == 4: # quadrangle
quad_nodes = self.mesh.GetElemNodes(face_id)
node1_elems = self.GetNodeInverseElements(quad_nodes[1 -1])
isVolumeFound = False
for node1_elem in node1_elems:
if not isVolumeFound:
if self.GetElementType(node1_elem, True) == SMESH.VOLUME:
nb_nodes = self.GetElemNbNodes(node1_elem)
if 3 < nb_nodes and nb_nodes < 7: # tetra or penta, or prism
volume_elem = node1_elem
volume_nodes = self.mesh.GetElemNodes(volume_elem)
if volume_nodes.count(quad_nodes[2 -1]) > 0: # 1,2
if volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,2,4
isVolumeFound = True
if volume_nodes.count(quad_nodes[3 -1]) == 0: # 1,2,4 & !3
self.SplitQuad([face_id], False) # diagonal 2-4
elif volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,2,3 & !4
isVolumeFound = True
self.SplitQuad([face_id], True) # diagonal 1-3
elif volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,4 & !2
if volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,4,3 & !2
isVolumeFound = True
self.SplitQuad([face_id], True) # diagonal 1-3
2009-02-17 10:27:49 +05:00
## @brief Splits hexahedrons into tetrahedrons.
#
2009-02-17 10:27:49 +05:00
# This operation uses pattern mapping functionality for splitting.
# @param theObject the object from which the list of hexahedrons is taken; this is mesh, submesh or group.
# @param theNode000,theNode001 within the range [0,7]; gives the orientation of the
# pattern relatively each hexahedron: the (0,0,0) key-point of the pattern
# will be mapped into <VAR>theNode000</VAR>-th node of each volume, the (0,0,1)
# key-point will be mapped into <VAR>theNode001</VAR>-th node of each volume.
# The (0,0,0) key-point of the used pattern corresponds to a non-split corner.
# @return TRUE in case of success, FALSE otherwise.
2009-02-17 10:27:49 +05:00
# @ingroup l1_auxiliary
def SplitHexaToTetras (self, theObject, theNode000, theNode001):
# Pattern: 5.---------.6
# /|#* /|
# / | #* / |
# / | # * / |
# / | # /* |
# (0,0,1) 4.---------.7 * |
# |#* |1 | # *|
# | # *.----|---#.2
# | #/ * | /
# | /# * | /
# | / # * | /
# |/ #*|/
# (0,0,0) 0.---------.3
pattern_tetra = "!!! Nb of points: \n 8 \n\
!!! Points: \n\
0 0 0 !- 0 \n\
0 1 0 !- 1 \n\
1 1 0 !- 2 \n\
1 0 0 !- 3 \n\
0 0 1 !- 4 \n\
0 1 1 !- 5 \n\
1 1 1 !- 6 \n\
1 0 1 !- 7 \n\
!!! Indices of points of 6 tetras: \n\
0 3 4 1 \n\
7 4 3 1 \n\
4 7 5 1 \n\
6 2 5 7 \n\
1 5 2 7 \n\
2 3 1 7 \n"
pattern = self.smeshpyD.GetPattern()
isDone = pattern.LoadFromFile(pattern_tetra)
if not isDone:
print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
return isDone
pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
isDone = pattern.MakeMesh(self.mesh, False, False)
if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
# split quafrangle faces near triangular facets of volumes
self.SplitQuadsNearTriangularFacets()
return isDone
## @brief Split hexahedrons into prisms.
#
2009-02-17 10:27:49 +05:00
# Uses the pattern mapping functionality for splitting.
# @param theObject the object (mesh, submesh or group) from where the list of hexahedrons is taken;
# @param theNode000,theNode001 (within the range [0,7]) gives the orientation of the
# pattern relatively each hexahedron: keypoint (0,0,0) of the pattern
# will be mapped into the <VAR>theNode000</VAR>-th node of each volume, keypoint (0,0,1)
# will be mapped into the <VAR>theNode001</VAR>-th node of each volume.
# Edge (0,0,0)-(0,0,1) of used pattern connects two not split corners.
# @return TRUE in case of success, FALSE otherwise.
2009-02-17 10:27:49 +05:00
# @ingroup l1_auxiliary
def SplitHexaToPrisms (self, theObject, theNode000, theNode001):
# Pattern: 5.---------.6
# /|# /|
# / | # / |
# / | # / |
# / | # / |
# (0,0,1) 4.---------.7 |
# | | | |
# | 1.----|----.2
# | / * | /
# | / * | /
# | / * | /
# |/ *|/
# (0,0,0) 0.---------.3
pattern_prism = "!!! Nb of points: \n 8 \n\
!!! Points: \n\
0 0 0 !- 0 \n\
0 1 0 !- 1 \n\
1 1 0 !- 2 \n\
1 0 0 !- 3 \n\
0 0 1 !- 4 \n\
0 1 1 !- 5 \n\
1 1 1 !- 6 \n\
1 0 1 !- 7 \n\
!!! Indices of points of 2 prisms: \n\
0 1 3 4 5 7 \n\
2 3 1 6 7 5 \n"
pattern = self.smeshpyD.GetPattern()
isDone = pattern.LoadFromFile(pattern_prism)
if not isDone:
print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
return isDone
pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
isDone = pattern.MakeMesh(self.mesh, False, False)
if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
2009-02-17 10:27:49 +05:00
# Splits quafrangle faces near triangular facets of volumes
self.SplitQuadsNearTriangularFacets()
return isDone
2009-02-17 10:27:49 +05:00
## Smoothes elements
# @param IDsOfElements the list if ids of elements to smooth
# @param IDsOfFixedNodes the list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
2009-02-17 10:27:49 +05:00
# @param MaxNbOfIterations the maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
# @return TRUE in case of success, FALSE otherwise.
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_smooth
def Smooth(self, IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
2012-08-09 16:03:55 +06:00
MaxNbOfIterations,MaxAspectRatio,Parameters,hasVars = ParseParameters(MaxNbOfIterations,MaxAspectRatio)
2009-02-17 10:27:49 +05:00
self.mesh.SetParameters(Parameters)
return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
2009-02-17 10:27:49 +05:00
## Smoothes elements which belong to the given object
# @param theObject the object to smooth
# @param IDsOfFixedNodes the list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
2009-02-17 10:27:49 +05:00
# @param MaxNbOfIterations the maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
# @return TRUE in case of success, FALSE otherwise.
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_smooth
def SmoothObject(self, theObject, IDsOfFixedNodes,
2009-02-17 10:27:49 +05:00
MaxNbOfIterations, MaxAspectRatio, Method):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.SmoothObject(theObject, IDsOfFixedNodes,
2009-02-17 10:27:49 +05:00
MaxNbOfIterations, MaxAspectRatio, Method)
2009-02-17 10:27:49 +05:00
## Parametrically smoothes the given elements
# @param IDsOfElements the list if ids of elements to smooth
# @param IDsOfFixedNodes the list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
2009-02-17 10:27:49 +05:00
# @param MaxNbOfIterations the maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
# @return TRUE in case of success, FALSE otherwise.
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_smooth
def SmoothParametric(self, IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
2012-08-09 16:03:55 +06:00
MaxNbOfIterations,MaxAspectRatio,Parameters,hasVars = ParseParameters(MaxNbOfIterations,MaxAspectRatio)
2009-02-17 10:27:49 +05:00
self.mesh.SetParameters(Parameters)
return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
2009-02-17 10:27:49 +05:00
## Parametrically smoothes the elements which belong to the given object
# @param theObject the object to smooth
# @param IDsOfFixedNodes the list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
2009-02-17 10:27:49 +05:00
# @param MaxNbOfIterations the maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
2009-02-17 10:27:49 +05:00
# @param Method Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
# @return TRUE in case of success, FALSE otherwise.
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_smooth
def SmoothParametricObject(self, theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
2013-03-06 19:57:01 +06:00
## Converts the mesh to quadratic or bi-quadratic, deletes old elements, replacing
2009-02-17 10:27:49 +05:00
# them with quadratic with the same id.
2012-08-09 16:03:55 +06:00
# @param theForce3d new node creation method:
# 0 - the medium node lies at the geometrical entity from which the mesh element is built
# 1 - the medium node lies at the middle of the line segments connecting start and end node of a mesh element
# @param theSubMesh a group or a sub-mesh to convert; WARNING: in this case the mesh can become not conformal
2013-03-06 19:57:01 +06:00
# @param theToBiQuad If True, converts the mesh to bi-quadratic
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_tofromqu
2013-03-06 19:57:01 +06:00
def ConvertToQuadratic(self, theForce3d, theSubMesh=None, theToBiQuad=False):
if theToBiQuad:
self.editor.ConvertToBiQuadratic(theForce3d,theSubMesh)
2012-08-09 16:03:55 +06:00
else:
2013-03-06 19:57:01 +06:00
if theSubMesh:
self.editor.ConvertToQuadraticObject(theForce3d,theSubMesh)
else:
self.editor.ConvertToQuadratic(theForce3d)
2009-02-17 10:27:49 +05:00
## Converts the mesh from quadratic to ordinary,
# deletes old quadratic elements, \n replacing
# them with ordinary mesh elements with the same id.
2012-08-09 16:03:55 +06:00
# @param theSubMesh a group or a sub-mesh to convert; WARNING: in this case the mesh can become not conformal
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_tofromqu
2012-08-09 16:03:55 +06:00
def ConvertFromQuadratic(self, theSubMesh=None):
if theSubMesh:
self.editor.ConvertFromQuadraticObject(theSubMesh)
else:
return self.editor.ConvertFromQuadratic()
## Creates 2D mesh as skin on boundary faces of a 3D mesh
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
def Make2DMeshFrom3D(self):
return self.editor. Make2DMeshFrom3D()
## Creates missing boundary elements
# @param elements - elements whose boundary is to be checked:
# mesh, group, sub-mesh or list of elements
# if elements is mesh, it must be the mesh whose MakeBoundaryMesh() is called
# @param dimension - defines type of boundary elements to create:
# SMESH.BND_2DFROM3D, SMESH.BND_1DFROM3D, SMESH.BND_1DFROM2D
# SMESH.BND_1DFROM3D creates mesh edges on all borders of free facets of 3D cells
# @param groupName - a name of group to store created boundary elements in,
# "" means not to create the group
# @param meshName - a name of new mesh to store created boundary elements in,
# "" means not to create the new mesh
# @param toCopyElements - if true, the checked elements will be copied into
# the new mesh else only boundary elements will be copied into the new mesh
# @param toCopyExistingBondary - if true, not only new but also pre-existing
# boundary elements will be copied into the new mesh
# @return tuple (mesh, group) where bondary elements were added to
# @ingroup l2_modif_edit
def MakeBoundaryMesh(self, elements, dimension=SMESH.BND_2DFROM3D, groupName="", meshName="",
toCopyElements=False, toCopyExistingBondary=False):
if isinstance( elements, Mesh ):
elements = elements.GetMesh()
if ( isinstance( elements, list )):
elemType = SMESH.ALL
if elements: elemType = self.GetElementType( elements[0], iselem=True)
elements = self.editor.MakeIDSource(elements, elemType)
mesh, group = self.editor.MakeBoundaryMesh(elements,dimension,groupName,meshName,
toCopyElements,toCopyExistingBondary)
if mesh: mesh = self.smeshpyD.Mesh(mesh)
return mesh, group
##
# @brief Creates missing boundary elements around either the whole mesh or
# groups of 2D elements
# @param dimension - defines type of boundary elements to create
# @param groupName - a name of group to store all boundary elements in,
# "" means not to create the group
# @param meshName - a name of a new mesh, which is a copy of the initial
# mesh + created boundary elements; "" means not to create the new mesh
# @param toCopyAll - if true, the whole initial mesh will be copied into
# the new mesh else only boundary elements will be copied into the new mesh
# @param groups - groups of 2D elements to make boundary around
# @retval tuple( long, mesh, groups )
# long - number of added boundary elements
# mesh - the mesh where elements were added to
# group - the group of boundary elements or None
#
def MakeBoundaryElements(self, dimension=SMESH.BND_2DFROM3D, groupName="", meshName="",
toCopyAll=False, groups=[]):
nb, mesh, group = self.editor.MakeBoundaryElements(dimension,groupName,meshName,
toCopyAll,groups)
if mesh: mesh = self.smeshpyD.Mesh(mesh)
return nb, mesh, group
## Renumber mesh nodes
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_renumber
def RenumberNodes(self):
self.editor.RenumberNodes()
## Renumber mesh elements
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_renumber
def RenumberElements(self):
self.editor.RenumberElements()
2009-02-17 10:27:49 +05:00
## Generates new elements by rotation of the elements around the axis
# @param IDsOfElements the list of ids of elements to sweep
# @param Axis the axis of rotation, AxisStruct or line(geom object)
# @param AngleInRadians the angle of Rotation (in radians) or a name of variable which defines angle in degrees
# @param NbOfSteps the number of steps
# @param Tolerance tolerance
2009-02-17 10:27:49 +05:00
# @param MakeGroups forces the generation of new groups from existing ones
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
# of all steps, else - size of each step
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_extrurev
def RotationSweep(self, IDsOfElements, Axis, AngleInRadians, NbOfSteps, Tolerance,
MakeGroups=False, TotalAngle=False):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
2009-02-17 10:27:49 +05:00
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
2012-08-09 16:03:55 +06:00
AngleInRadians,AngleParameters,hasVars = ParseAngles(AngleInRadians)
NbOfSteps,Tolerance,Parameters,hasVars = ParseParameters(NbOfSteps,Tolerance)
Parameters = Axis.parameters + var_separator + AngleParameters + var_separator + Parameters
self.mesh.SetParameters(Parameters)
2009-02-17 10:27:49 +05:00
if TotalAngle and NbOfSteps:
AngleInRadians /= NbOfSteps
if MakeGroups:
2009-02-17 10:27:49 +05:00
return self.editor.RotationSweepMakeGroups(IDsOfElements, Axis,
AngleInRadians, NbOfSteps, Tolerance)
2009-02-17 10:27:49 +05:00
self.editor.RotationSweep(IDsOfElements, Axis, AngleInRadians, NbOfSteps, Tolerance)
return []
2009-02-17 10:27:49 +05:00
## Generates new elements by rotation of the elements of object around the axis
2012-08-09 16:03:55 +06:00
# @param theObject object which elements should be sweeped.
# It can be a mesh, a sub mesh or a group.
2009-02-17 10:27:49 +05:00
# @param Axis the axis of rotation, AxisStruct or line(geom object)
# @param AngleInRadians the angle of Rotation
# @param NbOfSteps number of steps
# @param Tolerance tolerance
2009-02-17 10:27:49 +05:00
# @param MakeGroups forces the generation of new groups from existing ones
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
# of all steps, else - size of each step
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_extrurev
def RotationSweepObject(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
MakeGroups=False, TotalAngle=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
2012-08-09 16:03:55 +06:00
AngleInRadians,AngleParameters,hasVars = ParseAngles(AngleInRadians)
NbOfSteps,Tolerance,Parameters,hasVars = ParseParameters(NbOfSteps,Tolerance)
Parameters = Axis.parameters + var_separator + AngleParameters + var_separator + Parameters
self.mesh.SetParameters(Parameters)
2009-02-17 10:27:49 +05:00
if TotalAngle and NbOfSteps:
AngleInRadians /= NbOfSteps
if MakeGroups:
return self.editor.RotationSweepObjectMakeGroups(theObject, Axis, AngleInRadians,
NbOfSteps, Tolerance)
self.editor.RotationSweepObject(theObject, Axis, AngleInRadians, NbOfSteps, Tolerance)
return []
## Generates new elements by rotation of the elements of object around the axis
2012-08-09 16:03:55 +06:00
# @param theObject object which elements should be sweeped.
# It can be a mesh, a sub mesh or a group.
2009-02-17 10:27:49 +05:00
# @param Axis the axis of rotation, AxisStruct or line(geom object)
# @param AngleInRadians the angle of Rotation
# @param NbOfSteps number of steps
# @param Tolerance tolerance
# @param MakeGroups forces the generation of new groups from existing ones
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
# of all steps, else - size of each step
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_extrurev
def RotationSweepObject1D(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
MakeGroups=False, TotalAngle=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
2012-08-09 16:03:55 +06:00
AngleInRadians,AngleParameters,hasVars = ParseAngles(AngleInRadians)
NbOfSteps,Tolerance,Parameters,hasVars = ParseParameters(NbOfSteps,Tolerance)
Parameters = Axis.parameters + var_separator + AngleParameters + var_separator + Parameters
self.mesh.SetParameters(Parameters)
2009-02-17 10:27:49 +05:00
if TotalAngle and NbOfSteps:
AngleInRadians /= NbOfSteps
if MakeGroups:
return self.editor.RotationSweepObject1DMakeGroups(theObject, Axis, AngleInRadians,
NbOfSteps, Tolerance)
self.editor.RotationSweepObject1D(theObject, Axis, AngleInRadians, NbOfSteps, Tolerance)
return []
## Generates new elements by rotation of the elements of object around the axis
2012-08-09 16:03:55 +06:00
# @param theObject object which elements should be sweeped.
# It can be a mesh, a sub mesh or a group.
2009-02-17 10:27:49 +05:00
# @param Axis the axis of rotation, AxisStruct or line(geom object)
# @param AngleInRadians the angle of Rotation
# @param NbOfSteps number of steps
# @param Tolerance tolerance
# @param MakeGroups forces the generation of new groups from existing ones
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
# of all steps, else - size of each step
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_extrurev
def RotationSweepObject2D(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
MakeGroups=False, TotalAngle=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
2009-02-17 10:27:49 +05:00
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
2012-08-09 16:03:55 +06:00
AngleInRadians,AngleParameters,hasVars = ParseAngles(AngleInRadians)
NbOfSteps,Tolerance,Parameters,hasVars = ParseParameters(NbOfSteps,Tolerance)
Parameters = Axis.parameters + var_separator + AngleParameters + var_separator + Parameters
self.mesh.SetParameters(Parameters)
2009-02-17 10:27:49 +05:00
if TotalAngle and NbOfSteps:
AngleInRadians /= NbOfSteps
if MakeGroups:
2009-02-17 10:27:49 +05:00
return self.editor.RotationSweepObject2DMakeGroups(theObject, Axis, AngleInRadians,
NbOfSteps, Tolerance)
2009-02-17 10:27:49 +05:00
self.editor.RotationSweepObject2D(theObject, Axis, AngleInRadians, NbOfSteps, Tolerance)
return []
2009-02-17 10:27:49 +05:00
## Generates new elements by extrusion of the elements with given ids
# @param IDsOfElements the list of elements ids for extrusion
2013-02-12 20:37:44 +06:00
# @param StepVector vector or DirStruct or 3 vector components, defining
# the direction and value of extrusion for one step (the total extrusion
# length will be NbOfSteps * ||StepVector||)
# @param NbOfSteps the number of steps
2009-02-17 10:27:49 +05:00
# @param MakeGroups forces the generation of new groups from existing ones
2012-08-09 16:03:55 +06:00
# @param IsNodes is True if elements with given ids are nodes
2009-02-17 10:27:49 +05:00
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_extrurev
2012-08-09 16:03:55 +06:00
def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps, MakeGroups=False, IsNodes = False):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
2013-02-12 20:37:44 +06:00
if isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object):
StepVector = self.smeshpyD.GetDirStruct(StepVector)
2013-02-12 20:37:44 +06:00
if isinstance( StepVector, list ):
StepVector = self.smeshpyD.MakeDirStruct(*StepVector)
2012-08-09 16:03:55 +06:00
NbOfSteps,Parameters,hasVars = ParseParameters(NbOfSteps)
Parameters = StepVector.PS.parameters + var_separator + Parameters
2009-02-17 10:27:49 +05:00
self.mesh.SetParameters(Parameters)
if MakeGroups:
2012-08-09 16:03:55 +06:00
if(IsNodes):
return self.editor.ExtrusionSweepMakeGroups0D(IDsOfElements, StepVector, NbOfSteps)
else:
return self.editor.ExtrusionSweepMakeGroups(IDsOfElements, StepVector, NbOfSteps)
if(IsNodes):
self.editor.ExtrusionSweep0D(IDsOfElements, StepVector, NbOfSteps)
else:
self.editor.ExtrusionSweep(IDsOfElements, StepVector, NbOfSteps)
return []
2009-02-17 10:27:49 +05:00
## Generates new elements by extrusion of the elements with given ids
# @param IDsOfElements is ids of elements
2013-02-12 20:37:44 +06:00
# @param StepVector vector or DirStruct or 3 vector components, defining
# the direction and value of extrusion for one step (the total extrusion
# length will be NbOfSteps * ||StepVector||)
# @param NbOfSteps the number of steps
2009-02-17 10:27:49 +05:00
# @param ExtrFlags sets flags for extrusion
# @param SewTolerance uses for comparing locations of nodes if flag
# EXTRUSION_FLAG_SEW is set
2009-02-17 10:27:49 +05:00
# @param MakeGroups forces the generation of new groups from existing ones
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_extrurev
def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps,
ExtrFlags, SewTolerance, MakeGroups=False):
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
StepVector = self.smeshpyD.GetDirStruct(StepVector)
2013-02-12 20:37:44 +06:00
if isinstance( StepVector, list ):
StepVector = self.smeshpyD.MakeDirStruct(*StepVector)
if MakeGroups:
return self.editor.AdvancedExtrusionMakeGroups(IDsOfElements, StepVector, NbOfSteps,
ExtrFlags, SewTolerance)
self.editor.AdvancedExtrusion(IDsOfElements, StepVector, NbOfSteps,
ExtrFlags, SewTolerance)
return []
2009-02-17 10:27:49 +05:00
## Generates new elements by extrusion of the elements which belong to the object
2012-08-09 16:03:55 +06:00
# @param theObject the object which elements should be processed.
# It can be a mesh, a sub mesh or a group.
2013-02-12 20:37:44 +06:00
# @param StepVector vector or DirStruct or 3 vector components, defining
# the direction and value of extrusion for one step (the total extrusion
# length will be NbOfSteps * ||StepVector||)
# @param NbOfSteps the number of steps
2009-02-17 10:27:49 +05:00
# @param MakeGroups forces the generation of new groups from existing ones
2012-08-09 16:03:55 +06:00
# @param IsNodes is True if elements which belong to the object are nodes
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_extrurev
2012-08-09 16:03:55 +06:00
def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps, MakeGroups=False, IsNodes=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
StepVector = self.smeshpyD.GetDirStruct(StepVector)
2013-02-12 20:37:44 +06:00
if isinstance( StepVector, list ):
StepVector = self.smeshpyD.MakeDirStruct(*StepVector)
2012-08-09 16:03:55 +06:00
NbOfSteps,Parameters,hasVars = ParseParameters(NbOfSteps)
Parameters = StepVector.PS.parameters + var_separator + Parameters
2009-02-17 10:27:49 +05:00
self.mesh.SetParameters(Parameters)
if MakeGroups:
2012-08-09 16:03:55 +06:00
if(IsNodes):
return self.editor.ExtrusionSweepObject0DMakeGroups(theObject, StepVector, NbOfSteps)
else:
return self.editor.ExtrusionSweepObjectMakeGroups(theObject, StepVector, NbOfSteps)
if(IsNodes):
self.editor.ExtrusionSweepObject0D(theObject, StepVector, NbOfSteps)
else:
self.editor.ExtrusionSweepObject(theObject, StepVector, NbOfSteps)
return []
2009-02-17 10:27:49 +05:00
## Generates new elements by extrusion of the elements which belong to the object
2012-08-09 16:03:55 +06:00
# @param theObject object which elements should be processed.
# It can be a mesh, a sub mesh or a group.
2013-02-12 20:37:44 +06:00
# @param StepVector vector or DirStruct or 3 vector components, defining
# the direction and value of extrusion for one step (the total extrusion
# length will be NbOfSteps * ||StepVector||)
# @param NbOfSteps the number of steps
# @param MakeGroups to generate new groups from existing ones
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_extrurev
def ExtrusionSweepObject1D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
StepVector = self.smeshpyD.GetDirStruct(StepVector)
2013-02-12 20:37:44 +06:00
if isinstance( StepVector, list ):
StepVector = self.smeshpyD.MakeDirStruct(*StepVector)
2012-08-09 16:03:55 +06:00
NbOfSteps,Parameters,hasVars = ParseParameters(NbOfSteps)
Parameters = StepVector.PS.parameters + var_separator + Parameters
2009-02-17 10:27:49 +05:00
self.mesh.SetParameters(Parameters)
if MakeGroups:
return self.editor.ExtrusionSweepObject1DMakeGroups(theObject, StepVector, NbOfSteps)
self.editor.ExtrusionSweepObject1D(theObject, StepVector, NbOfSteps)
return []
2009-02-17 10:27:49 +05:00
## Generates new elements by extrusion of the elements which belong to the object
2012-08-09 16:03:55 +06:00
# @param theObject object which elements should be processed.
# It can be a mesh, a sub mesh or a group.
2013-02-12 20:37:44 +06:00
# @param StepVector vector or DirStruct or 3 vector components, defining
# the direction and value of extrusion for one step (the total extrusion
# length will be NbOfSteps * ||StepVector||)
# @param NbOfSteps the number of steps
2009-02-17 10:27:49 +05:00
# @param MakeGroups forces the generation of new groups from existing ones
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_extrurev
def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
StepVector = self.smeshpyD.GetDirStruct(StepVector)
2013-02-12 20:37:44 +06:00
if isinstance( StepVector, list ):
StepVector = self.smeshpyD.MakeDirStruct(*StepVector)
2012-08-09 16:03:55 +06:00
NbOfSteps,Parameters,hasVars = ParseParameters(NbOfSteps)
Parameters = StepVector.PS.parameters + var_separator + Parameters
2009-02-17 10:27:49 +05:00
self.mesh.SetParameters(Parameters)
if MakeGroups:
return self.editor.ExtrusionSweepObject2DMakeGroups(theObject, StepVector, NbOfSteps)
self.editor.ExtrusionSweepObject2D(theObject, StepVector, NbOfSteps)
return []
2012-08-09 16:03:55 +06:00
## Generates new elements by extrusion of the given elements
# The path of extrusion must be a meshed edge.
# @param Base mesh or group, or submesh, or list of ids of elements for extrusion
# @param Path - 1D mesh or 1D sub-mesh, along which proceeds the extrusion
# @param NodeStart the start node from Path. Defines the direction of extrusion
# @param HasAngles allows the shape to be rotated around the path
# to get the resulting mesh in a helical fashion
# @param Angles list of angles in radians
# @param LinearVariation forces the computation of rotation angles as linear
# variation of the given Angles along path steps
# @param HasRefPoint allows using the reference point
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
# The User can specify any point as the Reference Point.
# @param MakeGroups forces the generation of new groups from existing ones
# @param ElemType type of elements for extrusion (if param Base is a mesh)
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
# only SMESH::Extrusion_Error otherwise
# @ingroup l2_modif_extrurev
def ExtrusionAlongPathX(self, Base, Path, NodeStart,
HasAngles, Angles, LinearVariation,
HasRefPoint, RefPoint, MakeGroups, ElemType):
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
pass
Angles,AnglesParameters,hasVars = ParseAngles(Angles)
Parameters = AnglesParameters + var_separator + RefPoint.parameters
self.mesh.SetParameters(Parameters)
if (isinstance(Path, Mesh)): Path = Path.GetMesh()
if isinstance(Base, list):
IDsOfElements = []
if Base == []: IDsOfElements = self.GetElementsId()
else: IDsOfElements = Base
return self.editor.ExtrusionAlongPathX(IDsOfElements, Path, NodeStart,
HasAngles, Angles, LinearVariation,
HasRefPoint, RefPoint, MakeGroups, ElemType)
else:
if isinstance(Base, Mesh): Base = Base.GetMesh()
if isinstance(Base, SMESH._objref_SMESH_Mesh) or isinstance(Base, SMESH._objref_SMESH_Group) or isinstance(Base, SMESH._objref_SMESH_subMesh):
return self.editor.ExtrusionAlongPathObjX(Base, Path, NodeStart,
HasAngles, Angles, LinearVariation,
HasRefPoint, RefPoint, MakeGroups, ElemType)
else:
raise RuntimeError, "Invalid Base for ExtrusionAlongPathX"
2009-02-17 10:27:49 +05:00
## Generates new elements by extrusion of the given elements
# The path of extrusion must be a meshed edge.
# @param IDsOfElements ids of elements
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
2009-02-17 10:27:49 +05:00
# @param PathShape shape(edge) defines the sub-mesh for the path
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
# @param HasAngles allows the shape to be rotated around the path
# to get the resulting mesh in a helical fashion
2012-08-09 16:03:55 +06:00
# @param Angles list of angles in radians
2009-02-17 10:27:49 +05:00
# @param HasRefPoint allows using the reference point
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
# The User can specify any point as the Reference Point.
# @param MakeGroups forces the generation of new groups from existing ones
# @param LinearVariation forces the computation of rotation angles as linear
# variation of the given Angles along path steps
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
# only SMESH::Extrusion_Error otherwise
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_extrurev
def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart,
HasAngles, Angles, HasRefPoint, RefPoint,
MakeGroups=False, LinearVariation=False):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
pass
2009-02-17 10:27:49 +05:00
if ( isinstance( PathMesh, Mesh )):
PathMesh = PathMesh.GetMesh()
2012-08-09 16:03:55 +06:00
Angles,AnglesParameters,hasVars = ParseAngles(Angles)
Parameters = AnglesParameters + var_separator + RefPoint.parameters
self.mesh.SetParameters(Parameters)
2009-02-17 10:27:49 +05:00
if HasAngles and Angles and LinearVariation:
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
pass
if MakeGroups:
2009-02-17 10:27:49 +05:00
return self.editor.ExtrusionAlongPathMakeGroups(IDsOfElements, PathMesh,
PathShape, NodeStart, HasAngles,
Angles, HasRefPoint, RefPoint)
2009-02-17 10:27:49 +05:00
return self.editor.ExtrusionAlongPath(IDsOfElements, PathMesh, PathShape,
NodeStart, HasAngles, Angles, HasRefPoint, RefPoint)
2009-02-17 10:27:49 +05:00
## Generates new elements by extrusion of the elements which belong to the object
# The path of extrusion must be a meshed edge.
2012-08-09 16:03:55 +06:00
# @param theObject the object which elements should be processed.
# It can be a mesh, a sub mesh or a group.
2009-02-17 10:27:49 +05:00
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
# @param PathShape shape(edge) defines the sub-mesh for the path
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
# @param HasAngles allows the shape to be rotated around the path
# to get the resulting mesh in a helical fashion
# @param Angles list of angles
2009-02-17 10:27:49 +05:00
# @param HasRefPoint allows using the reference point
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
# The User can specify any point as the Reference Point.
# @param MakeGroups forces the generation of new groups from existing ones
# @param LinearVariation forces the computation of rotation angles as linear
# variation of the given Angles along path steps
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
# only SMESH::Extrusion_Error otherwise
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_extrurev
def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart,
HasAngles, Angles, HasRefPoint, RefPoint,
MakeGroups=False, LinearVariation=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
2009-02-17 10:27:49 +05:00
if ( isinstance( PathMesh, Mesh )):
PathMesh = PathMesh.GetMesh()
2012-08-09 16:03:55 +06:00
Angles,AnglesParameters,hasVars = ParseAngles(Angles)
Parameters = AnglesParameters + var_separator + RefPoint.parameters
self.mesh.SetParameters(Parameters)
2009-02-17 10:27:49 +05:00
if HasAngles and Angles and LinearVariation:
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
pass
if MakeGroups:
2009-02-17 10:27:49 +05:00
return self.editor.ExtrusionAlongPathObjectMakeGroups(theObject, PathMesh,
PathShape, NodeStart, HasAngles,
Angles, HasRefPoint, RefPoint)
2009-02-17 10:27:49 +05:00
return self.editor.ExtrusionAlongPathObject(theObject, PathMesh, PathShape,
NodeStart, HasAngles, Angles, HasRefPoint,
RefPoint)
2009-02-17 10:27:49 +05:00
## Generates new elements by extrusion of the elements which belong to the object
# The path of extrusion must be a meshed edge.
2012-08-09 16:03:55 +06:00
# @param theObject the object which elements should be processed.
# It can be a mesh, a sub mesh or a group.
2009-02-17 10:27:49 +05:00
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
# @param PathShape shape(edge) defines the sub-mesh for the path
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
# @param HasAngles allows the shape to be rotated around the path
# to get the resulting mesh in a helical fashion
# @param Angles list of angles
# @param HasRefPoint allows using the reference point
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
# The User can specify any point as the Reference Point.
# @param MakeGroups forces the generation of new groups from existing ones
# @param LinearVariation forces the computation of rotation angles as linear
# variation of the given Angles along path steps
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
# only SMESH::Extrusion_Error otherwise
# @ingroup l2_modif_extrurev
def ExtrusionAlongPathObject1D(self, theObject, PathMesh, PathShape, NodeStart,
HasAngles, Angles, HasRefPoint, RefPoint,
MakeGroups=False, LinearVariation=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
if ( isinstance( PathMesh, Mesh )):
PathMesh = PathMesh.GetMesh()
2012-08-09 16:03:55 +06:00
Angles,AnglesParameters,hasVars = ParseAngles(Angles)
Parameters = AnglesParameters + var_separator + RefPoint.parameters
self.mesh.SetParameters(Parameters)
2009-02-17 10:27:49 +05:00
if HasAngles and Angles and LinearVariation:
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
pass
if MakeGroups:
return self.editor.ExtrusionAlongPathObject1DMakeGroups(theObject, PathMesh,
PathShape, NodeStart, HasAngles,
Angles, HasRefPoint, RefPoint)
return self.editor.ExtrusionAlongPathObject1D(theObject, PathMesh, PathShape,
NodeStart, HasAngles, Angles, HasRefPoint,
RefPoint)
## Generates new elements by extrusion of the elements which belong to the object
# The path of extrusion must be a meshed edge.
2012-08-09 16:03:55 +06:00
# @param theObject the object which elements should be processed.
# It can be a mesh, a sub mesh or a group.
2009-02-17 10:27:49 +05:00
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
# @param PathShape shape(edge) defines the sub-mesh for the path
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
# @param HasAngles allows the shape to be rotated around the path
# to get the resulting mesh in a helical fashion
# @param Angles list of angles
# @param HasRefPoint allows using the reference point
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
# The User can specify any point as the Reference Point.
# @param MakeGroups forces the generation of new groups from existing ones
# @param LinearVariation forces the computation of rotation angles as linear
# variation of the given Angles along path steps
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
# only SMESH::Extrusion_Error otherwise
# @ingroup l2_modif_extrurev
def ExtrusionAlongPathObject2D(self, theObject, PathMesh, PathShape, NodeStart,
HasAngles, Angles, HasRefPoint, RefPoint,
MakeGroups=False, LinearVariation=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
if ( isinstance( PathMesh, Mesh )):
PathMesh = PathMesh.GetMesh()
2012-08-09 16:03:55 +06:00
Angles,AnglesParameters,hasVars = ParseAngles(Angles)
Parameters = AnglesParameters + var_separator + RefPoint.parameters
self.mesh.SetParameters(Parameters)
2009-02-17 10:27:49 +05:00
if HasAngles and Angles and LinearVariation:
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
pass
if MakeGroups:
return self.editor.ExtrusionAlongPathObject2DMakeGroups(theObject, PathMesh,
PathShape, NodeStart, HasAngles,
Angles, HasRefPoint, RefPoint)
return self.editor.ExtrusionAlongPathObject2D(theObject, PathMesh, PathShape,
NodeStart, HasAngles, Angles, HasRefPoint,
RefPoint)
## Creates a symmetrical copy of mesh elements
# @param IDsOfElements list of elements ids
# @param Mirror is AxisStruct or geom object(point, line, plane)
# @param theMirrorType is POINT, AXIS or PLANE
2009-02-17 10:27:49 +05:00
# If the Mirror is a geom object this parameter is unnecessary
# @param Copy allows to copy element (Copy is 1) or to replace with its mirroring (Copy is 0)
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_trsf
def Mirror(self, IDsOfElements, Mirror, theMirrorType, Copy=0, MakeGroups=False):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
2012-08-09 16:03:55 +06:00
self.mesh.SetParameters(Mirror.parameters)
if Copy and MakeGroups:
return self.editor.MirrorMakeGroups(IDsOfElements, Mirror, theMirrorType)
self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy)
return []
2009-02-17 10:27:49 +05:00
## Creates a new mesh by a symmetrical copy of mesh elements
# @param IDsOfElements the list of elements ids
# @param Mirror is AxisStruct or geom object (point, line, plane)
# @param theMirrorType is POINT, AXIS or PLANE
2009-02-17 10:27:49 +05:00
# If the Mirror is a geom object this parameter is unnecessary
# @param MakeGroups to generate new groups from existing ones
2009-02-17 10:27:49 +05:00
# @param NewMeshName a name of the new mesh to create
# @return instance of Mesh class
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_trsf
def MirrorMakeMesh(self, IDsOfElements, Mirror, theMirrorType, MakeGroups=0, NewMeshName=""):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
2012-08-09 16:03:55 +06:00
self.mesh.SetParameters(Mirror.parameters)
mesh = self.editor.MirrorMakeMesh(IDsOfElements, Mirror, theMirrorType,
MakeGroups, NewMeshName)
return Mesh(self.smeshpyD,self.geompyD,mesh)
2009-02-17 10:27:49 +05:00
## Creates a symmetrical copy of the object
# @param theObject mesh, submesh or group
2009-02-17 10:27:49 +05:00
# @param Mirror AxisStruct or geom object (point, line, plane)
# @param theMirrorType is POINT, AXIS or PLANE
2009-02-17 10:27:49 +05:00
# If the Mirror is a geom object this parameter is unnecessary
# @param Copy allows copying the element (Copy is 1) or replacing it with its mirror (Copy is 0)
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_trsf
def MirrorObject (self, theObject, Mirror, theMirrorType, Copy=0, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
2012-08-09 16:03:55 +06:00
self.mesh.SetParameters(Mirror.parameters)
if Copy and MakeGroups:
return self.editor.MirrorObjectMakeGroups(theObject, Mirror, theMirrorType)
self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy)
return []
2009-02-17 10:27:49 +05:00
## Creates a new mesh by a symmetrical copy of the object
# @param theObject mesh, submesh or group
2009-02-17 10:27:49 +05:00
# @param Mirror AxisStruct or geom object (point, line, plane)
# @param theMirrorType POINT, AXIS or PLANE
# If the Mirror is a geom object this parameter is unnecessary
# @param MakeGroups forces the generation of new groups from existing ones
# @param NewMeshName the name of the new mesh to create
# @return instance of Mesh class
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_trsf
def MirrorObjectMakeMesh (self, theObject, Mirror, theMirrorType,MakeGroups=0, NewMeshName=""):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if (isinstance(Mirror, geompyDC.GEOM._objref_GEOM_Object)):
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
2012-08-09 16:03:55 +06:00
self.mesh.SetParameters(Mirror.parameters)
mesh = self.editor.MirrorObjectMakeMesh(theObject, Mirror, theMirrorType,
MakeGroups, NewMeshName)
return Mesh( self.smeshpyD,self.geompyD,mesh )
## Translates the elements
# @param IDsOfElements list of elements ids
2013-03-15 20:59:29 +06:00
# @param Vector the direction of translation (DirStruct or vector or 3 vector components)
2009-02-17 10:27:49 +05:00
# @param Copy allows copying the translated elements
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_trsf
def Translate(self, IDsOfElements, Vector, Copy, MakeGroups=False):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
Vector = self.smeshpyD.GetDirStruct(Vector)
2013-03-15 20:59:29 +06:00
if isinstance( Vector, list ):
Vector = self.smeshpyD.MakeDirStruct(*Vector)
2012-08-09 16:03:55 +06:00
self.mesh.SetParameters(Vector.PS.parameters)
if Copy and MakeGroups:
return self.editor.TranslateMakeGroups(IDsOfElements, Vector)
self.editor.Translate(IDsOfElements, Vector, Copy)
return []
2009-02-17 10:27:49 +05:00
## Creates a new mesh of translated elements
# @param IDsOfElements list of elements ids
2013-03-15 20:59:29 +06:00
# @param Vector the direction of translation (DirStruct or vector or 3 vector components)
2009-02-17 10:27:49 +05:00
# @param MakeGroups forces the generation of new groups from existing ones
# @param NewMeshName the name of the newly created mesh
# @return instance of Mesh class
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_trsf
def TranslateMakeMesh(self, IDsOfElements, Vector, MakeGroups=False, NewMeshName=""):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
Vector = self.smeshpyD.GetDirStruct(Vector)
2013-03-15 20:59:29 +06:00
if isinstance( Vector, list ):
Vector = self.smeshpyD.MakeDirStruct(*Vector)
2012-08-09 16:03:55 +06:00
self.mesh.SetParameters(Vector.PS.parameters)
mesh = self.editor.TranslateMakeMesh(IDsOfElements, Vector, MakeGroups, NewMeshName)
return Mesh ( self.smeshpyD, self.geompyD, mesh )
## Translates the object
2009-02-17 10:27:49 +05:00
# @param theObject the object to translate (mesh, submesh, or group)
2013-03-15 20:59:29 +06:00
# @param Vector direction of translation (DirStruct or geom vector or 3 vector components)
2009-02-17 10:27:49 +05:00
# @param Copy allows copying the translated elements
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_trsf
def TranslateObject(self, theObject, Vector, Copy, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
Vector = self.smeshpyD.GetDirStruct(Vector)
2013-03-15 20:59:29 +06:00
if isinstance( Vector, list ):
Vector = self.smeshpyD.MakeDirStruct(*Vector)
2012-08-09 16:03:55 +06:00
self.mesh.SetParameters(Vector.PS.parameters)
if Copy and MakeGroups:
return self.editor.TranslateObjectMakeGroups(theObject, Vector)
self.editor.TranslateObject(theObject, Vector, Copy)
return []
2009-02-17 10:27:49 +05:00
## Creates a new mesh from the translated object
# @param theObject the object to translate (mesh, submesh, or group)
2013-03-15 20:59:29 +06:00
# @param Vector the direction of translation (DirStruct or geom vector or 3 vector components)
2009-02-17 10:27:49 +05:00
# @param MakeGroups forces the generation of new groups from existing ones
# @param NewMeshName the name of the newly created mesh
# @return instance of Mesh class
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_trsf
def TranslateObjectMakeMesh(self, theObject, Vector, MakeGroups=False, NewMeshName=""):
2013-03-15 20:59:29 +06:00
if isinstance( theObject, Mesh ):
theObject = theObject.GetMesh()
2013-03-15 20:59:29 +06:00
if isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object ):
Vector = self.smeshpyD.GetDirStruct(Vector)
2013-03-15 20:59:29 +06:00
if isinstance( Vector, list ):
Vector = self.smeshpyD.MakeDirStruct(*Vector)
2012-08-09 16:03:55 +06:00
self.mesh.SetParameters(Vector.PS.parameters)
mesh = self.editor.TranslateObjectMakeMesh(theObject, Vector, MakeGroups, NewMeshName)
return Mesh( self.smeshpyD, self.geompyD, mesh )
2012-08-09 16:03:55 +06:00
## Scales the object
# @param theObject - the object to translate (mesh, submesh, or group)
# @param thePoint - base point for scale
# @param theScaleFact - list of 1-3 scale factors for axises
# @param Copy - allows copying the translated elements
# @param MakeGroups - forces the generation of new groups from existing
# ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True,
# empty list otherwise
def Scale(self, theObject, thePoint, theScaleFact, Copy, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( theObject, list )):
theObject = self.GetIDSource(theObject, SMESH.ALL)
2012-12-13 17:41:29 +06:00
if ( isinstance( theScaleFact, float )):
theScaleFact = [theScaleFact]
if ( isinstance( theScaleFact, int )):
theScaleFact = [ float(theScaleFact)]
2012-08-09 16:03:55 +06:00
self.mesh.SetParameters(thePoint.parameters)
if Copy and MakeGroups:
return self.editor.ScaleMakeGroups(theObject, thePoint, theScaleFact)
self.editor.Scale(theObject, thePoint, theScaleFact, Copy)
return []
## Creates a new mesh from the translated object
# @param theObject - the object to translate (mesh, submesh, or group)
# @param thePoint - base point for scale
# @param theScaleFact - list of 1-3 scale factors for axises
# @param MakeGroups - forces the generation of new groups from existing ones
# @param NewMeshName - the name of the newly created mesh
# @return instance of Mesh class
def ScaleMakeMesh(self, theObject, thePoint, theScaleFact, MakeGroups=False, NewMeshName=""):
if (isinstance(theObject, Mesh)):
theObject = theObject.GetMesh()
if ( isinstance( theObject, list )):
theObject = self.GetIDSource(theObject,SMESH.ALL)
2012-12-13 17:41:29 +06:00
if ( isinstance( theScaleFact, float )):
theScaleFact = [theScaleFact]
if ( isinstance( theScaleFact, int )):
theScaleFact = [ float(theScaleFact)]
2012-08-09 16:03:55 +06:00
self.mesh.SetParameters(thePoint.parameters)
mesh = self.editor.ScaleMakeMesh(theObject, thePoint, theScaleFact,
MakeGroups, NewMeshName)
return Mesh( self.smeshpyD, self.geompyD, mesh )
## Rotates the elements
# @param IDsOfElements list of elements ids
2009-02-17 10:27:49 +05:00
# @param Axis the axis of rotation (AxisStruct or geom line)
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
# @param Copy allows copying the rotated elements
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_trsf
def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy, MakeGroups=False):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
2012-08-09 16:03:55 +06:00
AngleInRadians,Parameters,hasVars = ParseAngles(AngleInRadians)
Parameters = Axis.parameters + var_separator + Parameters
2009-02-17 10:27:49 +05:00
self.mesh.SetParameters(Parameters)
if Copy and MakeGroups:
return self.editor.RotateMakeGroups(IDsOfElements, Axis, AngleInRadians)
self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy)
return []
2009-02-17 10:27:49 +05:00
## Creates a new mesh of rotated elements
# @param IDsOfElements list of element ids
2009-02-17 10:27:49 +05:00
# @param Axis the axis of rotation (AxisStruct or geom line)
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
# @param MakeGroups forces the generation of new groups from existing ones
# @param NewMeshName the name of the newly created mesh
# @return instance of Mesh class
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_trsf
def RotateMakeMesh (self, IDsOfElements, Axis, AngleInRadians, MakeGroups=0, NewMeshName=""):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
2012-08-09 16:03:55 +06:00
AngleInRadians,Parameters,hasVars = ParseAngles(AngleInRadians)
Parameters = Axis.parameters + var_separator + Parameters
self.mesh.SetParameters(Parameters)
mesh = self.editor.RotateMakeMesh(IDsOfElements, Axis, AngleInRadians,
MakeGroups, NewMeshName)
return Mesh( self.smeshpyD, self.geompyD, mesh )
## Rotates the object
2009-02-17 10:27:49 +05:00
# @param theObject the object to rotate( mesh, submesh, or group)
# @param Axis the axis of rotation (AxisStruct or geom line)
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
# @param Copy allows copying the rotated elements
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_trsf
def RotateObject (self, theObject, Axis, AngleInRadians, Copy, MakeGroups=False):
if (isinstance(theObject, Mesh)):
theObject = theObject.GetMesh()
if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
2012-08-09 16:03:55 +06:00
AngleInRadians,Parameters,hasVars = ParseAngles(AngleInRadians)
Parameters = Axis.parameters + ":" + Parameters
2009-02-17 10:27:49 +05:00
self.mesh.SetParameters(Parameters)
if Copy and MakeGroups:
return self.editor.RotateObjectMakeGroups(theObject, Axis, AngleInRadians)
self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy)
return []
2009-02-17 10:27:49 +05:00
## Creates a new mesh from the rotated object
# @param theObject the object to rotate (mesh, submesh, or group)
# @param Axis the axis of rotation (AxisStruct or geom line)
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
# @param MakeGroups forces the generation of new groups from existing ones
# @param NewMeshName the name of the newly created mesh
# @return instance of Mesh class
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_trsf
def RotateObjectMakeMesh(self, theObject, Axis, AngleInRadians, MakeGroups=0,NewMeshName=""):
if (isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
2012-08-09 16:03:55 +06:00
AngleInRadians,Parameters,hasVars = ParseAngles(AngleInRadians)
Parameters = Axis.parameters + ":" + Parameters
mesh = self.editor.RotateObjectMakeMesh(theObject, Axis, AngleInRadians,
MakeGroups, NewMeshName)
2012-08-09 16:03:55 +06:00
self.mesh.SetParameters(Parameters)
return Mesh( self.smeshpyD, self.geompyD, mesh )
2009-02-17 10:27:49 +05:00
## Finds groups of ajacent nodes within Tolerance.
# @param Tolerance the value of tolerance
# @return the list of groups of nodes
# @ingroup l2_modif_trsf
def FindCoincidentNodes (self, Tolerance):
return self.editor.FindCoincidentNodes(Tolerance)
2009-02-17 10:27:49 +05:00
## Finds groups of ajacent nodes within Tolerance.
# @param Tolerance the value of tolerance
# @param SubMeshOrGroup SubMesh or Group
2012-08-09 16:03:55 +06:00
# @param exceptNodes list of either SubMeshes, Groups or node IDs to exclude from search
2009-02-17 10:27:49 +05:00
# @return the list of groups of nodes
# @ingroup l2_modif_trsf
2012-08-09 16:03:55 +06:00
def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance, exceptNodes=[]):
if (isinstance( SubMeshOrGroup, Mesh )):
SubMeshOrGroup = SubMeshOrGroup.GetMesh()
if not isinstance( exceptNodes, list):
exceptNodes = [ exceptNodes ]
if exceptNodes and isinstance( exceptNodes[0], int):
exceptNodes = [ self.GetIDSource( exceptNodes, SMESH.NODE)]
return self.editor.FindCoincidentNodesOnPartBut(SubMeshOrGroup, Tolerance,exceptNodes)
2009-02-17 10:27:49 +05:00
## Merges nodes
# @param GroupsOfNodes the list of groups of nodes
# @ingroup l2_modif_trsf
def MergeNodes (self, GroupsOfNodes):
self.editor.MergeNodes(GroupsOfNodes)
2009-02-17 10:27:49 +05:00
## Finds the elements built on the same nodes.
# @param MeshOrSubMeshOrGroup Mesh or SubMesh, or Group of elements for searching
# @return a list of groups of equal elements
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_trsf
def FindEqualElements (self, MeshOrSubMeshOrGroup):
2012-08-09 16:03:55 +06:00
if ( isinstance( MeshOrSubMeshOrGroup, Mesh )):
MeshOrSubMeshOrGroup = MeshOrSubMeshOrGroup.GetMesh()
return self.editor.FindEqualElements(MeshOrSubMeshOrGroup)
2009-02-17 10:27:49 +05:00
## Merges elements in each given group.
# @param GroupsOfElementsID groups of elements for merging
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_trsf
def MergeElements(self, GroupsOfElementsID):
self.editor.MergeElements(GroupsOfElementsID)
2009-02-17 10:27:49 +05:00
## Leaves one element and removes all other elements built on the same nodes.
# @ingroup l2_modif_trsf
def MergeEqualElements(self):
self.editor.MergeEqualElements()
2009-02-17 10:27:49 +05:00
## Sews free borders
# @return SMESH::Sew_Error
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_trsf
def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2, LastNodeID2,
CreatePolygons, CreatePolyedrs):
return self.editor.SewFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2, LastNodeID2,
CreatePolygons, CreatePolyedrs)
2009-02-17 10:27:49 +05:00
## Sews conform free borders
# @return SMESH::Sew_Error
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_trsf
def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2):
return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2)
2009-02-17 10:27:49 +05:00
## Sews border to side
# @return SMESH::Sew_Error
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_trsf
def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs):
return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs)
2009-02-17 10:27:49 +05:00
## Sews two sides of a mesh. The nodes belonging to Side1 are
# merged with the nodes of elements of Side2.
# The number of elements in theSide1 and in theSide2 must be
# equal and they should have similar nodal connectivity.
# The nodes to merge should belong to side borders and
# the first node should be linked to the second.
# @return SMESH::Sew_Error
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_trsf
def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements,
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge):
return self.editor.SewSideElements(IDsOfSide1Elements, IDsOfSide2Elements,
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge)
2009-02-17 10:27:49 +05:00
## Sets new nodes for the given element.
# @param ide the element id
# @param newIDs nodes ids
2009-02-17 10:27:49 +05:00
# @return If the number of nodes does not correspond to the type of element - returns false
# @ingroup l2_modif_edit
def ChangeElemNodes(self, ide, newIDs):
return self.editor.ChangeElemNodes(ide, newIDs)
2009-02-17 10:27:49 +05:00
## If during the last operation of MeshEditor some nodes were
# created, this method returns the list of their IDs, \n
# if new nodes were not created - returns empty list
# @return the list of integer values (can be empty)
# @ingroup l1_auxiliary
def GetLastCreatedNodes(self):
return self.editor.GetLastCreatedNodes()
2009-02-17 10:27:49 +05:00
## If during the last operation of MeshEditor some elements were
# created this method returns the list of their IDs, \n
# if new elements were not created - returns empty list
# @return the list of integer values (can be empty)
# @ingroup l1_auxiliary
def GetLastCreatedElems(self):
return self.editor.GetLastCreatedElems()
2012-08-09 16:03:55 +06:00
## Creates a hole in a mesh by doubling the nodes of some particular elements
2009-02-17 10:27:49 +05:00
# @param theNodes identifiers of nodes to be doubled
2012-08-09 16:03:55 +06:00
# @param theModifiedElems identifiers of elements to be updated by the new (doubled)
# nodes. If list of element identifiers is empty then nodes are doubled but
2009-02-17 10:27:49 +05:00
# they not assigned to elements
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
def DoubleNodes(self, theNodes, theModifiedElems):
return self.editor.DoubleNodes(theNodes, theModifiedElems)
2012-08-09 16:03:55 +06:00
2009-02-17 10:27:49 +05:00
## Creates a hole in a mesh by doubling the nodes of some particular elements
# This method provided for convenience works as DoubleNodes() described above.
2012-08-09 16:03:55 +06:00
# @param theNodeId identifiers of node to be doubled
2009-02-17 10:27:49 +05:00
# @param theModifiedElems identifiers of elements to be updated
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
def DoubleNode(self, theNodeId, theModifiedElems):
return self.editor.DoubleNode(theNodeId, theModifiedElems)
2012-08-09 16:03:55 +06:00
2009-02-17 10:27:49 +05:00
## Creates a hole in a mesh by doubling the nodes of some particular elements
# This method provided for convenience works as DoubleNodes() described above.
# @param theNodes group of nodes to be doubled
# @param theModifiedElems group of elements to be updated.
2012-08-09 16:03:55 +06:00
# @param theMakeGroup forces the generation of a group containing new nodes.
# @return TRUE or a created group if operation has been completed successfully,
# FALSE or None otherwise
2009-02-17 10:27:49 +05:00
# @ingroup l2_modif_edit
2012-08-09 16:03:55 +06:00
def DoubleNodeGroup(self, theNodes, theModifiedElems, theMakeGroup=False):
if theMakeGroup:
return self.editor.DoubleNodeGroupNew(theNodes, theModifiedElems)
2009-02-17 10:27:49 +05:00
return self.editor.DoubleNodeGroup(theNodes, theModifiedElems)
2012-08-09 16:03:55 +06:00
2009-02-17 10:27:49 +05:00
## Creates a hole in a mesh by doubling the nodes of some particular elements
# This method provided for convenience works as DoubleNodes() described above.
# @param theNodes list of groups of nodes to be doubled
# @param theModifiedElems list of groups of elements to be updated.
2012-08-09 16:03:55 +06:00
# @param theMakeGroup forces the generation of a group containing new nodes.
2009-02-17 10:27:49 +05:00
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
2012-08-09 16:03:55 +06:00
def DoubleNodeGroups(self, theNodes, theModifiedElems, theMakeGroup=False):
if theMakeGroup:
return self.editor.DoubleNodeGroupsNew(theNodes, theModifiedElems)
2009-02-17 10:27:49 +05:00
return self.editor.DoubleNodeGroups(theNodes, theModifiedElems)
2012-08-09 16:03:55 +06:00
## Creates a hole in a mesh by doubling the nodes of some particular elements
# @param theElems - the list of elements (edges or faces) to be replicated
# The nodes for duplication could be found from these elements
# @param theNodesNot - list of nodes to NOT replicate
# @param theAffectedElems - the list of elements (cells and edges) to which the
# replicated nodes should be associated to.
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
def DoubleNodeElem(self, theElems, theNodesNot, theAffectedElems):
return self.editor.DoubleNodeElem(theElems, theNodesNot, theAffectedElems)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# @param theElems - the list of elements (edges or faces) to be replicated
# The nodes for duplication could be found from these elements
# @param theNodesNot - list of nodes to NOT replicate
# @param theShape - shape to detect affected elements (element which geometric center
# located on or inside shape).
# The replicated nodes should be associated to affected elements.
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
def DoubleNodeElemInRegion(self, theElems, theNodesNot, theShape):
return self.editor.DoubleNodeElemInRegion(theElems, theNodesNot, theShape)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# This method provided for convenience works as DoubleNodes() described above.
# @param theElems - group of of elements (edges or faces) to be replicated
# @param theNodesNot - group of nodes not to replicated
# @param theAffectedElems - group of elements to which the replicated nodes
# should be associated to.
# @param theMakeGroup forces the generation of a group containing new elements.
# @param theMakeNodeGroup forces the generation of a group containing new nodes.
# @return TRUE or created groups (one or two) if operation has been completed successfully,
# FALSE or None otherwise
# @ingroup l2_modif_edit
def DoubleNodeElemGroup(self, theElems, theNodesNot, theAffectedElems,
theMakeGroup=False, theMakeNodeGroup=False):
if theMakeGroup or theMakeNodeGroup:
twoGroups = self.editor.DoubleNodeElemGroup2New(theElems, theNodesNot,
theAffectedElems,
theMakeGroup, theMakeNodeGroup)
if theMakeGroup and theMakeNodeGroup:
return twoGroups
else:
return twoGroups[ int(theMakeNodeGroup) ]
return self.editor.DoubleNodeElemGroup(theElems, theNodesNot, theAffectedElems)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# This method provided for convenience works as DoubleNodes() described above.
# @param theElems - group of of elements (edges or faces) to be replicated
# @param theNodesNot - group of nodes not to replicated
# @param theShape - shape to detect affected elements (element which geometric center
# located on or inside shape).
# The replicated nodes should be associated to affected elements.
# @ingroup l2_modif_edit
def DoubleNodeElemGroupInRegion(self, theElems, theNodesNot, theShape):
return self.editor.DoubleNodeElemGroupInRegion(theElems, theNodesNot, theShape)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# This method provided for convenience works as DoubleNodes() described above.
# @param theElems - list of groups of elements (edges or faces) to be replicated
# @param theNodesNot - list of groups of nodes not to replicated
# @param theAffectedElems - group of elements to which the replicated nodes
# should be associated to.
# @param theMakeGroup forces the generation of a group containing new elements.
# @param theMakeNodeGroup forces the generation of a group containing new nodes.
# @return TRUE or created groups (one or two) if operation has been completed successfully,
# FALSE or None otherwise
# @ingroup l2_modif_edit
def DoubleNodeElemGroups(self, theElems, theNodesNot, theAffectedElems,
theMakeGroup=False, theMakeNodeGroup=False):
if theMakeGroup or theMakeNodeGroup:
twoGroups = self.editor.DoubleNodeElemGroups2New(theElems, theNodesNot,
theAffectedElems,
theMakeGroup, theMakeNodeGroup)
if theMakeGroup and theMakeNodeGroup:
return twoGroups
else:
return twoGroups[ int(theMakeNodeGroup) ]
return self.editor.DoubleNodeElemGroups(theElems, theNodesNot, theAffectedElems)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# This method provided for convenience works as DoubleNodes() described above.
# @param theElems - list of groups of elements (edges or faces) to be replicated
# @param theNodesNot - list of groups of nodes not to replicated
# @param theShape - shape to detect affected elements (element which geometric center
# located on or inside shape).
# The replicated nodes should be associated to affected elements.
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
def DoubleNodeElemGroupsInRegion(self, theElems, theNodesNot, theShape):
return self.editor.DoubleNodeElemGroupsInRegion(theElems, theNodesNot, theShape)
2012-10-08 17:56:59 +06:00
## Identify the elements that will be affected by node duplication (actual duplication is not performed.
# This method is the first step of DoubleNodeElemGroupsInRegion.
# @param theElems - list of groups of elements (edges or faces) to be replicated
# @param theNodesNot - list of groups of nodes not to replicated
# @param theShape - shape to detect affected elements (element which geometric center
# located on or inside shape).
# The replicated nodes should be associated to affected elements.
# @return groups of affected elements
# @ingroup l2_modif_edit
def AffectedElemGroupsInRegion(self, theElems, theNodesNot, theShape):
return self.editor.AffectedElemGroupsInRegion(theElems, theNodesNot, theShape)
2012-08-09 16:03:55 +06:00
## Double nodes on shared faces between groups of volumes and create flat elements on demand.
# The list of groups must describe a partition of the mesh volumes.
# The nodes of the internal faces at the boundaries of the groups are doubled.
# In option, the internal faces are replaced by flat elements.
# Triangles are transformed in prisms, and quadrangles in hexahedrons.
# @param theDomains - list of groups of volumes
# @param createJointElems - if TRUE, create the elements
# @return TRUE if operation has been completed successfully, FALSE otherwise
def DoubleNodesOnGroupBoundaries(self, theDomains, createJointElems ):
return self.editor.DoubleNodesOnGroupBoundaries( theDomains, createJointElems )
## Double nodes on some external faces and create flat elements.
# Flat elements are mainly used by some types of mechanic calculations.
#
# Each group of the list must be constituted of faces.
# Triangles are transformed in prisms, and quadrangles in hexahedrons.
# @param theGroupsOfFaces - list of groups of faces
# @return TRUE if operation has been completed successfully, FALSE otherwise
def CreateFlatElementsOnFacesGroups(self, theGroupsOfFaces ):
return self.editor.CreateFlatElementsOnFacesGroups( theGroupsOfFaces )
2012-10-08 17:56:59 +06:00
## identify all the elements around a geom shape, get the faces delimiting the hole
#
def CreateHoleSkin(self, radius, theShape, groupName, theNodesCoords):
return self.editor.CreateHoleSkin( radius, theShape, groupName, theNodesCoords )
2012-08-09 16:03:55 +06:00
2012-12-13 17:41:29 +06:00
def _getFunctor(self, funcType ):
fn = self.functors[ funcType._v ]
if not fn:
fn = self.smeshpyD.GetFunctor(funcType)
fn.SetMesh(self.mesh)
self.functors[ funcType._v ] = fn
return fn
2012-08-09 16:03:55 +06:00
def _valueFromFunctor(self, funcType, elemId):
2012-12-13 17:41:29 +06:00
fn = self._getFunctor( funcType )
2012-08-09 16:03:55 +06:00
if fn.GetElementType() == self.GetElementType(elemId, True):
val = fn.GetValue(elemId)
else:
val = 0
return val
## Get length of 1D element.
# @param elemId mesh element ID
# @return element's length value
# @ingroup l1_measurements
def GetLength(self, elemId):
return self._valueFromFunctor(SMESH.FT_Length, elemId)
## Get area of 2D element.
# @param elemId mesh element ID
# @return element's area value
# @ingroup l1_measurements
def GetArea(self, elemId):
return self._valueFromFunctor(SMESH.FT_Area, elemId)
## Get volume of 3D element.
# @param elemId mesh element ID
# @return element's volume value
# @ingroup l1_measurements
def GetVolume(self, elemId):
return self._valueFromFunctor(SMESH.FT_Volume3D, elemId)
## Get maximum element length.
# @param elemId mesh element ID
# @return element's maximum length value
# @ingroup l1_measurements
def GetMaxElementLength(self, elemId):
if self.GetElementType(elemId, True) == SMESH.VOLUME:
ftype = SMESH.FT_MaxElementLength3D
else:
ftype = SMESH.FT_MaxElementLength2D
return self._valueFromFunctor(ftype, elemId)
## Get aspect ratio of 2D or 3D element.
# @param elemId mesh element ID
# @return element's aspect ratio value
# @ingroup l1_measurements
def GetAspectRatio(self, elemId):
if self.GetElementType(elemId, True) == SMESH.VOLUME:
ftype = SMESH.FT_AspectRatio3D
else:
ftype = SMESH.FT_AspectRatio
return self._valueFromFunctor(ftype, elemId)
## Get warping angle of 2D element.
# @param elemId mesh element ID
# @return element's warping angle value
# @ingroup l1_measurements
def GetWarping(self, elemId):
return self._valueFromFunctor(SMESH.FT_Warping, elemId)
## Get minimum angle of 2D element.
# @param elemId mesh element ID
# @return element's minimum angle value
# @ingroup l1_measurements
def GetMinimumAngle(self, elemId):
return self._valueFromFunctor(SMESH.FT_MinimumAngle, elemId)
## Get taper of 2D element.
# @param elemId mesh element ID
# @return element's taper value
# @ingroup l1_measurements
def GetTaper(self, elemId):
return self._valueFromFunctor(SMESH.FT_Taper, elemId)
## Get skew of 2D element.
# @param elemId mesh element ID
# @return element's skew value
# @ingroup l1_measurements
def GetSkew(self, elemId):
return self._valueFromFunctor(SMESH.FT_Skew, elemId)
2012-10-08 17:56:59 +06:00
pass # end of Mesh class
## Helper class for wrapping of SMESH.SMESH_Pattern CORBA class
#
2012-08-09 16:03:55 +06:00
class Pattern(SMESH._objref_SMESH_Pattern):
2012-08-09 16:03:55 +06:00
def ApplyToMeshFaces(self, theMesh, theFacesIDs, theNodeIndexOnKeyPoint1, theReverse):
decrFun = lambda i: i-1
theNodeIndexOnKeyPoint1,Parameters,hasVars = ParseParameters(theNodeIndexOnKeyPoint1, decrFun)
theMesh.SetParameters(Parameters)
return SMESH._objref_SMESH_Pattern.ApplyToMeshFaces( self, theMesh, theFacesIDs, theNodeIndexOnKeyPoint1, theReverse )
2012-08-09 16:03:55 +06:00
def ApplyToHexahedrons(self, theMesh, theVolumesIDs, theNode000Index, theNode001Index):
decrFun = lambda i: i-1
theNode000Index,theNode001Index,Parameters,hasVars = ParseParameters(theNode000Index,theNode001Index, decrFun)
theMesh.SetParameters(Parameters)
return SMESH._objref_SMESH_Pattern.ApplyToHexahedrons( self, theMesh, theVolumesIDs, theNode000Index, theNode001Index )
2012-10-08 17:56:59 +06:00
# Registering the new proxy for Pattern
2012-08-09 16:03:55 +06:00
omniORB.registerObjref(SMESH._objref_SMESH_Pattern._NP_RepositoryId, Pattern)
2012-08-09 16:03:55 +06:00
## Private class used to bind methods creating algorithms to the class Mesh
#
2012-08-09 16:03:55 +06:00
class algoCreator:
def __init__(self):
self.mesh = None
self.defaultAlgoType = ""
self.algoTypeToClass = {}
# Stores a python class of algorithm
def add(self, algoClass):
if type( algoClass ).__name__ == 'classobj' and \
hasattr( algoClass, "algoType"):
self.algoTypeToClass[ algoClass.algoType ] = algoClass
if not self.defaultAlgoType and \
hasattr( algoClass, "isDefault") and algoClass.isDefault:
self.defaultAlgoType = algoClass.algoType
#print "Add",algoClass.algoType, "dflt",self.defaultAlgoType
# creates a copy of self and assign mesh to the copy
def copy(self, mesh):
other = algoCreator()
other.defaultAlgoType = self.defaultAlgoType
other.algoTypeToClass = self.algoTypeToClass
other.mesh = mesh
return other
# creates an instance of algorithm
def __call__(self,algo="",geom=0,*args):
algoType = self.defaultAlgoType
for arg in args + (algo,geom):
if isinstance( arg, geompyDC.GEOM._objref_GEOM_Object ):
geom = arg
if isinstance( arg, str ) and arg:
algoType = arg
if not algoType and self.algoTypeToClass:
algoType = self.algoTypeToClass.keys()[0]
if self.algoTypeToClass.has_key( algoType ):
#print "Create algo",algoType
return self.algoTypeToClass[ algoType ]( self.mesh, geom )
raise RuntimeError, "No class found for algo type %s" % algoType
2009-02-17 10:27:49 +05:00
return None
2012-08-09 16:03:55 +06:00
# Private class used to substitute and store variable parameters of hypotheses.
2012-10-08 17:56:59 +06:00
#
2012-08-09 16:03:55 +06:00
class hypMethodWrapper:
def __init__(self, hyp, method):
self.hyp = hyp
self.method = method
#print "REBIND:", method.__name__
return
2009-02-17 10:27:49 +05:00
2012-08-09 16:03:55 +06:00
# call a method of hypothesis with calling SetVarParameter() before
def __call__(self,*args):
if not args:
return self.method( self.hyp, *args ) # hypothesis method with no args
2009-02-17 10:27:49 +05:00
2012-08-09 16:03:55 +06:00
#print "MethWrapper.__call__",self.method.__name__, args
try:
parsed = ParseParameters(*args) # replace variables with their values
self.hyp.SetVarParameter( parsed[-2], self.method.__name__ )
result = self.method( self.hyp, *parsed[:-2] ) # call hypothesis method
except omniORB.CORBA.BAD_PARAM: # raised by hypothesis method call
# maybe there is a replaced string arg which is not variable
result = self.method( self.hyp, *args )
except ValueError, detail: # raised by ParseParameters()
try:
result = self.method( self.hyp, *args )
except omniORB.CORBA.BAD_PARAM:
raise ValueError, detail # wrong variable name
2009-02-17 10:27:49 +05:00
2012-08-09 16:03:55 +06:00
return result