mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2025-01-24 07:30:33 +05:00
1572 lines
55 KiB
C++
1572 lines
55 KiB
C++
|
// Copyright (C) 2007-2015 CEA/DEN, EDF R&D, OPEN CASCADE
|
||
|
//
|
||
|
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
|
||
|
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
|
||
|
//
|
||
|
// This library is free software; you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU Lesser General Public
|
||
|
// License as published by the Free Software Foundation; either
|
||
|
// version 2.1 of the License, or (at your option) any later version.
|
||
|
//
|
||
|
// This library is distributed in the hope that it will be useful,
|
||
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
// Lesser General Public License for more details.
|
||
|
//
|
||
|
// You should have received a copy of the GNU Lesser General Public
|
||
|
// License along with this library; if not, write to the Free Software
|
||
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
//
|
||
|
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
|
||
|
//
|
||
|
// File : SMESH_MAT2d.cxx
|
||
|
// Created : Thu May 28 17:49:53 2015
|
||
|
// Author : Edward AGAPOV (eap)
|
||
|
|
||
|
#include "SMESH_MAT2d.hxx"
|
||
|
|
||
|
#include <list>
|
||
|
|
||
|
#include <BRepAdaptor_CompCurve.hxx>
|
||
|
#include <BRepBuilderAPI_MakeEdge.hxx>
|
||
|
#include <BRepBuilderAPI_MakeVertex.hxx>
|
||
|
#include <BRep_Builder.hxx>
|
||
|
#include <BRep_Tool.hxx>
|
||
|
#include <Bnd_B2d.hxx>
|
||
|
//#include <GCPnts_AbscissaPoint.hxx>
|
||
|
#include <GCPnts_TangentialDeflection.hxx>
|
||
|
// #include <GCPnts_UniformAbscissa.hxx>
|
||
|
// #include <GCPnts_UniformDeflection.hxx>
|
||
|
#include <Geom2d_Curve.hxx>
|
||
|
//#include <GeomAdaptor_Curve.hxx>
|
||
|
#include <Geom2dAdaptor_Curve.hxx>
|
||
|
#include <Geom_Curve.hxx>
|
||
|
#include <Geom_Surface.hxx>
|
||
|
#include <TopExp.hxx>
|
||
|
#include <TopoDS_Vertex.hxx>
|
||
|
#include <TopoDS_Wire.hxx>
|
||
|
|
||
|
#ifdef _DEBUG_
|
||
|
#include "SMESH_File.hxx"
|
||
|
#include "SMESH_Comment.hxx"
|
||
|
#endif
|
||
|
|
||
|
using namespace std;
|
||
|
using boost::polygon::x;
|
||
|
using boost::polygon::y;
|
||
|
using SMESH_MAT2d::TVD;
|
||
|
using SMESH_MAT2d::TVDEdge;
|
||
|
using SMESH_MAT2d::TVDCell;
|
||
|
using SMESH_MAT2d::TVDVertex;
|
||
|
|
||
|
namespace
|
||
|
{
|
||
|
// Input data for construct_voronoi()
|
||
|
// -------------------------------------------------------------------------------------
|
||
|
|
||
|
struct InPoint
|
||
|
{
|
||
|
int _a, _b;
|
||
|
double _param;
|
||
|
InPoint(int x, int y, double param) : _a(x), _b(y), _param(param) {}
|
||
|
InPoint() : _a(0), _b(0), _param(0) {}
|
||
|
|
||
|
// working data
|
||
|
list< const TVDEdge* > _edges; // MA edges of a concave InPoint in CCW order
|
||
|
|
||
|
size_t index( const vector< InPoint >& inPoints ) const { return this - &inPoints[0]; }
|
||
|
bool operator==( const InPoint& other ) const { return _a == other._a && _b == other._b; }
|
||
|
};
|
||
|
// -------------------------------------------------------------------------------------
|
||
|
|
||
|
struct InSegment
|
||
|
{
|
||
|
InPoint * _p0;
|
||
|
InPoint * _p1;
|
||
|
|
||
|
// working data
|
||
|
size_t _geomEdgeInd; // EDGE index within the FACE
|
||
|
const TVDCell* _cell;
|
||
|
list< const TVDEdge* > _edges; // MA edges in CCW order within _cell
|
||
|
|
||
|
InSegment( InPoint * p0, InPoint * p1, size_t iE)
|
||
|
: _p0(p0), _p1(p1), _geomEdgeInd(iE) {}
|
||
|
InSegment() : _p0(0), _p1(0), _geomEdgeInd(0) {}
|
||
|
|
||
|
inline bool isConnected( const TVDEdge* edge );
|
||
|
|
||
|
inline bool isExternal( const TVDEdge* edge );
|
||
|
|
||
|
static void setGeomEdgeToCell( const TVDCell* cell, size_t eID ) { cell->color( eID ); }
|
||
|
|
||
|
static size_t getGeomEdge( const TVDCell* cell ) { return cell->color(); }
|
||
|
};
|
||
|
|
||
|
// check if a TVDEdge begins at my end or ends at my start
|
||
|
inline bool InSegment::isConnected( const TVDEdge* edge )
|
||
|
{
|
||
|
return ((Abs( edge->vertex0()->x() - _p1->_a ) < 1.&&
|
||
|
Abs( edge->vertex0()->y() - _p1->_b ) < 1. ) ||
|
||
|
(Abs( edge->vertex1()->x() - _p0->_a ) < 1.&&
|
||
|
Abs( edge->vertex1()->y() - _p0->_b ) < 1. ));
|
||
|
}
|
||
|
|
||
|
// check if a MA TVDEdge is outside of a domain
|
||
|
inline bool InSegment::isExternal( const TVDEdge* edge )
|
||
|
{
|
||
|
double dot = // x1*x2 + y1*y2; (x1,y1) - internal normal of InSegment
|
||
|
( _p0->_b - _p1->_b ) * ( 0.5 * ( edge->vertex0()->x() + edge->vertex1()->x() ) - _p0->_a ) +
|
||
|
( _p1->_a - _p0->_a ) * ( 0.5 * ( edge->vertex0()->y() + edge->vertex1()->y() ) - _p0->_b );
|
||
|
return dot < 0.;
|
||
|
}
|
||
|
|
||
|
// // -------------------------------------------------------------------------------------
|
||
|
// const size_t theExternMA = 111; // to mark external MA edges
|
||
|
|
||
|
// bool isExternal( const TVDEdge* edge )
|
||
|
// {
|
||
|
// return ( SMESH_MAT2d::Branch::getBndSegment( edge ) == theExternMA );
|
||
|
// }
|
||
|
|
||
|
// // mark external MA edges
|
||
|
// void markExternalEdges( const TVDEdge* edge )
|
||
|
// {
|
||
|
// if ( isExternal( edge ))
|
||
|
// return;
|
||
|
// SMESH_MAT2d::Branch::setBndSegment( theExternMA, edge );
|
||
|
// SMESH_MAT2d::Branch::setBndSegment( theExternMA, edge->twin() );
|
||
|
// if ( edge->is_primary() && edge->vertex1() )
|
||
|
// {
|
||
|
// const TVDVertex * v = edge->vertex1();
|
||
|
// edge = v->incident_edge();
|
||
|
// do {
|
||
|
// markExternalEdges( edge );
|
||
|
// edge = edge->rot_next();
|
||
|
// } while ( edge != v->incident_edge() );
|
||
|
// }
|
||
|
// }
|
||
|
|
||
|
// -------------------------------------------------------------------------------------
|
||
|
#ifdef _DEBUG_
|
||
|
// writes segments into a txt file readable by voronoi_visualizer
|
||
|
void inSegmentsToFile( vector< InSegment>& inSegments)
|
||
|
{
|
||
|
if ( inSegments.size() > 1000 )
|
||
|
return;
|
||
|
const char* fileName = "/misc/dn25/salome/eap/salome/misc/Code/C++/MAdebug.txt";
|
||
|
SMESH_File file(fileName, false );
|
||
|
file.openForWriting();
|
||
|
SMESH_Comment text;
|
||
|
text << "0\n"; // nb points
|
||
|
text << inSegments.size() << "\n"; // nb segments
|
||
|
for ( size_t i = 0; i < inSegments.size(); ++i )
|
||
|
{
|
||
|
text << inSegments[i]._p0->_a << " "
|
||
|
<< inSegments[i]._p0->_b << " "
|
||
|
<< inSegments[i]._p1->_a << " "
|
||
|
<< inSegments[i]._p1->_b << "\n";
|
||
|
}
|
||
|
text << "\n";
|
||
|
file.write( text.c_str(), text.size() );
|
||
|
cout << "Write " << fileName << endl;
|
||
|
}
|
||
|
void dumpEdge( const TVDEdge* edge )
|
||
|
{
|
||
|
cout << "*Edge_" << edge;
|
||
|
if ( !edge->vertex0() )
|
||
|
cout << " ( INF, INF";
|
||
|
else
|
||
|
cout << " ( " << edge->vertex0()->x() << ", " << edge->vertex0()->y();
|
||
|
if ( !edge->vertex1() )
|
||
|
cout << ") -> ( INF, INF";
|
||
|
else
|
||
|
cout << ") -> (" << edge->vertex1()->x() << ", " << edge->vertex1()->y();
|
||
|
cout << ")\t cell=" << edge->cell()
|
||
|
<< " iBnd=" << edge->color()
|
||
|
<< " twin=" << edge->twin()
|
||
|
<< " twin_cell=" << edge->twin()->cell()
|
||
|
<< " prev=" << edge->prev() << " next=" << edge->next()
|
||
|
<< ( edge->is_primary() ? " MA " : " SCND" )
|
||
|
<< ( edge->is_linear() ? " LIN " : " CURV" )
|
||
|
<< endl;
|
||
|
}
|
||
|
void dumpCell( const TVDCell* cell )
|
||
|
{
|
||
|
cout << "**Cell_" << cell << " GEOM=" << cell->color() << " ";
|
||
|
cout << ( cell->contains_segment() ? " SEG " : " PNT " );
|
||
|
if ( cell-> is_degenerate() )
|
||
|
cout << " degen ";
|
||
|
else
|
||
|
{
|
||
|
cout << endl;
|
||
|
const TVDEdge* edge = cell->incident_edge();
|
||
|
size_t i = 0;
|
||
|
do {
|
||
|
edge = edge->next();
|
||
|
cout << " - " << ++i << " ";
|
||
|
dumpEdge( edge );
|
||
|
} while (edge != cell->incident_edge());
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
void inSegmentsToFile( vector< InSegment>& inSegments) {}
|
||
|
void dumpEdge( const TVDedge* edge ) {}
|
||
|
void dumpCell( const TVDCell* cell ) {}
|
||
|
#endif
|
||
|
}
|
||
|
// -------------------------------------------------------------------------------------
|
||
|
|
||
|
namespace boost {
|
||
|
namespace polygon {
|
||
|
|
||
|
template <>
|
||
|
struct geometry_concept<InPoint> {
|
||
|
typedef point_concept type;
|
||
|
};
|
||
|
template <>
|
||
|
struct point_traits<InPoint> {
|
||
|
typedef int coordinate_type;
|
||
|
|
||
|
static inline coordinate_type get(const InPoint& point, orientation_2d orient) {
|
||
|
return (orient == HORIZONTAL) ? point._a : point._b;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
struct geometry_concept<InSegment> {
|
||
|
typedef segment_concept type;
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
struct segment_traits<InSegment> {
|
||
|
typedef int coordinate_type;
|
||
|
typedef InPoint point_type;
|
||
|
|
||
|
static inline point_type get(const InSegment& segment, direction_1d dir) {
|
||
|
return *(dir.to_int() ? segment._p1 : segment._p0);
|
||
|
}
|
||
|
};
|
||
|
} // namespace polygon
|
||
|
} // namespace boost
|
||
|
// -------------------------------------------------------------------------------------
|
||
|
|
||
|
namespace
|
||
|
{
|
||
|
const int theNoBrachID = 0; // std::numeric_limits<int>::max();
|
||
|
|
||
|
// -------------------------------------------------------------------------------------
|
||
|
/*!
|
||
|
* \brief Intermediate DS to create InPoint's
|
||
|
*/
|
||
|
struct UVU
|
||
|
{
|
||
|
gp_Pnt2d _uv;
|
||
|
double _u;
|
||
|
UVU( gp_Pnt2d uv, double u ): _uv(uv), _u(u) {}
|
||
|
InPoint getInPoint( double scale[2] )
|
||
|
{
|
||
|
return InPoint( int( _uv.X() * scale[0]), int( _uv.Y() * scale[1]), _u );
|
||
|
}
|
||
|
};
|
||
|
// -------------------------------------------------------------------------------------
|
||
|
/*!
|
||
|
* \brief A segment on EDGE, used to create BndPoints
|
||
|
*/
|
||
|
struct BndSeg
|
||
|
{
|
||
|
InSegment* _inSeg;
|
||
|
const TVDEdge* _edge;
|
||
|
double _uLast;
|
||
|
int _branchID; // negative ID means reverse direction
|
||
|
|
||
|
BndSeg( InSegment* seg, const TVDEdge* edge, double u ):
|
||
|
_inSeg(seg), _edge(edge), _uLast(u), _branchID( theNoBrachID ) {}
|
||
|
|
||
|
void setIndexToEdge( size_t id )
|
||
|
{
|
||
|
SMESH_MAT2d::Branch::setBndSegment( id, _edge );
|
||
|
}
|
||
|
|
||
|
int branchID() const { return Abs( _branchID ); }
|
||
|
|
||
|
size_t geomEdge() const { return _inSeg->_geomEdgeInd; }
|
||
|
|
||
|
void setBranch( int branchID, vector< BndSeg >& bndSegs )
|
||
|
{
|
||
|
_branchID = branchID;
|
||
|
|
||
|
if ( _edge ) // pass branch to an opposite BndSeg
|
||
|
{
|
||
|
size_t oppSegIndex = SMESH_MAT2d::Branch::getBndSegment( _edge->twin() );
|
||
|
if ( oppSegIndex < bndSegs.size() /*&& bndSegs[ oppSegIndex ]._branchID == theNoBrachID*/ )
|
||
|
bndSegs[ oppSegIndex ]._branchID = -branchID;
|
||
|
}
|
||
|
}
|
||
|
bool hasOppositeEdge( const size_t noEdgeID )
|
||
|
{
|
||
|
if ( !_edge ) return false;
|
||
|
return ( _inSeg->getGeomEdge( _edge->twin()->cell() ) != noEdgeID );
|
||
|
}
|
||
|
|
||
|
// check a next segment in CW order
|
||
|
bool isSameBranch( const BndSeg& seg2 )
|
||
|
{
|
||
|
if ( !_edge || !seg2._edge )
|
||
|
return true;
|
||
|
|
||
|
const TVDCell* cell1 = this->_edge->twin()->cell();
|
||
|
const TVDCell* cell2 = seg2. _edge->twin()->cell();
|
||
|
if ( cell1 == cell2 )
|
||
|
return true;
|
||
|
|
||
|
const TVDEdge* edgeMedium1 = this->_edge->twin()->next();
|
||
|
const TVDEdge* edgeMedium2 = seg2. _edge->twin()->prev();
|
||
|
|
||
|
if ( edgeMedium1->is_secondary() && edgeMedium2->is_secondary() )
|
||
|
{
|
||
|
if ( edgeMedium1->twin() == edgeMedium2 )
|
||
|
return true;
|
||
|
// edgeMedium's are edges whose twin()->cell is built on an end point of inSegment
|
||
|
// and is located between cell1 and cell2
|
||
|
if ( edgeMedium1->twin() == edgeMedium2->twin() ) // is this possible???
|
||
|
return true;
|
||
|
if ( edgeMedium1->twin() == edgeMedium2->twin()->next() &&
|
||
|
edgeMedium1->twin()->cell()->contains_point() )
|
||
|
return true;
|
||
|
}
|
||
|
else if ( edgeMedium1->is_primary() && edgeMedium2->is_primary() )
|
||
|
{
|
||
|
if ( edgeMedium1->twin() == edgeMedium2 &&
|
||
|
SMESH_MAT2d::Branch::getBndSegment( edgeMedium1 ) ==
|
||
|
SMESH_MAT2d::Branch::getBndSegment( edgeMedium2 ))
|
||
|
// this is an ignored MA edge between inSegment's on one EDGE forming a convex corner
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Computes length of of TVDEdge
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
double length( const TVDEdge* edge )
|
||
|
{
|
||
|
gp_XY d( edge->vertex0()->x() - edge->vertex1()->x(),
|
||
|
edge->vertex0()->y() - edge->vertex1()->y() );
|
||
|
return d.Modulus();
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Compute scale to have the same 2d proportions as in 3d
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
void computeProportionScale( const TopoDS_Face& face,
|
||
|
const Bnd_B2d& uvBox,
|
||
|
double scale[2])
|
||
|
{
|
||
|
scale[0] = scale[1] = 1.;
|
||
|
if ( uvBox.IsVoid() ) return;
|
||
|
|
||
|
TopLoc_Location loc;
|
||
|
Handle(Geom_Surface) surface = BRep_Tool::Surface( face, loc );
|
||
|
|
||
|
const int nbDiv = 30;
|
||
|
gp_XY uvMin = uvBox.CornerMin(), uvMax = uvBox.CornerMax();
|
||
|
gp_XY uvMid = 0.5 * ( uvMin + uvMax );
|
||
|
double du = ( uvMax.X() - uvMin.X() ) / nbDiv;
|
||
|
double dv = ( uvMax.Y() - uvMin.Y() ) / nbDiv;
|
||
|
|
||
|
double uLen3d = 0, vLen3d = 0;
|
||
|
gp_Pnt uPrevP = surface->Value( uvMin.X(), uvMid.Y() );
|
||
|
gp_Pnt vPrevP = surface->Value( uvMid.X(), uvMin.Y() );
|
||
|
for (int i = 1; i <= nbDiv; i++)
|
||
|
{
|
||
|
double u = uvMin.X() + du * i;
|
||
|
double v = uvMin.Y() + dv * i;
|
||
|
gp_Pnt uP = surface->Value( u, uvMid.Y() );
|
||
|
gp_Pnt vP = surface->Value( uvMid.X(), v );
|
||
|
uLen3d += uP.Distance( uPrevP );
|
||
|
vLen3d += vP.Distance( vPrevP );
|
||
|
uPrevP = uP;
|
||
|
vPrevP = vP;
|
||
|
}
|
||
|
scale[0] = uLen3d / ( uvMax.X() - uvMin.X() );
|
||
|
scale[1] = vLen3d / ( uvMax.Y() - uvMin.Y() );
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Fill input data for construct_voronoi()
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
bool makeInputData(const TopoDS_Face& face,
|
||
|
const std::vector< TopoDS_Edge >& edges,
|
||
|
const double minSegLen,
|
||
|
vector< InPoint >& inPoints,
|
||
|
vector< InSegment>& inSegments,
|
||
|
double scale[2])
|
||
|
{
|
||
|
const double theDiscrCoef = 0.5; // to decrease minSegLen for discretization
|
||
|
TopLoc_Location loc;
|
||
|
|
||
|
// discretize the EDGEs to get 2d points and segments
|
||
|
|
||
|
vector< vector< UVU > > uvuVec( edges.size() );
|
||
|
Bnd_B2d uvBox;
|
||
|
for ( size_t iE = 0; iE < edges.size(); ++iE )
|
||
|
{
|
||
|
vector< UVU > & points = uvuVec[ iE ];
|
||
|
|
||
|
double f,l;
|
||
|
Handle(Geom_Curve) c3d = BRep_Tool::Curve ( edges[ iE ], loc, f, l );
|
||
|
Handle(Geom2d_Curve) c2d = BRep_Tool::CurveOnSurface( edges[ iE ], face, f, l );
|
||
|
if ( c2d.IsNull() ) return false;
|
||
|
|
||
|
points.push_back( UVU( c2d->Value( f ), f ));
|
||
|
uvBox.Add( points.back()._uv );
|
||
|
|
||
|
Geom2dAdaptor_Curve c2dAdaptor (c2d, f,l );
|
||
|
double curDeflect = 0.3; //0.01; //Curvature deflection
|
||
|
double angDeflect = 0.2; // 0.09; //Angular deflection
|
||
|
|
||
|
GCPnts_TangentialDeflection discret(c2dAdaptor, angDeflect, curDeflect);
|
||
|
// if ( discret.NbPoints() > 2 )
|
||
|
// {
|
||
|
// cout << endl;
|
||
|
// do
|
||
|
// {
|
||
|
// discret.Initialize( c2dAdaptor, 100, curDeflect );
|
||
|
// cout << "C " << curDeflect << " " << discret.NbPoints() << endl;
|
||
|
// curDeflect *= 1.5;
|
||
|
// }
|
||
|
// while ( discret.NbPoints() > 5 );
|
||
|
// cout << endl;
|
||
|
// do
|
||
|
// {
|
||
|
// discret.Initialize( c2dAdaptor, angDeflect, 100 );
|
||
|
// cout << "A " << angDeflect << " " << discret.NbPoints() << endl;
|
||
|
// angDeflect *= 1.5;
|
||
|
// }
|
||
|
// while ( discret.NbPoints() > 5 );
|
||
|
// }
|
||
|
gp_Pnt p, pPrev;
|
||
|
if ( !c3d.IsNull() )
|
||
|
pPrev = c3d->Value( f );
|
||
|
for ( int i = 2; i <= discret.NbPoints(); i++ ) // skip the 1st point
|
||
|
{
|
||
|
double u = discret.Parameter(i);
|
||
|
if ( !c3d.IsNull() )
|
||
|
{
|
||
|
p = c3d->Value( u );
|
||
|
int nbDiv = int( p.Distance( pPrev ) / minSegLen / theDiscrCoef );
|
||
|
double dU = ( u - points.back()._u ) / nbDiv;
|
||
|
for ( int iD = 1; iD < nbDiv; ++iD )
|
||
|
{
|
||
|
double uD = points.back()._u + dU;
|
||
|
points.push_back( UVU( c2d->Value( uD ), uD ));
|
||
|
}
|
||
|
pPrev = p;
|
||
|
}
|
||
|
points.push_back( UVU( c2d->Value( u ), u ));
|
||
|
uvBox.Add( points.back()._uv );
|
||
|
}
|
||
|
// if ( !c3d.IsNull() )
|
||
|
// {
|
||
|
// vector<double> params;
|
||
|
// GeomAdaptor_Curve c3dAdaptor( c3d,f,l );
|
||
|
// if ( useDefl )
|
||
|
// {
|
||
|
// const double deflection = minSegLen * 0.1;
|
||
|
// GCPnts_UniformDeflection discret( c3dAdaptor, deflection, f, l, true );
|
||
|
// if ( !discret.IsDone() )
|
||
|
// return false;
|
||
|
// int nbP = discret.NbPoints();
|
||
|
// for ( int i = 2; i < nbP; i++ ) // skip 1st and last points
|
||
|
// params.push_back( discret.Parameter(i) );
|
||
|
// }
|
||
|
// else
|
||
|
// {
|
||
|
// double eLen = GCPnts_AbscissaPoint::Length( c3dAdaptor );
|
||
|
// int nbSeg = Max( 1, int( eLen / minSegLen / theDiscrCoef ));
|
||
|
// double segLen = eLen / nbSeg;
|
||
|
// GCPnts_UniformAbscissa discret( c3dAdaptor, segLen, f, l );
|
||
|
// int nbP = Min( discret.NbPoints(), nbSeg + 1 );
|
||
|
// for ( int i = 2; i < nbP; i++ ) // skip 1st and last points
|
||
|
// params.push_back( discret.Parameter(i) );
|
||
|
// }
|
||
|
// for ( size_t i = 0; i < params.size(); ++i )
|
||
|
// {
|
||
|
// points.push_back( UVU( c2d->Value( params[i] ), params[i] ));
|
||
|
// uvBox.Add( points.back()._uv );
|
||
|
// }
|
||
|
// }
|
||
|
if ( points.size() < 2 )
|
||
|
{
|
||
|
points.push_back( UVU( c2d->Value( l ), l ));
|
||
|
uvBox.Add( points.back()._uv );
|
||
|
}
|
||
|
if ( edges[ iE ].Orientation() == TopAbs_REVERSED )
|
||
|
std::reverse( points.begin(), points.end() );
|
||
|
}
|
||
|
|
||
|
// make connected EDGEs have same UV at shared VERTEX
|
||
|
TopoDS_Vertex vShared;
|
||
|
for ( size_t iE = 0; iE < edges.size(); ++iE )
|
||
|
{
|
||
|
size_t iE2 = (iE+1) % edges.size();
|
||
|
if ( !TopExp::CommonVertex( edges[iE], edges[iE2], vShared ))
|
||
|
continue;
|
||
|
if ( !vShared.IsSame( TopExp::LastVertex( edges[iE], true )))
|
||
|
return false;
|
||
|
vector< UVU > & points1 = uvuVec[ iE ];
|
||
|
vector< UVU > & points2 = uvuVec[ iE2 ];
|
||
|
gp_Pnt2d & uv1 = points1.back() ._uv;
|
||
|
gp_Pnt2d & uv2 = points2.front()._uv;
|
||
|
uv1 = uv2 = 0.5 * ( uv1.XY() + uv2.XY() );
|
||
|
}
|
||
|
|
||
|
// get scale to have the same 2d proportions as in 3d
|
||
|
computeProportionScale( face, uvBox, scale );
|
||
|
|
||
|
// make scale to have coordinates precise enough when converted to int
|
||
|
|
||
|
gp_XY uvMin = uvBox.CornerMin(), uvMax = uvBox.CornerMax();
|
||
|
uvMin.ChangeCoord(1) = uvMin.X() * scale[0];
|
||
|
uvMin.ChangeCoord(2) = uvMin.Y() * scale[1];
|
||
|
uvMax.ChangeCoord(1) = uvMax.X() * scale[0];
|
||
|
uvMax.ChangeCoord(2) = uvMax.Y() * scale[1];
|
||
|
double vMax[2] = { Max( Abs( uvMin.X() ), Abs( uvMax.X() )),
|
||
|
Max( Abs( uvMin.Y() ), Abs( uvMax.Y() )) };
|
||
|
int iMax = ( vMax[0] > vMax[1] ) ? 0 : 1;
|
||
|
const double precision = 1e-5;
|
||
|
double preciScale = Min( vMax[iMax] / precision,
|
||
|
std::numeric_limits<int>::max() / vMax[iMax] );
|
||
|
preciScale /= scale[iMax];
|
||
|
double roundedScale = 10; // to ease debug
|
||
|
while ( roundedScale * 10 < preciScale )
|
||
|
roundedScale *= 10.;
|
||
|
scale[0] *= roundedScale;
|
||
|
scale[1] *= roundedScale;
|
||
|
|
||
|
// create input points and segments
|
||
|
|
||
|
inPoints.clear();
|
||
|
inSegments.clear();
|
||
|
size_t nbPnt = 0;
|
||
|
for ( size_t iE = 0; iE < uvuVec.size(); ++iE )
|
||
|
nbPnt += uvuVec[ iE ].size();
|
||
|
inPoints.resize( nbPnt );
|
||
|
inSegments.reserve( nbPnt );
|
||
|
|
||
|
size_t iP = 0;
|
||
|
if ( face.Orientation() == TopAbs_REVERSED )
|
||
|
{
|
||
|
for ( int iE = uvuVec.size()-1; iE >= 0; --iE )
|
||
|
{
|
||
|
vector< UVU > & points = uvuVec[ iE ];
|
||
|
inPoints[ iP++ ] = points.back().getInPoint( scale );
|
||
|
for ( size_t i = points.size()-1; i >= 1; --i )
|
||
|
{
|
||
|
inPoints[ iP++ ] = points[i-1].getInPoint( scale );
|
||
|
inSegments.push_back( InSegment( & inPoints[ iP-2 ], & inPoints[ iP-1 ], iE ));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
for ( size_t iE = 0; iE < uvuVec.size(); ++iE )
|
||
|
{
|
||
|
vector< UVU > & points = uvuVec[ iE ];
|
||
|
inPoints[ iP++ ] = points[0].getInPoint( scale );
|
||
|
for ( size_t i = 1; i < points.size(); ++i )
|
||
|
{
|
||
|
inPoints[ iP++ ] = points[i].getInPoint( scale );
|
||
|
inSegments.push_back( InSegment( & inPoints[ iP-2 ], & inPoints[ iP-1 ], iE ));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Create MA branches and FACE boundary data
|
||
|
* \param [in] vd - voronoi diagram of \a inSegments
|
||
|
* \param [in] inPoints - FACE boundary points
|
||
|
* \param [in,out] inSegments - FACE boundary segments
|
||
|
* \param [out] branch - MA branches to fill
|
||
|
* \param [out] branchEnd - ends of MA branches to fill
|
||
|
* \param [out] boundary - FACE boundary to fill
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
void makeMA( const TVD& vd,
|
||
|
vector< InPoint >& inPoints,
|
||
|
vector< InSegment > & inSegments,
|
||
|
vector< SMESH_MAT2d::Branch >& branch,
|
||
|
vector< const SMESH_MAT2d::BranchEnd* >& branchPnt,
|
||
|
SMESH_MAT2d::Boundary& boundary )
|
||
|
{
|
||
|
const size_t noEdgeID = inSegments.size() + 1; // ID of non-existent geom EDGE
|
||
|
|
||
|
// Associate MA cells with inSegments
|
||
|
for (TVD::const_cell_iterator it = vd.cells().begin(); it != vd.cells().end(); ++it)
|
||
|
{
|
||
|
const TVDCell* cell = &(*it);
|
||
|
if ( cell->contains_segment() )
|
||
|
{
|
||
|
InSegment& seg = inSegments[ cell->source_index() ];
|
||
|
seg._cell = cell;
|
||
|
seg.setGeomEdgeToCell( cell, seg._geomEdgeInd );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
InSegment::setGeomEdgeToCell( cell, noEdgeID );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
vector< bool > inPntChecked( inPoints.size(), false );
|
||
|
|
||
|
// Find MA edges of each inSegment
|
||
|
|
||
|
for ( size_t i = 0; i < inSegments.size(); ++i )
|
||
|
{
|
||
|
InSegment& inSeg = inSegments[i];
|
||
|
|
||
|
// get edges around the cell lying on MA
|
||
|
bool hasSecondary = false;
|
||
|
const TVDEdge* edge = inSeg._cell->incident_edge();
|
||
|
do {
|
||
|
edge = edge->next(); // Returns the CCW next edge within the cell.
|
||
|
if ( edge->is_primary() && !inSeg.isExternal( edge ) )
|
||
|
inSeg._edges.push_back( edge ); // edge equidistant from two InSegments
|
||
|
else
|
||
|
hasSecondary = true;
|
||
|
} while (edge != inSeg._cell->incident_edge());
|
||
|
|
||
|
// there can be several continuous MA edges but maEdges can begin in the middle of
|
||
|
// a chain of continuous MA edges. Make the chain continuous.
|
||
|
list< const TVDEdge* >& maEdges = inSeg._edges;
|
||
|
if ( maEdges.empty() )
|
||
|
continue;
|
||
|
if ( hasSecondary )
|
||
|
while ( maEdges.back()->next() == maEdges.front() )
|
||
|
maEdges.splice( maEdges.end(), maEdges, maEdges.begin() );
|
||
|
|
||
|
// remove maEdges equidistant from two neighbor InSegments of the same geom EDGE
|
||
|
list< const TVDEdge* >::iterator e = maEdges.begin();
|
||
|
while ( e != maEdges.end() )
|
||
|
{
|
||
|
const TVDCell* cell2 = (*e)->twin()->cell(); // cell on the other side of a MA edge
|
||
|
size_t geoE2 = InSegment::getGeomEdge( cell2 );
|
||
|
bool toRemove = ( inSeg._geomEdgeInd == geoE2 && inSeg.isConnected( *e ));
|
||
|
if ( toRemove )
|
||
|
e = maEdges.erase( e );
|
||
|
else
|
||
|
++e;
|
||
|
}
|
||
|
if ( maEdges.empty() )
|
||
|
continue;
|
||
|
|
||
|
// add MA edges corresponding to concave InPoints
|
||
|
for ( int is2nd = 0; is2nd < 2; ++is2nd ) // loop on two ends of inSeg
|
||
|
{
|
||
|
InPoint& inPnt = *( is2nd ? inSeg._p1 : inSeg._p0 );
|
||
|
size_t pInd = inPnt.index( inPoints );
|
||
|
if ( inPntChecked[ pInd ] )
|
||
|
continue;
|
||
|
if ( pInd > 0 &&
|
||
|
inPntChecked[ pInd-1 ] &&
|
||
|
inPoints[ pInd-1 ] == inPnt )
|
||
|
continue;
|
||
|
inPntChecked[ pInd ] = true;
|
||
|
|
||
|
const TVDEdge* edge = // a TVDEdge passing through an end of inSeg
|
||
|
is2nd ? maEdges.front()->prev() : maEdges.back()->next();
|
||
|
while ( true )
|
||
|
{
|
||
|
if ( edge->is_primary() ) break; // this should not happen
|
||
|
const TVDEdge* edge2 = edge->twin(); // we are in a neighbor cell, add MA edges to inPnt
|
||
|
if ( inSeg.getGeomEdge( edge2->cell() ) != noEdgeID )
|
||
|
break; // cell of an InSegment
|
||
|
bool hasInfinite = false;
|
||
|
list< const TVDEdge* > pointEdges;
|
||
|
edge = edge2;
|
||
|
do
|
||
|
{
|
||
|
edge = edge->next(); // Returns the CCW next edge within the cell.
|
||
|
if ( edge->is_infinite() )
|
||
|
hasInfinite = true;
|
||
|
else if ( edge->is_primary() && !inSeg.isExternal( edge ))
|
||
|
pointEdges.push_back( edge );
|
||
|
}
|
||
|
while ( edge != edge2 && !hasInfinite );
|
||
|
|
||
|
if ( hasInfinite || pointEdges.empty() )
|
||
|
break;
|
||
|
inPnt._edges.splice( inPnt._edges.end(), pointEdges );
|
||
|
inSeg.setGeomEdgeToCell( edge->cell(), inSeg._geomEdgeInd );
|
||
|
|
||
|
edge = is2nd ? inPnt._edges.front()->prev() : inPnt._edges.back()->next();
|
||
|
}
|
||
|
} // add MA edges corresponding to concave InPoints
|
||
|
|
||
|
} // loop on inSegments to find corresponding MA edges
|
||
|
|
||
|
|
||
|
// -------------------------------------------
|
||
|
// Create Branches and BndPoints for each EDGE
|
||
|
// -------------------------------------------
|
||
|
|
||
|
if ( inPoints.front() == inPoints.back() /*&& !inPoints[0]._edges.empty()*/ )
|
||
|
{
|
||
|
inPntChecked[0] = false; // do not use the 1st point twice
|
||
|
//InSegment::setGeomEdgeToCell( inPoints[0]._edges.back()->cell(), noEdgeID );
|
||
|
inPoints[0]._edges.clear();
|
||
|
}
|
||
|
|
||
|
// Divide InSegment's into BndSeg's
|
||
|
|
||
|
vector< BndSeg > bndSegs;
|
||
|
bndSegs.reserve( inSegments.size() * 3 );
|
||
|
|
||
|
list< const TVDEdge* >::reverse_iterator e;
|
||
|
for ( size_t i = 0; i < inSegments.size(); ++i )
|
||
|
{
|
||
|
InSegment& inSeg = inSegments[i];
|
||
|
|
||
|
// segments around 1st concave point
|
||
|
size_t ip0 = inSeg._p0->index( inPoints );
|
||
|
if ( inPntChecked[ ip0 ] )
|
||
|
for ( e = inSeg._p0->_edges.rbegin(); e != inSeg._p0->_edges.rend(); ++e )
|
||
|
bndSegs.push_back( BndSeg( &inSeg, *e, inSeg._p0->_param ));
|
||
|
inPntChecked[ ip0 ] = false;
|
||
|
|
||
|
// segments of InSegment's
|
||
|
size_t nbMaEdges = inSeg._edges.size();
|
||
|
switch ( nbMaEdges ) {
|
||
|
case 0: // "around" circle center
|
||
|
bndSegs.push_back( BndSeg( &inSeg, 0, inSeg._p1->_param )); break;
|
||
|
case 1:
|
||
|
bndSegs.push_back( BndSeg( &inSeg, inSeg._edges.back(), inSeg._p1->_param )); break;
|
||
|
default:
|
||
|
vector< double > len;
|
||
|
len.push_back(0);
|
||
|
for ( e = inSeg._edges.rbegin(); e != inSeg._edges.rend(); ++e )
|
||
|
len.push_back( len.back() + length( *e ));
|
||
|
|
||
|
e = inSeg._edges.rbegin();
|
||
|
for ( size_t l = 1; l < len.size(); ++e, ++l )
|
||
|
{
|
||
|
double dl = len[l] / len.back();
|
||
|
double u = dl * inSeg._p1->_param + ( 1. - dl ) * inSeg._p0->_param;
|
||
|
bndSegs.push_back( BndSeg( &inSeg, *e, u ));
|
||
|
}
|
||
|
}
|
||
|
// segments around 2nd concave point
|
||
|
size_t ip1 = inSeg._p1->index( inPoints );
|
||
|
if ( inPntChecked[ ip1 ] )
|
||
|
for ( e = inSeg._p1->_edges.rbegin(); e != inSeg._p1->_edges.rend(); ++e )
|
||
|
bndSegs.push_back( BndSeg( &inSeg, *e, inSeg._p1->_param ));
|
||
|
inPntChecked[ ip1 ] = false;
|
||
|
}
|
||
|
|
||
|
// make TVDEdge's know it's BndSeg to enable passing branchID to
|
||
|
// an opposite BndSeg in BndSeg::setBranch()
|
||
|
for ( size_t i = 0; i < bndSegs.size(); ++i )
|
||
|
bndSegs[i].setIndexToEdge( i );
|
||
|
|
||
|
|
||
|
// Find TVDEdge's of Branches and associate them with bndSegs
|
||
|
|
||
|
vector< vector<const TVDEdge*> > branchEdges;
|
||
|
branchEdges.reserve( boundary.nbEdges() * 4 );
|
||
|
|
||
|
map< const TVDVertex*, SMESH_MAT2d::BranchEndType > endType;
|
||
|
|
||
|
int branchID = 1; // we code orientation as branchID sign
|
||
|
branchEdges.resize( branchID + 1 );
|
||
|
|
||
|
size_t i1st = 0;
|
||
|
while ( i1st < bndSegs.size() && !bndSegs[i1st].hasOppositeEdge( noEdgeID ))
|
||
|
++i1st;
|
||
|
bndSegs[i1st].setBranch( branchID, bndSegs ); // set to i-th and the opposite bndSeg
|
||
|
branchEdges[ branchID ].push_back( bndSegs[i1st]._edge );
|
||
|
|
||
|
for ( size_t i = i1st+1; i < bndSegs.size(); ++i )
|
||
|
{
|
||
|
if ( bndSegs[i].branchID() )
|
||
|
{
|
||
|
branchID = bndSegs[i]._branchID; // with sign
|
||
|
|
||
|
if ( bndSegs[i]._branchID == -bndSegs[i-1]._branchID &&
|
||
|
bndSegs[i]._edge )
|
||
|
{
|
||
|
SMESH_MAT2d::BranchEndType type =
|
||
|
( bndSegs[i]._inSeg->isConnected( bndSegs[i]._edge ) ?
|
||
|
SMESH_MAT2d::BE_ON_VERTEX :
|
||
|
SMESH_MAT2d::BE_END );
|
||
|
endType.insert( make_pair( bndSegs[i]._edge->vertex1(), type ));
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
if ( !bndSegs[i-1].isSameBranch( bndSegs[i] ))
|
||
|
{
|
||
|
branchEdges.resize(( branchID = branchEdges.size()) + 1 );
|
||
|
if ( bndSegs[i]._edge )
|
||
|
endType.insert( make_pair( bndSegs[i]._edge->vertex1(),
|
||
|
SMESH_MAT2d::BE_BRANCH_POINT ));
|
||
|
}
|
||
|
bndSegs[i].setBranch( branchID, bndSegs ); // set to i-th and the opposite bndSeg
|
||
|
if ( bndSegs[i].hasOppositeEdge( noEdgeID ))
|
||
|
branchEdges[ bndSegs[i].branchID() ].push_back( bndSegs[i]._edge );
|
||
|
}
|
||
|
// define BranchEndType of the first TVDVertex
|
||
|
if ( bndSegs.front()._branchID == -bndSegs.back()._branchID )
|
||
|
{
|
||
|
if ( bndSegs[0]._edge )
|
||
|
{
|
||
|
SMESH_MAT2d::BranchEndType type =
|
||
|
( bndSegs[0]._inSeg->isConnected( bndSegs[0]._edge ) ?
|
||
|
SMESH_MAT2d::BE_ON_VERTEX :
|
||
|
SMESH_MAT2d::BE_END );
|
||
|
endType.insert( make_pair( bndSegs[0]._edge->vertex1(), type ));
|
||
|
}
|
||
|
else if ( bndSegs.back()._edge )
|
||
|
{
|
||
|
SMESH_MAT2d::BranchEndType type =
|
||
|
( bndSegs.back()._inSeg->isConnected( bndSegs.back()._edge ) ?
|
||
|
SMESH_MAT2d::BE_ON_VERTEX :
|
||
|
SMESH_MAT2d::BE_END );
|
||
|
endType.insert( make_pair( bndSegs.back()._edge->vertex0(), type ));
|
||
|
}
|
||
|
}
|
||
|
// join the 1st and the last branch edges if it is the same branch
|
||
|
if ( bndSegs.back().branchID() != bndSegs.front().branchID() &&
|
||
|
bndSegs.back().isSameBranch( bndSegs.front() ))
|
||
|
{
|
||
|
vector<const TVDEdge*> & br1 = branchEdges[ bndSegs.front().branchID() ];
|
||
|
vector<const TVDEdge*> & br2 = branchEdges[ bndSegs.back().branchID() ];
|
||
|
br1.insert( br1.begin(), br2.begin(), br2.end() );
|
||
|
br2.clear();
|
||
|
}
|
||
|
|
||
|
// associate branchIDs and the input branch vector (arg)
|
||
|
vector< const SMESH_MAT2d::Branch* > branchByID( branchEdges.size() );
|
||
|
int nbBranches = 0;
|
||
|
for ( size_t i = 0; i < branchEdges.size(); ++i )
|
||
|
{
|
||
|
nbBranches += ( !branchEdges[i].empty() );
|
||
|
}
|
||
|
branch.resize( nbBranches );
|
||
|
for ( size_t iBr = 0, brID = 0; brID < branchEdges.size(); ++brID )
|
||
|
{
|
||
|
if ( !branchEdges[ brID ].empty() )
|
||
|
branchByID[ brID ] = & branch[ iBr++ ];
|
||
|
}
|
||
|
|
||
|
// Fill in BndPoints of each EDGE of the boundary
|
||
|
|
||
|
size_t iSeg = 0;
|
||
|
int edgeInd = -1, dInd = 0;
|
||
|
while ( iSeg < bndSegs.size() )
|
||
|
{
|
||
|
const size_t geomID = bndSegs[ iSeg ].geomEdge();
|
||
|
SMESH_MAT2d::BndPoints & bndPoints = boundary.getPoints( geomID );
|
||
|
|
||
|
size_t nbSegs = 0;
|
||
|
for ( size_t i = iSeg; i < bndSegs.size() && geomID == bndSegs[ i ].geomEdge(); ++i )
|
||
|
++nbSegs;
|
||
|
size_t iSegEnd = iSeg + nbSegs;
|
||
|
|
||
|
// make TVDEdge know an index of bndSegs within BndPoints
|
||
|
for ( size_t i = iSeg; i < iSegEnd; ++i )
|
||
|
if ( bndSegs[i]._edge )
|
||
|
SMESH_MAT2d::Branch::setBndSegment( i - iSeg, bndSegs[i]._edge );
|
||
|
|
||
|
// parameters on EDGE
|
||
|
|
||
|
bndPoints._params.reserve( nbSegs + 1 );
|
||
|
bndPoints._params.push_back( bndSegs[ iSeg ]._inSeg->_p0->_param );
|
||
|
|
||
|
for ( size_t i = iSeg; i < iSegEnd; ++i )
|
||
|
bndPoints._params.push_back( bndSegs[ i ]._uLast );
|
||
|
|
||
|
// MA edges
|
||
|
|
||
|
bndPoints._maEdges.reserve( nbSegs );
|
||
|
|
||
|
for ( size_t i = iSeg; i < iSegEnd; ++i )
|
||
|
{
|
||
|
const size_t brID = bndSegs[ i ].branchID();
|
||
|
const SMESH_MAT2d::Branch* br = branchByID[ brID ];
|
||
|
|
||
|
if ( bndSegs[ i ]._edge && !branchEdges[ brID ].empty() )
|
||
|
{
|
||
|
edgeInd += dInd;
|
||
|
|
||
|
if ( edgeInd < 0 ||
|
||
|
edgeInd >= (int) branchEdges[ brID ].size() ||
|
||
|
branchEdges[ brID ][ edgeInd ] != bndSegs[ i ]._edge )
|
||
|
{
|
||
|
if ( bndSegs[ i ]._branchID < 0 &&
|
||
|
branchEdges[ brID ].back() == bndSegs[ i ]._edge )
|
||
|
{
|
||
|
edgeInd = branchEdges[ brID ].size() - 1;
|
||
|
dInd = -1;
|
||
|
}
|
||
|
else if ( bndSegs[ i ]._branchID > 0 &&
|
||
|
branchEdges[ brID ].front() == bndSegs[ i ]._edge )
|
||
|
{
|
||
|
edgeInd = 0;
|
||
|
dInd = +1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
for ( edgeInd = 0; edgeInd < branchEdges[ brID ].size(); ++edgeInd )
|
||
|
if ( branchEdges[ brID ][ edgeInd ] == bndSegs[ i ]._edge )
|
||
|
break;
|
||
|
dInd = bndSegs[ i ]._branchID > 0 ? +1 : -1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// no MA edge, bndSeg corresponds to an end point of a branch
|
||
|
if ( bndPoints._maEdges.empty() )
|
||
|
{
|
||
|
// should not get here according to algo design
|
||
|
edgeInd = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
edgeInd = branchEdges[ brID ].size();
|
||
|
dInd = bndSegs[ i ]._branchID > 0 ? +1 : -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bndPoints._maEdges.push_back( make_pair( br, ( 1 + edgeInd ) * dInd ));
|
||
|
|
||
|
} // loop on bndSegs of an EDGE
|
||
|
|
||
|
iSeg = iSegEnd;
|
||
|
|
||
|
} // loop on all bndSegs
|
||
|
|
||
|
|
||
|
// fill the branches with MA edges
|
||
|
for ( size_t iBr = 0, brID = 0; brID < branchEdges.size(); ++brID )
|
||
|
if ( !branchEdges[brID].empty() )
|
||
|
{
|
||
|
branch[ iBr ].init( branchEdges[brID], & boundary, endType );
|
||
|
iBr++;
|
||
|
}
|
||
|
// set branches to branch ends
|
||
|
for ( size_t i = 0; i < branch.size(); ++i )
|
||
|
branch[i].setBranchesToEnds( branch );
|
||
|
|
||
|
// fill branchPnt arg
|
||
|
map< const TVDVertex*, const SMESH_MAT2d::BranchEnd* > v2end;
|
||
|
for ( size_t i = 0; i < branch.size(); ++i )
|
||
|
{
|
||
|
if ( branch[i].getEnd(0)->_branches.size() > 2 )
|
||
|
v2end.insert( make_pair( branch[i].getEnd(0)->_vertex, branch[i].getEnd(0) ));
|
||
|
if ( branch[i].getEnd(1)->_branches.size() > 2 )
|
||
|
v2end.insert( make_pair( branch[i].getEnd(1)->_vertex, branch[i].getEnd(1) ));
|
||
|
}
|
||
|
branchPnt.resize( v2end.size() );
|
||
|
map< const TVDVertex*, const SMESH_MAT2d::BranchEnd* >::iterator v2e = v2end.begin();
|
||
|
for ( size_t i = 0; v2e != v2end.end(); ++v2e, ++i )
|
||
|
branchPnt[ i ] = v2e->second;
|
||
|
|
||
|
} // makeMA()
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief MedialAxis constructor
|
||
|
* \param [in] face - a face to create MA for
|
||
|
* \param [in] edges - edges of the face (possibly not all) on the order they
|
||
|
* encounter in the face boundary.
|
||
|
* \param [in] minSegLen - minimal length of a mesh segment used to discretize
|
||
|
* the edges. It is used to define precision of MA approximation
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
SMESH_MAT2d::MedialAxis::MedialAxis(const TopoDS_Face& face,
|
||
|
const std::vector< TopoDS_Edge >& edges,
|
||
|
const double minSegLen,
|
||
|
const bool ignoreCorners):
|
||
|
_face( face ), _boundary( edges.size() )
|
||
|
{
|
||
|
// input to construct_voronoi()
|
||
|
vector< InPoint > inPoints;
|
||
|
vector< InSegment> inSegments;
|
||
|
if ( !makeInputData( face, edges, minSegLen, inPoints, inSegments, _scale ))
|
||
|
return;
|
||
|
|
||
|
//inSegmentsToFile( inSegments );
|
||
|
|
||
|
// build voronoi diagram
|
||
|
construct_voronoi( inSegments.begin(), inSegments.end(), &_vd );
|
||
|
|
||
|
// make MA data
|
||
|
makeMA( _vd, inPoints, inSegments, _branch, _branchPnt, _boundary );
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Return UVs of ends of MA edges of a branch
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
void SMESH_MAT2d::MedialAxis::getPoints( const Branch& branch,
|
||
|
std::vector< gp_XY >& points) const
|
||
|
{
|
||
|
branch.getPoints( points, _scale );
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Returns a BranchPoint corresponding to a given point on a geom EDGE
|
||
|
* \param [in] iGeomEdge - index of geom EDGE within a vector passed at construction
|
||
|
* \param [in] u - parameter of the point on EDGE curve
|
||
|
* \param [out] p - the found BranchPoint
|
||
|
* \return bool - is OK
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
bool SMESH_MAT2d::Boundary::getBranchPoint( const std::size_t iEdge,
|
||
|
double u,
|
||
|
BranchPoint& p ) const
|
||
|
{
|
||
|
if ( iEdge >= _pointsPerEdge.size() || _pointsPerEdge[iEdge]._params.empty() )
|
||
|
return false;
|
||
|
|
||
|
const BndPoints& points = _pointsPerEdge[ iEdge ];
|
||
|
const bool edgeReverse = ( points._params[0] > points._params.back() );
|
||
|
|
||
|
if ( u < ( edgeReverse ? points._params.back() : points._params[0] ))
|
||
|
u = edgeReverse ? points._params.back() : points._params[0];
|
||
|
else if ( u > ( edgeReverse ? points._params[0] : points._params.back()) )
|
||
|
u = edgeReverse ? points._params[0] : points._params.back();
|
||
|
|
||
|
double r = ( u - points._params[0] ) / ( points._params.back() - points._params[0] );
|
||
|
int i = int( r * double( points._maEdges.size()-1 ));
|
||
|
if ( edgeReverse )
|
||
|
{
|
||
|
while ( points._params[i ] < u ) --i;
|
||
|
while ( points._params[i+1] > u ) ++i;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
while ( points._params[i ] > u ) --i;
|
||
|
while ( points._params[i+1] < u ) ++i;
|
||
|
}
|
||
|
double edgeParam = ( u - points._params[i] ) / ( points._params[i+1] - points._params[i] );
|
||
|
|
||
|
const std::pair< const Branch*, int >& maE = points._maEdges[ i ];
|
||
|
bool maReverse = ( maE.second < 0 );
|
||
|
|
||
|
p._branch = maE.first;
|
||
|
p._iEdge = maE.second - 1; // countered from 1 to store sign
|
||
|
p._edgeParam = maReverse ? ( 1. - edgeParam ) : edgeParam;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Check if a given boundary segment is a null-length segment on a concave
|
||
|
* boundary corner.
|
||
|
* \param [in] iEdge - index of a geom EDGE
|
||
|
* \param [in] iSeg - index of a boundary segment
|
||
|
* \return bool - true if the segment is on concave corner
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
bool SMESH_MAT2d::Boundary::IsConcaveSegment( std::size_t iEdge, std::size_t iSeg ) const
|
||
|
{
|
||
|
if ( iEdge >= _pointsPerEdge.size() || _pointsPerEdge[iEdge]._params.empty() )
|
||
|
return false;
|
||
|
|
||
|
const BndPoints& points = _pointsPerEdge[ iEdge ];
|
||
|
if ( points._params.size() >= iSeg+1 )
|
||
|
return false;
|
||
|
|
||
|
return Abs( points._params[ iEdge ] - points._params[ iEdge+1 ]) < 1e-20;
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Creates a 3d curve corresponding to a Branch
|
||
|
* \param [in] branch - the Branch
|
||
|
* \return Adaptor3d_Curve* - the new curve the caller is to delete
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
Adaptor3d_Curve* SMESH_MAT2d::MedialAxis::make3DCurve(const Branch& branch) const
|
||
|
{
|
||
|
Handle(Geom_Surface) surface = BRep_Tool::Surface( _face );
|
||
|
if ( surface.IsNull() )
|
||
|
return 0;
|
||
|
|
||
|
vector< gp_XY > uv;
|
||
|
branch.getPoints( uv, _scale );
|
||
|
if ( uv.size() < 2 )
|
||
|
return 0;
|
||
|
|
||
|
vector< TopoDS_Vertex > vertex( uv.size() );
|
||
|
for ( size_t i = 0; i < uv.size(); ++i )
|
||
|
vertex[i] = BRepBuilderAPI_MakeVertex( surface->Value( uv[i].X(), uv[i].Y() ));
|
||
|
|
||
|
TopoDS_Wire aWire;
|
||
|
BRep_Builder aBuilder;
|
||
|
aBuilder.MakeWire(aWire);
|
||
|
for ( size_t i = 1; i < vertex.size(); ++i )
|
||
|
{
|
||
|
TopoDS_Edge edge = BRepBuilderAPI_MakeEdge( vertex[i-1], vertex[i] );
|
||
|
aBuilder.Add( aWire, edge );
|
||
|
}
|
||
|
|
||
|
// if ( myEdge.size() == 2 && FirstVertex().IsSame( LastVertex() ))
|
||
|
// aWire.Closed(true); // issue 0021141
|
||
|
|
||
|
return new BRepAdaptor_CompCurve( aWire );
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Copy points of an EDGE
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
void SMESH_MAT2d::Branch::init( vector<const TVDEdge*>& maEdges,
|
||
|
const Boundary* boundary,
|
||
|
map< const TVDVertex*, BranchEndType > endType )
|
||
|
{
|
||
|
if ( maEdges.empty() ) return;
|
||
|
|
||
|
_boundary = boundary;
|
||
|
_maEdges.swap( maEdges );
|
||
|
|
||
|
|
||
|
_params.reserve( _maEdges.size() + 1 );
|
||
|
_params.push_back( 0. );
|
||
|
for ( size_t i = 0; i < _maEdges.size(); ++i )
|
||
|
_params.push_back( _params.back() + length( _maEdges[i] ));
|
||
|
|
||
|
for ( size_t i = 1; i < _params.size(); ++i )
|
||
|
_params[i] /= _params.back();
|
||
|
|
||
|
|
||
|
_endPoint1._vertex = _maEdges.front()->vertex1();
|
||
|
_endPoint2._vertex = _maEdges.back ()->vertex0();
|
||
|
|
||
|
if ( endType.count( _endPoint1._vertex ))
|
||
|
_endPoint1._type = endType[ _endPoint1._vertex ];
|
||
|
if ( endType.count( _endPoint2._vertex ))
|
||
|
_endPoint2._type = endType[ _endPoint2._vertex ];
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief fill BranchEnd::_branches of its ends
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
void SMESH_MAT2d::Branch::setBranchesToEnds( const vector< Branch >& branches )
|
||
|
{
|
||
|
for ( size_t i = 0; i < branches.size(); ++i )
|
||
|
{
|
||
|
if ( this->_endPoint1._vertex == branches[i]._endPoint1._vertex ||
|
||
|
this->_endPoint1._vertex == branches[i]._endPoint2._vertex )
|
||
|
this->_endPoint1._branches.push_back( &branches[i] );
|
||
|
|
||
|
if ( this->_endPoint2._vertex == branches[i]._endPoint1._vertex ||
|
||
|
this->_endPoint2._vertex == branches[i]._endPoint2._vertex )
|
||
|
this->_endPoint2._branches.push_back( &branches[i] );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Returns points on two EDGEs, equidistant from a given point of this Branch
|
||
|
* \param [in] param - [0;1] normalized param on the Branch
|
||
|
* \param [out] bp1 - BoundaryPoint on EDGE with a lower index
|
||
|
* \param [out] bp2 - BoundaryPoint on EDGE with a higher index
|
||
|
* \return bool - true if the BoundaryPoint's found
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
bool SMESH_MAT2d::Branch::getBoundaryPoints(double param,
|
||
|
BoundaryPoint& bp1,
|
||
|
BoundaryPoint& bp2 ) const
|
||
|
{
|
||
|
if ( param < _params[0] || param > _params.back() )
|
||
|
return false;
|
||
|
|
||
|
// look for an index of a MA edge by param
|
||
|
double ip = param * _params.size();
|
||
|
size_t i = size_t( Min( int( _maEdges.size()-1), int( ip )));
|
||
|
|
||
|
while ( param < _params[i ] ) --i;
|
||
|
while ( param > _params[i+1] ) ++i;
|
||
|
|
||
|
double r = ( param - _params[i] ) / ( _params[i+1] - _params[i] );
|
||
|
|
||
|
return getBoundaryPoints( i, r, bp1, bp2 );
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Returns points on two EDGEs, equidistant from a given point of this Branch
|
||
|
* \param [in] iMAEdge - index of a MA edge within this Branch
|
||
|
* \param [in] maEdgeParam - [0;1] normalized param on the \a iMAEdge
|
||
|
* \param [out] bp1 - BoundaryPoint on EDGE with a lower index
|
||
|
* \param [out] bp2 - BoundaryPoint on EDGE with a higher index
|
||
|
* \return bool - true if the BoundaryPoint's found
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
bool SMESH_MAT2d::Branch::getBoundaryPoints(std::size_t iMAEdge,
|
||
|
double maEdgeParam,
|
||
|
BoundaryPoint& bp1,
|
||
|
BoundaryPoint& bp2 ) const
|
||
|
{
|
||
|
if ( iMAEdge > _maEdges.size() )
|
||
|
return false;
|
||
|
|
||
|
size_t iGeom1 = getGeomEdge( _maEdges[ iMAEdge ] );
|
||
|
size_t iGeom2 = getGeomEdge( _maEdges[ iMAEdge ]->twin() );
|
||
|
size_t iSeg1 = getBndSegment( _maEdges[ iMAEdge ] );
|
||
|
size_t iSeg2 = getBndSegment( _maEdges[ iMAEdge ]->twin() );
|
||
|
|
||
|
return ( _boundary->getPoint( iGeom1, iSeg1, maEdgeParam, bp1 ) &&
|
||
|
_boundary->getPoint( iGeom2, iSeg2, maEdgeParam, bp2 ));
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Returns points on two EDGEs, equidistant from a given point of this Branch
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
bool SMESH_MAT2d::Branch::getBoundaryPoints(const BranchPoint& p,
|
||
|
BoundaryPoint& bp1,
|
||
|
BoundaryPoint& bp2 ) const
|
||
|
{
|
||
|
return ( p._branch ? p._branch : this )->getBoundaryPoints( p._iEdge, p._edgeParam, bp1, bp2 );
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Return a parameter of a BranchPoint normalized within this Branch
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
bool SMESH_MAT2d::Branch::getParameter(const BranchPoint & p, double & u ) const
|
||
|
{
|
||
|
if ( p._iEdge > _params.size()-1 )
|
||
|
return false;
|
||
|
|
||
|
u = ( _params[ p._iEdge ] * ( 1 - p._edgeParam ) +
|
||
|
_params[ p._iEdge+1 ] * p._edgeParam );
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Check type of both ends
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
bool SMESH_MAT2d::Branch::hasEndOfType(BranchEndType type) const
|
||
|
{
|
||
|
return ( _endPoint1._type == type || _endPoint2._type == type );
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Returns MA points
|
||
|
* \param [out] points - the 2d points
|
||
|
* \param [in] scale - the scale that was used to scale the 2d space of MA
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
void SMESH_MAT2d::Branch::getPoints( std::vector< gp_XY >& points,
|
||
|
const double scale[2]) const
|
||
|
{
|
||
|
points.resize( _maEdges.size() + 1 );
|
||
|
|
||
|
points[0].SetCoord( _maEdges[0]->vertex1()->x() / scale[0], // CCW order! -> vertex1 not vertex0
|
||
|
_maEdges[0]->vertex1()->y() / scale[1] );
|
||
|
|
||
|
for ( size_t i = 0; i < _maEdges.size(); ++i )
|
||
|
points[i+1].SetCoord( _maEdges[i]->vertex0()->x() / scale[0],
|
||
|
_maEdges[i]->vertex0()->y() / scale[1] );
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Return indices of EDGEs equidistant from this branch
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
void SMESH_MAT2d::Branch::getGeomEdges( std::vector< std::size_t >& edgeIDs1,
|
||
|
std::vector< std::size_t >& edgeIDs2 ) const
|
||
|
{
|
||
|
edgeIDs1.push_back( getGeomEdge( _maEdges[0] ));
|
||
|
edgeIDs2.push_back( getGeomEdge( _maEdges[0]->twin() ));
|
||
|
|
||
|
for ( size_t i = 1; i < _maEdges.size(); ++i )
|
||
|
{
|
||
|
size_t ie1 = getGeomEdge( _maEdges[i] );
|
||
|
size_t ie2 = getGeomEdge( _maEdges[i]->twin() );
|
||
|
|
||
|
if ( edgeIDs1.back() != ie1 ) edgeIDs1.push_back( ie1 );
|
||
|
if ( edgeIDs2.back() != ie2 ) edgeIDs2.push_back( ie2 );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Looks for a BranchPoint position around a concave VERTEX
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
bool SMESH_MAT2d::Branch::addDivPntForConcaVertex( std::vector< std::size_t >& edgeIDs1,
|
||
|
std::vector< std::size_t >& edgeIDs2,
|
||
|
std::vector< BranchPoint >& divPoints,
|
||
|
const vector<const TVDEdge*>& maEdges,
|
||
|
const vector<const TVDEdge*>& maEdgesTwin,
|
||
|
size_t & i) const
|
||
|
{
|
||
|
// if there is a concave vertex between EDGEs
|
||
|
// then position of a dividing BranchPoint is undefined, it is somewhere
|
||
|
// on an arc-shaped part of the Branch around the concave vertex.
|
||
|
// Chose this position by a VERTEX of the opposite EDGE, or put it in the middle
|
||
|
// of the arc if there is no opposite VERTEX.
|
||
|
// All null-length segments around a VERTEX belong to one of EDGEs.
|
||
|
|
||
|
BranchPoint divisionPnt;
|
||
|
divisionPnt._branch = this;
|
||
|
|
||
|
size_t ie1 = getGeomEdge( maEdges [i] );
|
||
|
size_t ie2 = getGeomEdge( maEdgesTwin[i] );
|
||
|
|
||
|
size_t iSeg1 = getBndSegment( maEdges[ i-1 ] );
|
||
|
size_t iSeg2 = getBndSegment( maEdges[ i ] );
|
||
|
bool isConcaPrev = _boundary->IsConcaveSegment( edgeIDs1.back(), iSeg1 );
|
||
|
bool isConcaNext = _boundary->IsConcaveSegment( ie1, iSeg2 );
|
||
|
if ( !isConcaNext && !isConcaPrev )
|
||
|
return false;
|
||
|
|
||
|
bool isConcaveV = false;
|
||
|
|
||
|
int iPrev = i-1, iNext = i;
|
||
|
if ( isConcaNext ) // all null-length segments follow
|
||
|
{
|
||
|
// look for a VERTEX of the opposite EDGE
|
||
|
++iNext; // end of null-length segments
|
||
|
while ( iNext < maEdges.size() )
|
||
|
{
|
||
|
iSeg2 = getBndSegment( maEdges[ iNext ] );
|
||
|
if ( _boundary->IsConcaveSegment( ie1, iSeg2 ))
|
||
|
++iNext;
|
||
|
else
|
||
|
break;
|
||
|
}
|
||
|
bool vertexFound = false;
|
||
|
for ( size_t iE = i+1; iE < iNext; ++iE )
|
||
|
{
|
||
|
ie2 = getGeomEdge( maEdgesTwin[iE] );
|
||
|
if ( ie2 != edgeIDs2.back() )
|
||
|
{
|
||
|
// opposite VERTEX found
|
||
|
divisionPnt._iEdge = iE;
|
||
|
divisionPnt._edgeParam = 0;
|
||
|
divPoints.push_back( divisionPnt );
|
||
|
edgeIDs1.push_back( ie1 );
|
||
|
edgeIDs2.push_back( ie2 );
|
||
|
vertexFound = true;
|
||
|
}
|
||
|
}
|
||
|
if ( vertexFound )
|
||
|
{
|
||
|
i = --iNext;
|
||
|
isConcaveV = true;
|
||
|
}
|
||
|
}
|
||
|
else if ( isConcaPrev )
|
||
|
{
|
||
|
// all null-length segments passed, find their beginning
|
||
|
while ( iPrev-1 >= 0 )
|
||
|
{
|
||
|
iSeg1 = getBndSegment( maEdges[ iPrev-1 ] );
|
||
|
if ( _boundary->IsConcaveSegment( edgeIDs1.back(), iSeg1 ))
|
||
|
--iPrev;
|
||
|
else
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ( iPrev < i-1 || iNext > i )
|
||
|
{
|
||
|
// no VERTEX on the opposite EDGE, put the Branch Point in the middle
|
||
|
double par1 = _params[ iPrev ], par2 = _params[ iNext ];
|
||
|
double midPar = 0.5 * ( par1 + par2 );
|
||
|
divisionPnt._iEdge = iPrev;
|
||
|
while ( _params[ divisionPnt._iEdge + 1 ] < midPar )
|
||
|
++divisionPnt._iEdge;
|
||
|
divisionPnt._edgeParam =
|
||
|
( _params[ divisionPnt._iEdge + 1 ] - midPar ) /
|
||
|
( _params[ divisionPnt._iEdge + 1 ] - _params[ divisionPnt._iEdge ] );
|
||
|
divPoints.push_back( divisionPnt );
|
||
|
isConcaveV = true;
|
||
|
}
|
||
|
|
||
|
return isConcaveV;
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Return indices of opposite parts of EDGEs equidistant from this branch
|
||
|
* \param [out] edgeIDs1 - EDGE index opposite to the edgeIDs2[i]-th EDGE
|
||
|
* \param [out] edgeIDs2 - EDGE index opposite to the edgeIDs1[i]-th EDGE
|
||
|
* \param [out] divPoints - BranchPoint's located between two successive unique
|
||
|
* pairs of EDGE indices. A \a divPoints[i] can separate e.g. two following pairs
|
||
|
* of EDGE indices < 0, 2 > and < 0, 1 >. Number of \a divPoints is one less
|
||
|
* than number of \a edgeIDs
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
void SMESH_MAT2d::Branch::getOppositeGeomEdges( std::vector< std::size_t >& edgeIDs1,
|
||
|
std::vector< std::size_t >& edgeIDs2,
|
||
|
std::vector< BranchPoint >& divPoints) const
|
||
|
{
|
||
|
edgeIDs1.clear();
|
||
|
edgeIDs2.clear();
|
||
|
divPoints.clear();
|
||
|
|
||
|
edgeIDs1.push_back( getGeomEdge( _maEdges[0] ));
|
||
|
edgeIDs2.push_back( getGeomEdge( _maEdges[0]->twin() ));
|
||
|
|
||
|
std::vector<const TVDEdge*> twins( _maEdges.size() );
|
||
|
for ( size_t i = 0; i < _maEdges.size(); ++i )
|
||
|
twins[i] = _maEdges[i]->twin();
|
||
|
|
||
|
// size_t lastConcaE1 = _boundary.nbEdges();
|
||
|
// size_t lastConcaE2 = _boundary.nbEdges();
|
||
|
|
||
|
BranchPoint divisionPnt;
|
||
|
divisionPnt._branch = this;
|
||
|
|
||
|
for ( size_t i = 0; i < _maEdges.size(); ++i )
|
||
|
{
|
||
|
size_t ie1 = getGeomEdge( _maEdges[i] );
|
||
|
size_t ie2 = getGeomEdge( _maEdges[i]->twin() );
|
||
|
|
||
|
if ( edgeIDs1.back() != ie1 || edgeIDs2.back() != ie2 )
|
||
|
{
|
||
|
bool isConcaveV = false;
|
||
|
if ( edgeIDs1.back() != ie1 && edgeIDs2.back() == ie2 )
|
||
|
{
|
||
|
isConcaveV = addDivPntForConcaVertex( edgeIDs1, edgeIDs2, divPoints, _maEdges, twins, i );
|
||
|
}
|
||
|
if ( edgeIDs1.back() == ie1 && edgeIDs2.back() != ie2 )
|
||
|
{
|
||
|
isConcaveV = addDivPntForConcaVertex( edgeIDs2, edgeIDs1, divPoints, twins, _maEdges, i );
|
||
|
}
|
||
|
|
||
|
if ( isConcaveV )
|
||
|
{
|
||
|
ie1 = getGeomEdge( _maEdges[i] );
|
||
|
ie2 = getGeomEdge( _maEdges[i]->twin() );
|
||
|
}
|
||
|
if (( !isConcaveV ) ||
|
||
|
( edgeIDs1.back() != ie1 || edgeIDs2.back() != ie2 ))
|
||
|
{
|
||
|
edgeIDs1.push_back( ie1 );
|
||
|
edgeIDs2.push_back( ie2 );
|
||
|
}
|
||
|
if ( divPoints.size() < edgeIDs1.size() - 1 )
|
||
|
{
|
||
|
divisionPnt._iEdge = i;
|
||
|
divisionPnt._edgeParam = 0;
|
||
|
divPoints.push_back( divisionPnt );
|
||
|
}
|
||
|
|
||
|
} // if ( edgeIDs1.back() != ie1 || edgeIDs2.back() != ie2 )
|
||
|
} // loop on _maEdges
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Store data of boundary segments in TVDEdge
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
void SMESH_MAT2d::Branch::setGeomEdge( std::size_t geomIndex, const TVDEdge* maEdge )
|
||
|
{
|
||
|
if ( maEdge ) maEdge->cell()->color( geomIndex );
|
||
|
}
|
||
|
std::size_t SMESH_MAT2d::Branch::getGeomEdge( const TVDEdge* maEdge )
|
||
|
{
|
||
|
return maEdge ? maEdge->cell()->color() : std::string::npos;
|
||
|
}
|
||
|
void SMESH_MAT2d::Branch::setBndSegment( std::size_t segIndex, const TVDEdge* maEdge )
|
||
|
{
|
||
|
if ( maEdge ) maEdge->color( segIndex );
|
||
|
}
|
||
|
std::size_t SMESH_MAT2d::Branch::getBndSegment( const TVDEdge* maEdge )
|
||
|
{
|
||
|
return maEdge ? maEdge->color() : std::string::npos;
|
||
|
}
|
||
|
|
||
|
//================================================================================
|
||
|
/*!
|
||
|
* \brief Returns a boundary point on a given EDGE
|
||
|
* \param [in] iEdge - index of the EDGE within MedialAxis
|
||
|
* \param [in] iSeg - index of a boundary segment within this Branch
|
||
|
* \param [in] u - [0;1] normalized param within \a iSeg-th segment
|
||
|
* \param [out] bp - the found BoundaryPoint
|
||
|
* \return bool - true if the BoundaryPoint is found
|
||
|
*/
|
||
|
//================================================================================
|
||
|
|
||
|
bool SMESH_MAT2d::Boundary::getPoint( std::size_t iEdge,
|
||
|
std::size_t iSeg,
|
||
|
double u,
|
||
|
BoundaryPoint& bp ) const
|
||
|
{
|
||
|
if ( iEdge >= _pointsPerEdge.size() )
|
||
|
return false;
|
||
|
if ( iSeg+1 >= _pointsPerEdge[ iEdge ]._params.size() )
|
||
|
return false;
|
||
|
|
||
|
// This method is called by Branch that can have an opposite orientation,
|
||
|
// hence u is inverted depending on orientation coded as a sign of _maEdge index
|
||
|
bool isReverse = ( _pointsPerEdge[ iEdge ]._maEdges[ iSeg ].second < 0 );
|
||
|
if ( isReverse )
|
||
|
u = 1. - u;
|
||
|
|
||
|
double p0 = _pointsPerEdge[ iEdge ]._params[ iSeg ];
|
||
|
double p1 = _pointsPerEdge[ iEdge ]._params[ iSeg+1 ];
|
||
|
|
||
|
bp._param = p0 * ( 1. - u ) + p1 * u;
|
||
|
bp._edgeIndex = iEdge;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|