smesh/src/StdMeshers/StdMeshers_Adaptive1D.hxx

116 lines
3.6 KiB
C++
Raw Normal View History

// Copyright (C) 2007-2013 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : StdMeshers_Adaptive1D.hxx
// Module : SMESH
//
#ifndef _StdMeshers_Adaptive1D_HXX_
#define _StdMeshers_Adaptive1D_HXX_
#include "SMESH_StdMeshers.hxx"
#include "StdMeshers_Regular_1D.hxx"
#include "Utils_SALOME_Exception.hxx"
class StdMeshers_AdaptiveAlgo_1D;
/*!
* \brief Adaptive 1D hypothesis
*/
class STDMESHERS_EXPORT StdMeshers_Adaptive1D : public SMESH_Hypothesis
{
public:
StdMeshers_Adaptive1D(int hypId, int studyId, SMESH_Gen * gen);
~StdMeshers_Adaptive1D();
/*!
* Sets minimal allowed segment length
*/
void SetMinSize( double minSegLen ) throw (SALOME_Exception);
double GetMinSize() const { return myMinSize; }
/*!
* Sets maximal allowed segment length
*/
void SetMaxSize( double maxSegLen ) throw (SALOME_Exception);
double GetMaxSize() const { return myMaxSize; }
/*!
* Sets <deflection> parameter value,
* i.e. a maximal allowed distance between a segment and an edge.
*/
void SetDeflection(double value) throw(SALOME_Exception);
double GetDeflection() const { return myDeflection; }
virtual std::ostream & SaveTo(std::ostream & save);
virtual std::istream & LoadFrom(std::istream & load);
/*!
* \brief Initialize deflection value by the mesh built on the geometry
* \param theMesh - the built mesh
* \param theShape - the geometry of interest
* \retval bool - true if parameter values have been successfully defined
*/
virtual bool SetParametersByMesh(const SMESH_Mesh* theMesh, const TopoDS_Shape& theShape);
/*!
* \brief Initialize my parameter values by default parameters.
* \retval bool - true if parameter values have been successfully defined
*/
virtual bool SetParametersByDefaults(const TDefaults& dflts, const SMESH_Mesh* theMesh=0);
/*!
* \brief Returns an algorithm that works using this hypothesis
*/
StdMeshers_AdaptiveAlgo_1D* GetAlgo() const;
protected:
double myMinSize, myMaxSize, myDeflection;
StdMeshers_AdaptiveAlgo_1D* myAlgo;
};
/*!
* \brief Adaptive wire discertizator.
* This algorithm is not used directly by via StdMeshers_Regular_1D
*/
class StdMeshers_AdaptiveAlgo_1D : public StdMeshers_Regular_1D
{
public:
StdMeshers_AdaptiveAlgo_1D(int hypId, int studyId, SMESH_Gen* gen);
void SetHypothesis( const StdMeshers_Adaptive1D* hyp );
bool Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape,
double* progress, int* progressTic );
virtual bool Evaluate(SMESH_Mesh & theMesh,
const TopoDS_Shape & theShape,
MapShapeNbElems& theResMap);
private:
const StdMeshers_Adaptive1D* myHyp;
};
#endif