smesh/doc/salome/gui/SMESH/input/about_meshes.doc

110 lines
4.9 KiB
Plaintext
Raw Normal View History

/*!
\page about_meshes_page About meshes
\n \b MESH represents a discrete approximation of a subset of the
three-dimensional space by \ref mesh_entities "elementary geometrical elements".
Mesh module provides several ways to create the mesh:
<ul>
<li>The main way is to \subpage constructing_meshes_page "construct the mesh"
on the basis of the geometrical shape produced in the Geometry
module. This way implies selection of
- a geometrical object (<em> main shape</em>) and
- <em>meshing parameters</em> (\ref
basic_meshing_algos_page "meshing algorithms" and
characteristics (e.g. element size) of a
required mesh encapsulated in \ref about_hypo_page "hypothesis"
objects).
2009-02-17 10:27:49 +05:00
Construction of \subpage constructing_submeshes_page "sub-meshes"
allows to discretize some sub-shapes of the main shape, for example a face,
2015-05-25 14:40:41 +05:00
using the meshing parameters that differ from those for other sub-shapes.<br>
Meshing parameters of meshes and sub-meshes can be
\subpage editing_meshes_page "edited". (Upon edition only mesh entities
generated using changed meshing parameters are removed and will be
re-computed).<br>
2015-05-25 14:40:41 +05:00
\note Algorithms and hypotheses used at mesh level are referred to as
\a global ones and those used at sub-mesh level are referred to as \a
local ones.
</li>
<li>Bottom-up way, using \ref modifying_meshes_page "mesh modification"
operations, especially \ref extrusion_page "extrusion" and \ref
2015-05-25 14:40:41 +05:00
revolution_page "revolution". To create an empty mesh not based on a
geometry, use the same dialog as to \ref constructing_meshes_page
2015-05-25 14:40:41 +05:00
"construct the mesh on geometry" but do not specify a geometry
or a meshing algorithm.
</li>
2015-05-25 14:40:41 +05:00
<li>The mesh can be \subpage importing_exporting_meshes_page "imported" from
(and exported to) the file in MED, UNV, STL, CGNS, DAT, GMF and
SAUVE formats.
</li>
<li>The 3D mesh can be generated from the 2D mesh, \ref
importing_exporting_meshes_page "imported" or manually created. To
2015-05-25 14:40:41 +05:00
setup the meshing parameters of a mesh not based on a geometry, just
invoke \ref editing_meshes_page "Edit mesh / sub-mesh" command on
your 3D mesh.
</li>
<li>Several meshes can be \subpage building_compounds_page "combined"
into a new mesh.
</li>
<li>The whole mesh or its part (sub-mesh or group) can be
\subpage copy_mesh_page "copied" into a new mesh.
</li>
<li>A new mesh can be created from a transformed, e.g. \ref
translation_page "translated", part of the mesh.</li>
</ul>
2012-08-09 16:03:55 +06:00
Meshes can be edited using the MESH functions destined for
\ref modifying_meshes_page "modification" of meshes.
Attractive meshing capabilities include:
- 3D and 2D \ref viscous_layers_anchor "Viscous Layers" (boundary
layers of highly stretched elements beneficial for high quality
viscous computations);
- automatic conformal transition between tetrahedral and hexahedral
sub-meshes.
The \b structure of a SALOME mesh is described by nodes and elements based on
2015-05-25 14:40:41 +05:00
these nodes. The geometry of an element is defined by the sequence of
nodes constituting it and
the <a href="http://www.code-aster.org/outils/med/html/connectivites.html">
connectivity convention </a> (adopted from MED library). Definition of
2015-05-25 14:40:41 +05:00
the element basing on the elements of a lower dimension is NOT supported.
\anchor mesh_entities
The mesh can include the following entities:
<ul>
2015-05-25 14:40:41 +05:00
<li>\b Node &mdash; a mesh entity defining a position in 3D
space with coordinates (x, y, z).</li>
2015-05-25 14:40:41 +05:00
<li>\b Edge (or segment) &mdash; 1D mesh element linking two nodes.</li>
<li>\b Face &mdash; 2D mesh element representing a part of
surface bound by links between face nodes. A face can be a
triangle, quadrangle or polygon.</li>
2015-05-25 14:40:41 +05:00
<li>\b Volume &mdash; 3D mesh element representing a part of 3D
space bound by volume facets. Nodes of a volume describing each
facet are defined by
the <a href="http://www.code-aster.org/outils/med/html/connectivites.html">
MED connectivity convention.</a> A volume can be a tetrahedron, hexahedron,
pentahedron, pyramid, hexagonal prism or polyhedron.</li>
2015-05-25 14:40:41 +05:00
<li>\b 0D element &mdash; mesh element defined by one node.</li>
<li>\b Ball element &mdash; discrete mesh element defined by a
node and a diameter.</li>
</ul>
Every mesh entity has an attribute associating it to a sub-shape it is
generated on (if any). The node generated on the geometrical edge or
surface in addition stores its position in parametric space of the
associated geometrical entity.
2015-05-25 14:40:41 +05:00
SALOME supports elements of second order, without a central node
(quadratic triangle, quadrangle, tetrahedron, hexahedron, pentahedron
and pyramid) and with central nodes (bi-quadratic triangle and
quadrangle and tri-quadratic hexahedron).<br>
Quadratic mesh can be obtained in two ways:
- Using a global \ref quadratic_mesh_anchor "Quadratic Mesh"
hypothesis. (Elements with the central node are not generated in this way).
- Using \ref convert_to_from_quadratic_mesh_page operation.
*/