smesh/src/SMESH_I/SMESH_2smeshpy.cxx

2010 lines
70 KiB
C++
Raw Normal View History

// SMESH SMESH_I : idl implementation based on 'SMESH' unit's calsses
//
// Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
//
//
// File : SMESH_2D_Algo_i.hxx
// Author : Paul RASCLE, EDF
// Module : SMESH
// $Header$
// File : SMESH_2smeshpy.cxx
// Created : Fri Nov 18 13:20:10 2005
// Author : Edward AGAPOV (eap)
#include "SMESH_2smeshpy.hxx"
#include "utilities.h"
#include "SMESH_PythonDump.hxx"
#include "Resource_DataMapOfAsciiStringAsciiString.hxx"
#include "SMESH_Gen_i.hxx"
/* SALOME headers that include CORBA headers that include windows.h
* that defines GetObject symbol as GetObjectA should stand before SALOME headers
* that declare methods named GetObject - to apply the same rules of GetObject renaming
* and thus to avoid mess with GetObject symbol on Windows */
IMPLEMENT_STANDARD_HANDLE (_pyObject ,Standard_Transient);
IMPLEMENT_STANDARD_HANDLE (_pyCommand ,Standard_Transient);
IMPLEMENT_STANDARD_HANDLE (_pyGen ,_pyObject);
IMPLEMENT_STANDARD_HANDLE (_pyMesh ,_pyObject);
IMPLEMENT_STANDARD_HANDLE (_pyMeshEditor ,_pyObject);
IMPLEMENT_STANDARD_HANDLE (_pyHypothesis ,_pyObject);
IMPLEMENT_STANDARD_HANDLE (_pyAlgorithm ,_pyHypothesis);
IMPLEMENT_STANDARD_HANDLE (_pyComplexParamHypo,_pyHypothesis);
IMPLEMENT_STANDARD_HANDLE (_pyNumberOfSegmentsHyp,_pyHypothesis);
IMPLEMENT_STANDARD_RTTIEXT(_pyObject ,Standard_Transient);
IMPLEMENT_STANDARD_RTTIEXT(_pyCommand ,Standard_Transient);
IMPLEMENT_STANDARD_RTTIEXT(_pyGen ,_pyObject);
IMPLEMENT_STANDARD_RTTIEXT(_pyMesh ,_pyObject);
IMPLEMENT_STANDARD_RTTIEXT(_pyMeshEditor ,_pyObject);
IMPLEMENT_STANDARD_RTTIEXT(_pyHypothesis ,_pyObject);
IMPLEMENT_STANDARD_RTTIEXT(_pyAlgorithm ,_pyHypothesis);
IMPLEMENT_STANDARD_RTTIEXT(_pyComplexParamHypo,_pyHypothesis);
IMPLEMENT_STANDARD_RTTIEXT(_pyNumberOfSegmentsHyp,_pyHypothesis);
IMPLEMENT_STANDARD_RTTIEXT(_pyLayerDistributionHypo,_pyHypothesis);
IMPLEMENT_STANDARD_RTTIEXT(_pySegmentLengthAroundVertexHyp,_pyHypothesis);
using namespace std;
using SMESH::TPythonDump;
/*!
* \brief Container of commands into which the initial script is split.
* It also contains data coresponding to SMESH_Gen contents
*/
static Handle(_pyGen) theGen;
static TCollection_AsciiString theEmptyString;
//#define DUMP_CONVERSION
#if !defined(_DEBUG_) && defined(DUMP_CONVERSION)
#undef DUMP_CONVERSION
#endif
namespace {
//================================================================================
/*!
* \brief Set of TCollection_AsciiString initialized by C array of C strings
*/
//================================================================================
struct TStringSet: public set<TCollection_AsciiString>
{
/*!
* \brief Filling. The last string must be ""
*/
void Insert(const char* names[]) {
for ( int i = 0; names[i][0] ; ++i )
insert( (char*) names[i] );
}
/*!
* \brief Check if a string is in
*/
bool Contains(const TCollection_AsciiString& name ) {
return find( name ) != end();
}
};
}
//================================================================================
/*!
* \brief Convert python script using commands of smesh.py
* \param theScript - Input script
* \retval TCollection_AsciiString - Convertion result
*
* Class SMESH_2smeshpy declared in SMESH_PythonDump.hxx
*/
//================================================================================
TCollection_AsciiString
SMESH_2smeshpy::ConvertScript(const TCollection_AsciiString& theScript,
Resource_DataMapOfAsciiStringAsciiString& theEntry2AccessorMethod)
{
theGen = new _pyGen( theEntry2AccessorMethod );
// split theScript into separate commands
int from = 1, end = theScript.Length(), to;
while ( from < end && ( to = theScript.Location( "\n", from, end )))
{
if ( to != from )
// cut out and store a command
theGen->AddCommand( theScript.SubString( from, to - 1 ));
from = to + 1;
}
// finish conversion
theGen->Flush();
#ifdef DUMP_CONVERSION
cout << endl << " ######## RESULT ######## " << endl<< endl;
#endif
// reorder commands after conversion
list< Handle(_pyCommand) >::iterator cmd;
bool orderChanges;
do {
orderChanges = false;
for ( cmd = theGen->GetCommands().begin(); cmd != theGen->GetCommands().end(); ++cmd )
if ( (*cmd)->SetDependentCmdsAfter() )
orderChanges = true;
} while ( orderChanges );
// concat commands back into a script
TCollection_AsciiString aScript;
for ( cmd = theGen->GetCommands().begin(); cmd != theGen->GetCommands().end(); ++cmd )
{
#ifdef DUMP_CONVERSION
cout << "## COM " << (*cmd)->GetOrderNb() << ": "<< (*cmd)->GetString() << endl;
#endif
if ( !(*cmd)->IsEmpty() ) {
aScript += "\n";
aScript += (*cmd)->GetString();
}
}
aScript += "\n";
theGen.Nullify();
return aScript;
}
//================================================================================
/*!
* \brief _pyGen constructor
*/
//================================================================================
_pyGen::_pyGen(Resource_DataMapOfAsciiStringAsciiString& theEntry2AccessorMethod)
: _pyObject( new _pyCommand( TPythonDump::SMESHGenName(), 0 )),
myID2AccessorMethod( theEntry2AccessorMethod )
{
myNbCommands = 0;
myHasPattern = false;
// make that GetID() to return TPythonDump::SMESHGenName()
GetCreationCmd()->GetString() += "=";
}
//================================================================================
/*!
* \brief name of SMESH_Gen in smesh.py
*/
//================================================================================
const char* _pyGen::AccessorMethod() const
{
return SMESH_2smeshpy::GenName();
}
//================================================================================
/*!
* \brief Convert a command using a specific converter
* \param theCommand - the command to convert
*/
//================================================================================
Handle(_pyCommand) _pyGen::AddCommand( const TCollection_AsciiString& theCommand)
{
// store theCommand in the sequence
myCommands.push_back( new _pyCommand( theCommand, ++myNbCommands ));
Handle(_pyCommand) aCommand = myCommands.back();
#ifdef DUMP_CONVERSION
cout << "## COM " << myNbCommands << ": "<< aCommand->GetString() << endl;
#endif
_pyID objID = aCommand->GetObject();
if ( objID.IsEmpty() )
return aCommand;
// SMESH_Gen method?
if ( objID == this->GetID() ) {
this->Process( aCommand );
return aCommand;
}
// SMESH_Mesh method?
map< _pyID, Handle(_pyMesh) >::iterator id_mesh = myMeshes.find( objID );
if ( id_mesh != myMeshes.end() ) {
if ( aCommand->GetMethod() == "GetMeshEditor" ) { // MeshEditor creation
_pyID editorID = aCommand->GetResultValue();
Handle(_pyMeshEditor) editor = new _pyMeshEditor( aCommand );
myMeshEditors.insert( make_pair( editorID, editor ));
return aCommand;
}
id_mesh->second->Process( aCommand );
return aCommand;
}
// SMESH_MeshEditor method?
map< _pyID, Handle(_pyMeshEditor) >::iterator id_editor = myMeshEditors.find( objID );
if ( id_editor != myMeshEditors.end() ) {
id_editor->second->Process( aCommand );
return aCommand;
}
// SMESH_Hypothesis method?
list< Handle(_pyHypothesis) >::iterator hyp = myHypos.begin();
for ( ; hyp != myHypos.end(); ++hyp )
if ( !(*hyp)->IsAlgo() && objID == (*hyp)->GetID() ) {
(*hyp)->Process( aCommand );
return aCommand;
}
// Add access to a wrapped mesh
AddMeshAccessorMethod( aCommand );
// Add access to a wrapped algorithm
// AddAlgoAccessorMethod( aCommand ); // ??? what if algo won't be wrapped at all ???
// PAL12227. PythonDump was not updated at proper time; result is
// aCriteria.append(SMESH.Filter.Criterion(17,26,0,'L1',26,25,1e-07,SMESH.EDGE,-1))
// TypeError: __init__() takes exactly 11 arguments (10 given)
char wrongCommand[] = "SMESH.Filter.Criterion(";
if ( int beg = theCommand.Location( wrongCommand, 1, theCommand.Length() ))
{
_pyCommand tmpCmd( theCommand.SubString( beg, theCommand.Length() ), -1);
// there must be 10 arguments, 5-th arg ThresholdID is missing,
const int wrongNbArgs = 9, missingArg = 5;
if ( tmpCmd.GetNbArgs() == wrongNbArgs )
{
for ( int i = wrongNbArgs; i > missingArg; --i )
tmpCmd.SetArg( i + 1, tmpCmd.GetArg( i ));
tmpCmd.SetArg( missingArg, "''");
aCommand->GetString().Trunc( beg - 1 );
aCommand->GetString() += tmpCmd.GetString();
}
}
return aCommand;
}
//================================================================================
/*!
* \brief Convert the command or remember it for later conversion
* \param theCommand - The python command calling a method of SMESH_Gen
*/
//================================================================================
void _pyGen::Process( const Handle(_pyCommand)& theCommand )
{
// there are methods to convert:
// CreateMesh( shape )
// Concatenate( [mesh1, ...], ... )
// CreateHypothesis( theHypType, theLibName )
// Compute( mesh, geom )
// mesh creation
if ( theCommand->GetMethod() == "CreateMesh" ||
theCommand->GetMethod() == "CreateEmptyMesh" ||
theCommand->GetMethod() == "CreateMeshesFromUNV" ||
theCommand->GetMethod() == "CreateMeshesFromSTL")
{
Handle(_pyMesh) mesh = new _pyMesh( theCommand );
myMeshes.insert( make_pair( mesh->GetID(), mesh ));
return;
}
if(theCommand->GetMethod() == "CreateMeshesFromMED")
{
for(int ind = 0;ind<theCommand->GetNbResultValues();ind++)
{
Handle(_pyMesh) mesh = new _pyMesh( theCommand, theCommand->GetResultValue(ind));
myMeshes.insert( make_pair( theCommand->GetResultValue(ind), mesh ));
}
}
// CreateHypothesis()
if ( theCommand->GetMethod() == "CreateHypothesis" )
{
myHypos.push_back( _pyHypothesis::NewHypothesis( theCommand ));
return;
}
// smeshgen.Compute( mesh, geom ) --> mesh.Compute()
if ( theCommand->GetMethod() == "Compute" )
{
const _pyID& meshID = theCommand->GetArg( 1 );
map< _pyID, Handle(_pyMesh) >::iterator id_mesh = myMeshes.find( meshID );
if ( id_mesh != myMeshes.end() ) {
theCommand->SetObject( meshID );
theCommand->RemoveArgs();
id_mesh->second->Flush();
return;
}
}
// leave only one smeshgen.GetPattern() in the script
if ( theCommand->GetMethod() == "GetPattern" ) {
if ( myHasPattern ) {
theCommand->Clear();
return;
}
myHasPattern = true;
}
// Concatenate( [mesh1, ...], ... )
if ( theCommand->GetMethod() == "Concatenate" ||
theCommand->GetMethod() == "ConcatenateWithGroups")
{
AddMeshAccessorMethod( theCommand );
}
// Replace name of SMESH_Gen
// names of SMESH_Gen methods fully equal to methods defined in smesh.py
static TStringSet smeshpyMethods;
if ( smeshpyMethods.empty() ) {
const char * names[] =
{ "SetEmbeddedMode","IsEmbeddedMode","SetCurrentStudy","GetCurrentStudy",
"GetPattern","GetSubShapesId",
"" }; // <- mark of array end
smeshpyMethods.Insert( names );
}
if ( smeshpyMethods.Contains( theCommand->GetMethod() ))
// smeshgen.Method() --> smesh.Method()
theCommand->SetObject( SMESH_2smeshpy::SmeshpyName() );
else
// smeshgen.Method() --> smesh.smesh.Method()
theCommand->SetObject( SMESH_2smeshpy::GenName() );
}
//================================================================================
/*!
* \brief Convert the remembered commands
*/
//================================================================================
void _pyGen::Flush()
{
map< _pyID, Handle(_pyMesh) >::iterator id_mesh = myMeshes.begin();
for ( ; id_mesh != myMeshes.end(); ++id_mesh )
if ( ! id_mesh->second.IsNull() )
id_mesh->second->Flush();
list< Handle(_pyHypothesis) >::iterator hyp = myHypos.begin();
for ( ; hyp != myHypos.end(); ++hyp )
if ( !hyp->IsNull() ) {
(*hyp)->Flush();
// smeshgen.CreateHypothesis() --> smesh.smesh.CreateHypothesis()
if ( !(*hyp)->IsWrapped() )
(*hyp)->GetCreationCmd()->SetObject( SMESH_2smeshpy::GenName() );
}
}
//================================================================================
/*!
* \brief Add access method to mesh that is an argument
* \param theCmd - command to add access method
* \retval bool - true if added
*/
//================================================================================
bool _pyGen::AddMeshAccessorMethod( Handle(_pyCommand) theCmd ) const
{
bool added = false;
map< _pyID, Handle(_pyMesh) >::const_iterator id_mesh = myMeshes.begin();
for ( ; id_mesh != myMeshes.end(); ++id_mesh ) {
if ( theCmd->AddAccessorMethod( id_mesh->first, id_mesh->second->AccessorMethod() ))
added = true;
}
return added;
}
//================================================================================
/*!
* \brief Add access method to algo that is an object or an argument
* \param theCmd - command to add access method
* \retval bool - true if added
*/
//================================================================================
bool _pyGen::AddAlgoAccessorMethod( Handle(_pyCommand) theCmd ) const
{
bool added = false;
list< Handle(_pyHypothesis) >::const_iterator hyp = myHypos.begin();
for ( ; hyp != myHypos.end(); ++hyp ) {
if ( (*hyp)->IsAlgo() && /*(*hyp)->IsWrapped() &&*/
theCmd->AddAccessorMethod( (*hyp)->GetID(), (*hyp)->AccessorMethod() ))
added = true;
}
return added;
}
//================================================================================
/*!
* \brief Find hypothesis by ID (entry)
* \param theHypID - The hypothesis ID
* \retval Handle(_pyHypothesis) - The found hypothesis
*/
//================================================================================
Handle(_pyHypothesis) _pyGen::FindHyp( const _pyID& theHypID )
{
list< Handle(_pyHypothesis) >::iterator hyp = myHypos.begin();
for ( ; hyp != myHypos.end(); ++hyp )
if ( !hyp->IsNull() && theHypID == (*hyp)->GetID() )
return *hyp;
return Handle(_pyHypothesis)();
}
//================================================================================
/*!
* \brief Find algorithm the created algorithm
* \param theGeom - The shape ID the algorithm was created on
* \param theMesh - The mesh ID that created the algorithm
* \param dim - The algo dimension
* \retval Handle(_pyHypothesis) - The found algo
*/
//================================================================================
Handle(_pyHypothesis) _pyGen::FindAlgo( const _pyID& theGeom, const _pyID& theMesh,
const Handle(_pyHypothesis)& theHypothesis )
{
list< Handle(_pyHypothesis) >::iterator hyp = myHypos.begin();
for ( ; hyp != myHypos.end(); ++hyp )
if ( !hyp->IsNull() &&
(*hyp)->IsAlgo() &&
theHypothesis->CanBeCreatedBy( (*hyp)->GetAlgoType() ) &&
(*hyp)->GetGeom() == theGeom &&
(*hyp)->GetMesh() == theMesh )
return *hyp;
return 0;
}
//================================================================================
/*!
* \brief Change order of commands in the script
* \param theCmd1 - One command
* \param theCmd2 - Another command
*/
//================================================================================
void _pyGen::ExchangeCommands( Handle(_pyCommand) theCmd1, Handle(_pyCommand) theCmd2 )
{
list< Handle(_pyCommand) >::iterator pos1, pos2;
pos1 = find( myCommands.begin(), myCommands.end(), theCmd1 );
pos2 = find( myCommands.begin(), myCommands.end(), theCmd2 );
myCommands.insert( pos1, theCmd2 );
myCommands.insert( pos2, theCmd1 );
myCommands.erase( pos1 );
myCommands.erase( pos2 );
int nb1 = theCmd1->GetOrderNb();
theCmd1->SetOrderNb( theCmd2->GetOrderNb() );
theCmd2->SetOrderNb( nb1 );
// cout << "BECOME " << theCmd1->GetOrderNb() << "\t" << theCmd1->GetString() << endl
// << "BECOME " << theCmd2->GetOrderNb() << "\t" << theCmd2->GetString() << endl << endl;
}
//================================================================================
/*!
* \brief Set one command after the other
* \param theCmd - Command to move
* \param theAfterCmd - Command ater which to insert the first one
*/
//================================================================================
void _pyGen::SetCommandAfter( Handle(_pyCommand) theCmd, Handle(_pyCommand) theAfterCmd )
{
#ifdef _DEBUG_
//cout << "SET\t" << theAfterCmd->GetString() << endl << "BEFORE\t" << theCmd->GetString() << endl<<endl;
#endif
list< Handle(_pyCommand) >::iterator pos;
pos = find( myCommands.begin(), myCommands.end(), theCmd );
myCommands.erase( pos );
pos = find( myCommands.begin(), myCommands.end(), theAfterCmd );
myCommands.insert( ++pos, theCmd );
int i = 1;
for ( pos = myCommands.begin(); pos != myCommands.end(); ++pos)
(*pos)->SetOrderNb( i++ );
}
//================================================================================
/*!
* \brief Set method to access to object wrapped with python class
* \param theID - The wrapped object entry
* \param theMethod - The accessor method
*/
//================================================================================
void _pyGen::SetAccessorMethod(const _pyID& theID, const char* theMethod )
{
myID2AccessorMethod.Bind( theID, (char*) theMethod );
}
//================================================================================
/*!
* \brief Find out type of geom group
* \param grpID - The geom group entry
* \retval int - The type
*/
//================================================================================
static bool sameGroupType( const _pyID& grpID,
const TCollection_AsciiString& theType)
{
// define group type as smesh.Mesh.Group() does
int type = -1;
SALOMEDS::Study_var study = SMESH_Gen_i::GetSMESHGen()->GetCurrentStudy();
SALOMEDS::SObject_var aSObj = study->FindObjectID( grpID.ToCString() );
if ( !aSObj->_is_nil() ) {
GEOM::GEOM_Object_var aGeomObj = GEOM::GEOM_Object::_narrow( aSObj->GetObject() );
if ( !aGeomObj->_is_nil() ) {
switch ( aGeomObj->GetShapeType() ) {
case GEOM::VERTEX: type = SMESH::NODE; break;
case GEOM::EDGE: type = SMESH::EDGE; break;
case GEOM::FACE: type = SMESH::FACE; break;
case GEOM::SOLID:
case GEOM::SHELL: type = SMESH::VOLUME; break;
case GEOM::COMPOUND: {
GEOM::GEOM_Gen_ptr aGeomGen = SMESH_Gen_i::GetSMESHGen()->GetGeomEngine();
if ( !aGeomGen->_is_nil() ) {
GEOM::GEOM_IGroupOperations_var aGrpOp =
aGeomGen->GetIGroupOperations( study->StudyId() );
if ( !aGrpOp->_is_nil() ) {
switch ( aGrpOp->GetType( aGeomObj )) {
case TopAbs_VERTEX: type = SMESH::NODE; break;
case TopAbs_EDGE: type = SMESH::EDGE; break;
case TopAbs_FACE: type = SMESH::FACE; break;
case TopAbs_SOLID: type = SMESH::VOLUME; break;
default:;
}
}
}
}
default:;
}
}
}
if ( type < 0 ) {
MESSAGE("Type of the group " << grpID << " not found");
return false;
}
if ( theType.IsIntegerValue() )
return type == theType.IntegerValue();
switch ( type ) {
case SMESH::NODE: return theType.Location( "NODE", 1, theType.Length() );
case SMESH::EDGE: return theType.Location( "EDGE", 1, theType.Length() );
case SMESH::FACE: return theType.Location( "FACE", 1, theType.Length() );
case SMESH::VOLUME: return theType.Location( "VOLUME", 1, theType.Length() );
default:;
}
return false;
}
//================================================================================
/*!
* \brief
* \param theCreationCmd -
*/
//================================================================================
_pyMesh::_pyMesh(const Handle(_pyCommand) theCreationCmd):
_pyObject(theCreationCmd), myHasEditor(false)
{
// convert my creation command
Handle(_pyCommand) creationCmd = GetCreationCmd();
TCollection_AsciiString str = creationCmd->GetMethod();
creationCmd->SetObject( SMESH_2smeshpy::SmeshpyName() );
if(str != "CreateMeshesFromUNV" &&
str != "CreateMeshesFromMED" &&
str != "CreateMeshesFromSTL")
creationCmd->SetMethod( "Mesh" );
theGen->SetAccessorMethod( GetID(), "GetMesh()" );
}
//================================================================================
/*!
* \brief
* \param theCreationCmd -
*/
//================================================================================
_pyMesh::_pyMesh(const Handle(_pyCommand) theCreationCmd, const TCollection_AsciiString& id):
_pyObject(theCreationCmd), myHasEditor(false)
{
// convert my creation command
Handle(_pyCommand) creationCmd = GetCreationCmd();
creationCmd->SetObject( SMESH_2smeshpy::SmeshpyName() );
theGen->SetAccessorMethod( id, "GetMesh()" );
}
//================================================================================
/*!
* \brief Convert a IDL API command of SMESH::Mesh to a method call of python Mesh
* \param theCommand - Engine method called for this mesh
*/
//================================================================================
void _pyMesh::Process( const Handle(_pyCommand)& theCommand )
{
// some methods of SMESH_Mesh interface needs special conversion
// to methods of Mesh python class
//
// 1. GetSubMesh(geom, name) + AddHypothesis(geom, algo)
// --> in Mesh_Algorithm.Create(mesh, geom, hypo, so)
// 2. AddHypothesis(geom, hyp)
// --> in Mesh_Algorithm.Hypothesis(hyp, args, so)
// 3. CreateGroupFromGEOM(type, name, grp)
// --> in Mesh.Group(grp, name="")
// 4. ExportToMED(f, auto_groups, version)
// --> in Mesh.ExportMED( f, auto_groups, version )
// 5. etc
const TCollection_AsciiString method = theCommand->GetMethod();
// ----------------------------------------------------------------------
if ( method == "GetSubMesh" ) {
mySubmeshes.push_back( theCommand );
}
// ----------------------------------------------------------------------
else if ( method == "AddHypothesis" ) { // mesh.AddHypothesis(geom, HYPO )
myAddHypCmds.push_back( theCommand );
// set mesh to hypo
const _pyID& hypID = theCommand->GetArg( 2 );
Handle(_pyHypothesis) hyp = theGen->FindHyp( hypID );
if ( !hyp.IsNull() ) {
myHypos.push_back( hyp );
if ( hyp->GetMesh().IsEmpty() )
hyp->SetMesh( this->GetID() );
}
}
// ----------------------------------------------------------------------
else if ( method == "CreateGroupFromGEOM" ) {// (type, name, grp)
_pyID grp = theCommand->GetArg( 3 );
if ( sameGroupType( grp, theCommand->GetArg( 1 )) ) { // --> Group(grp)
theCommand->SetMethod( "Group" );
theCommand->RemoveArgs();
theCommand->SetArg( 1, grp );
}
else {
AddMeshAccess( theCommand );
}
}
// ----------------------------------------------------------------------
else if ( method == "ExportToMED" ) { // ExportToMED() --> ExportMED()
theCommand->SetMethod( "ExportMED" );
}
// ----------------------------------------------------------------------
else if ( method == "CreateGroup" ) { // CreateGroup() --> CreateEmptyGroup()
theCommand->SetMethod( "CreateEmptyGroup" );
}
// ----------------------------------------------------------------------
else if ( method == "RemoveHypothesis" ) // (geom, hyp)
{
_pyID hypID = theCommand->GetArg( 2 );
// check if this mesh still has corresponding addition command
bool hasAddCmd = false;
list< Handle(_pyCommand) >::iterator cmd = myAddHypCmds.begin();
while ( cmd != myAddHypCmds.end() )
{
// AddHypothesis(geom, hyp)
if ( hypID == (*cmd)->GetArg( 2 )) { // erase both (add and remove) commands
theCommand->Clear();
(*cmd)->Clear();
cmd = myAddHypCmds.erase( cmd );
hasAddCmd = true;
}
else {
++cmd;
}
}
Handle(_pyHypothesis) hyp = theGen->FindHyp( hypID );
if ( ! hasAddCmd && hypID.Length() != 0 ) { // hypo addition already wrapped
// RemoveHypothesis(geom, hyp) --> RemoveHypothesis( hyp, geom=0 )
_pyID geom = theCommand->GetArg( 1 );
theCommand->RemoveArgs();
theCommand->SetArg( 1, hypID );
if ( geom != GetGeom() )
theCommand->SetArg( 2, geom );
}
// remove hyp from myHypos
myHypos.remove( hyp );
}
// add accessor method if necessary
else
{
if ( NeedMeshAccess( theCommand ))
// apply theCommand to the mesh wrapped by smeshpy mesh
AddMeshAccess( theCommand );
}
}
//================================================================================
/*!
* \brief Return True if addition of accesor method is needed
*/
//================================================================================
bool _pyMesh::NeedMeshAccess( const Handle(_pyCommand)& theCommand )
{
// names of SMESH_Mesh methods fully equal to methods of class Mesh, so
// no conversion is needed for them at all:
static TStringSet sameMethods;
if ( sameMethods.empty() ) {
const char * names[] =
{ "ExportDAT","ExportUNV","ExportSTL", "RemoveGroup","RemoveGroupWithContents",
"GetGroups","UnionGroups","IntersectGroups","CutGroups","GetLog","GetId","ClearLog",
"GetStudyId","HasDuplicatedGroupNamesMED","GetMEDMesh","NbNodes","NbElements",
"NbEdges","NbEdgesOfOrder","NbFaces","NbFacesOfOrder","NbTriangles",
"NbTrianglesOfOrder","NbQuadrangles","NbQuadranglesOfOrder","NbPolygons","NbVolumes",
"NbVolumesOfOrder","NbTetras","NbTetrasOfOrder","NbHexas","NbHexasOfOrder",
"NbPyramids","NbPyramidsOfOrder","NbPrisms","NbPrismsOfOrder","NbPolyhedrons",
"NbSubMesh","GetElementsId","GetElementsByType","GetNodesId","GetElementType",
"GetSubMeshElementsId","GetSubMeshNodesId","GetSubMeshElementType","Dump","GetNodeXYZ",
"GetNodeInverseElements","GetShapeID","GetShapeIDForElem","GetElemNbNodes",
"GetElemNode","IsMediumNode","IsMediumNodeOfAnyElem","ElemNbEdges","ElemNbFaces",
"IsPoly","IsQuadratic","BaryCenter","GetHypothesisList", "SetAutoColor", "GetAutoColor",
"" }; // <- mark of end
sameMethods.Insert( names );
}
return !sameMethods.Contains( theCommand->GetMethod() );
}
//================================================================================
/*!
* \brief Convert creation and addition of all algos and hypos
*/
//================================================================================
void _pyMesh::Flush()
{
list < Handle(_pyCommand) >::iterator cmd, cmd2;
// try to convert algo addition like this:
// mesh.AddHypothesis(geom, ALGO ) --> ALGO = mesh.Algo()
for ( cmd = myAddHypCmds.begin(); cmd != myAddHypCmds.end(); ++cmd )
{
Handle(_pyCommand) addCmd = *cmd;
_pyID algoID = addCmd->GetArg( 2 );
Handle(_pyHypothesis) algo = theGen->FindHyp( algoID );
if ( algo.IsNull() || !algo->IsAlgo() )
continue;
// try to convert
_pyID geom = addCmd->GetArg( 1 );
bool isLocalAlgo = ( geom != GetGeom() );
if ( algo->Addition2Creation( addCmd, this->GetID() )) // OK
{
// wrapped algo is created atfer mesh creation
GetCreationCmd()->AddDependantCmd( addCmd );
if ( isLocalAlgo ) {
// mesh.AddHypothesis(geom, ALGO ) --> mesh.AlgoMethod(geom)
addCmd->SetArg( addCmd->GetNbArgs() + 1,
TCollection_AsciiString( "geom=" ) + geom );
// sm = mesh.GetSubMesh(geom, name) --> sm = ALGO.GetSubMesh()
for ( cmd2 = mySubmeshes.begin(); cmd2 != mySubmeshes.end(); ++cmd2 ) {
Handle(_pyCommand) subCmd = *cmd2;
if ( geom == subCmd->GetArg( 1 )) {
subCmd->SetObject( algo->GetID() );
subCmd->RemoveArgs();
addCmd->AddDependantCmd( subCmd );
}
}
}
}
else // KO - ALGO was already created
{
// mesh.AddHypothesis(geom, ALGO) --> mesh.AddHypothesis(ALGO, geom=0)
addCmd->RemoveArgs();
addCmd->SetArg( 1, algoID );
if ( isLocalAlgo )
addCmd->SetArg( 2, geom );
}
}
// try to convert hypo addition like this:
// mesh.AddHypothesis(geom, HYPO ) --> HYPO = algo.Hypo()
for ( cmd = myAddHypCmds.begin(); cmd != myAddHypCmds.end(); ++cmd )
{
Handle(_pyCommand) addCmd = *cmd;
_pyID hypID = addCmd->GetArg( 2 );
Handle(_pyHypothesis) hyp = theGen->FindHyp( hypID );
if ( hyp.IsNull() || hyp->IsAlgo() )
continue;
bool converted = hyp->Addition2Creation( addCmd, this->GetID() );
if ( !converted ) {
// mesh.AddHypothesis(geom, HYP) --> mesh.AddHypothesis(HYP, geom=0)
_pyID geom = addCmd->GetArg( 1 );
addCmd->RemoveArgs();
addCmd->SetArg( 1, hypID );
if ( geom != GetGeom() )
addCmd->SetArg( 2, geom );
}
}
// sm = mesh.GetSubMesh(geom, name) --> sm = mesh.GetMesh().GetSubMesh(geom, name)
// for ( cmd = mySubmeshes.begin(); cmd != mySubmeshes.end(); ++cmd ) {
// Handle(_pyCommand) subCmd = *cmd;
// if ( subCmd->GetNbArgs() > 0 )
// AddMeshAccess( subCmd );
// }
myAddHypCmds.clear();
mySubmeshes.clear();
// flush hypotheses
list< Handle(_pyHypothesis) >::iterator hyp = myHypos.begin();
for ( ; hyp != myHypos.end(); ++hyp )
(*hyp)->Flush();
}
//================================================================================
/*!
* \brief MeshEditor convert its commands to ones of mesh
*/
//================================================================================
_pyMeshEditor::_pyMeshEditor(const Handle(_pyCommand)& theCreationCmd):
_pyObject( theCreationCmd )
{
myMesh = theCreationCmd->GetObject();
myCreationCmdStr = theCreationCmd->GetString();
theCreationCmd->Clear();
}
//================================================================================
/*!
* \brief convert its commands to ones of mesh
*/
//================================================================================
void _pyMeshEditor::Process( const Handle(_pyCommand)& theCommand)
{
// names of SMESH_MeshEditor methods fully equal to methods of class Mesh, so
// commands calling this methods are converted to calls of methods of Mesh
static TStringSet sameMethods;
if ( sameMethods.empty() ) {
const char * names[] = {
"RemoveElements","RemoveNodes","AddNode","AddEdge","AddFace","AddPolygonalFace",
"AddVolume","AddPolyhedralVolume","AddPolyhedralVolumeByFaces","MoveNode",
"InverseDiag","DeleteDiag","Reorient","ReorientObject","SplitQuad","SplitQuadObject",
"BestSplit","Smooth","SmoothObject","SmoothParametric","SmoothParametricObject",
"ConvertToQuadratic","ConvertFromQuadratic","RenumberNodes","RenumberElements",
"RotationSweep","RotationSweepObject","ExtrusionSweep","AdvancedExtrusion",
"ExtrusionSweepObject","ExtrusionSweepObject1D","ExtrusionSweepObject2D","Mirror",
"MirrorObject","Translate","TranslateObject","Rotate","RotateObject",
"FindCoincidentNodes","FindCoincidentNodesOnPart","MergeNodes","FindEqualElements",
"MergeElements","MergeEqualElements","SewFreeBorders","SewConformFreeBorders",
"SewBorderToSide","SewSideElements","ChangeElemNodes","GetLastCreatedNodes",
"GetLastCreatedElems",
"MirrorMakeMesh","MirrorObjectMakeMesh","TranslateMakeMesh",
"TranslateObjectMakeMesh","RotateMakeMesh","RotateObjectMakeMesh",
"" }; // <- mark of the end
sameMethods.Insert( names );
}
//theGen->AddMeshAccessorMethod( theCommand ); // for *Object()
if ( sameMethods.Contains( theCommand->GetMethod() )) {
theCommand->SetObject( myMesh );
// meshes made by *MakeMesh() methods are not wrapped by _pyMesh,
// so let _pyMesh care of it (TMP?)
if ( theCommand->GetMethod().Search("MakeMesh") != -1 )
_pyMesh( new _pyCommand( theCommand->GetString(), 0 )); // for theGen->SetAccessorMethod()
}
else {
// editor creation command is needed only if any editor function is called
if ( !myCreationCmdStr.IsEmpty() ) {
GetCreationCmd()->GetString() = myCreationCmdStr;
myCreationCmdStr.Clear();
}
}
}
//================================================================================
/*!
* \brief _pyHypothesis constructor
* \param theCreationCmd -
*/
//================================================================================
_pyHypothesis::_pyHypothesis(const Handle(_pyCommand)& theCreationCmd):
_pyObject( theCreationCmd )
{
myIsAlgo = myIsWrapped = /*myIsConverted = myIsLocal = myDim = */false;
}
//================================================================================
/*!
* \brief Creates algorithm or hypothesis
* \param theCreationCmd - The engine command creating a hypothesis
* \retval Handle(_pyHypothesis) - Result _pyHypothesis
*/
//================================================================================
Handle(_pyHypothesis) _pyHypothesis::NewHypothesis( const Handle(_pyCommand)& theCreationCmd)
{
// theCreationCmd: CreateHypothesis( "theHypType", "theLibName" )
ASSERT (( theCreationCmd->GetMethod() == "CreateHypothesis"));
Handle(_pyHypothesis) hyp, algo;
// "theHypType"
const TCollection_AsciiString & hypTypeQuoted = theCreationCmd->GetArg( 1 );
if ( hypTypeQuoted.IsEmpty() )
return hyp;
// theHypType
TCollection_AsciiString hypType =
hypTypeQuoted.SubString( 2, hypTypeQuoted.Length() - 1 );
algo = new _pyAlgorithm( theCreationCmd );
hyp = new _pyHypothesis( theCreationCmd );
// 1D Regular_1D ----------
if ( hypType == "Regular_1D" ) {
// set mesh's method creating algo,
// i.e. convertion result will be "regular1d = Mesh.Segment()",
// and set hypType by which algo creating a hypothesis is searched for
algo->SetConvMethodAndType("Segment", hypType.ToCString());
}
else if ( hypType == "CompositeSegment_1D" ) {
algo->SetConvMethodAndType("Segment", "Regular_1D");
algo->myArgs.Append( "algo=smesh.COMPOSITE");
}
else if ( hypType == "LocalLength" ) {
// set algo's method creating hyp, and algo type
hyp->SetConvMethodAndType( "LocalLength", "Regular_1D");
// set method whose 1 arg will become the 1-st arg of hyp creation command
// i.e. convertion result will be "locallength = regular1d.LocalLength(<arg of SetLength()>)"
hyp->AddArgMethod( "SetLength" );
}
else if ( hypType == "NumberOfSegments" ) {
hyp = new _pyNumberOfSegmentsHyp( theCreationCmd );
hyp->SetConvMethodAndType( "NumberOfSegments", "Regular_1D");
// arg of SetNumberOfSegments() will become the 1-st arg of hyp creation command
hyp->AddArgMethod( "SetNumberOfSegments" );
// arg of SetScaleFactor() will become the 2-nd arg of hyp creation command
hyp->AddArgMethod( "SetScaleFactor" );
}
else if ( hypType == "Arithmetic1D" ) {
hyp = new _pyComplexParamHypo( theCreationCmd );
hyp->SetConvMethodAndType( "Arithmetic1D", "Regular_1D");
}
else if ( hypType == "StartEndLength" ) {
hyp = new _pyComplexParamHypo( theCreationCmd );
hyp->SetConvMethodAndType( "StartEndLength", "Regular_1D");
}
else if ( hypType == "Deflection1D" ) {
hyp->SetConvMethodAndType( "Deflection1D", "Regular_1D");
hyp->AddArgMethod( "SetDeflection" );
}
else if ( hypType == "Propagation" ) {
hyp->SetConvMethodAndType( "Propagation", "Regular_1D");
}
else if ( hypType == "QuadraticMesh" ) {
hyp->SetConvMethodAndType( "QuadraticMesh", "Regular_1D");
}
else if ( hypType == "AutomaticLength" ) {
hyp->SetConvMethodAndType( "AutomaticLength", "Regular_1D");
hyp->AddArgMethod( "SetFineness");
}
else if ( hypType == "SegmentLengthAroundVertex" ) {
hyp = new _pySegmentLengthAroundVertexHyp( theCreationCmd );
hyp->SetConvMethodAndType( "LengthNearVertex", "Regular_1D" );
hyp->AddArgMethod( "SetLength" );
}
// 1D Python_1D ----------
else if ( hypType == "Python_1D" ) {
algo->SetConvMethodAndType( "Segment", hypType.ToCString());
algo->myArgs.Append( "algo=smesh.PYTHON");
}
else if ( hypType == "PythonSplit1D" ) {
hyp->SetConvMethodAndType( "PythonSplit1D", "Python_1D");
hyp->AddArgMethod( "SetNumberOfSegments");
hyp->AddArgMethod( "SetPythonLog10RatioFunction");
}
// MEFISTO_2D ----------
else if ( hypType == "MEFISTO_2D" ) { // MEFISTO_2D
algo->SetConvMethodAndType( "Triangle", hypType.ToCString());
}
else if ( hypType == "MaxElementArea" ) {
hyp->SetConvMethodAndType( "MaxElementArea", "MEFISTO_2D");
hyp->SetConvMethodAndType( "MaxElementArea", "NETGEN_2D_ONLY");
hyp->AddArgMethod( "SetMaxElementArea");
}
else if ( hypType == "LengthFromEdges" ) {
hyp->SetConvMethodAndType( "LengthFromEdges", "MEFISTO_2D");
hyp->SetConvMethodAndType( "LengthFromEdges", "NETGEN_2D_ONLY");
}
// Quadrangle_2D ----------
else if ( hypType == "Quadrangle_2D" ) {
algo->SetConvMethodAndType( "Quadrangle" , hypType.ToCString());
}
else if ( hypType == "QuadranglePreference" ) {
hyp->SetConvMethodAndType( "QuadranglePreference", "Quadrangle_2D");
hyp->SetConvMethodAndType( "QuadranglePreference", "NETGEN_2D_ONLY");
}
// NETGEN ----------
// else if ( hypType == "NETGEN_2D") { // 1D-2D
// algo->SetConvMethodAndType( "Triangle" , hypType.ToCString());
// algo->myArgs.Append( "algo=smesh.NETGEN" );
// }
else if ( hypType == "NETGEN_2D_ONLY") { // 2D
algo->SetConvMethodAndType( "Triangle" , hypType.ToCString());
algo->myArgs.Append( "algo=smesh.NETGEN_2D" );
}
else if ( hypType == "NETGEN_3D") { // 3D
algo->SetConvMethodAndType( "Tetrahedron" , hypType.ToCString());
algo->myArgs.Append( "algo=smesh.NETGEN" );
}
else if ( hypType == "MaxElementVolume") {
hyp->SetConvMethodAndType( "MaxElementVolume", "NETGEN_3D");
hyp->AddArgMethod( "SetMaxElementVolume" );
}
// GHS3D_3D ----------
else if ( hypType == "GHS3D_3D" ) {
algo->SetConvMethodAndType( "Tetrahedron", hypType.ToCString());
algo->myArgs.Append( "algo=smesh.GHS3D" );
}
// Hexa_3D ---------
else if ( hypType == "Hexa_3D" ) {
algo->SetConvMethodAndType( "Hexahedron", hypType.ToCString());
}
// Repetitive Projection_1D ---------
else if ( hypType == "Projection_1D" ) {
algo->SetConvMethodAndType( "Projection1D", hypType.ToCString());
}
else if ( hypType == "ProjectionSource1D" ) {
hyp->SetConvMethodAndType( "SourceEdge", "Projection_1D");
hyp->AddArgMethod( "SetSourceEdge");
hyp->AddArgMethod( "SetSourceMesh");
// 2 args of SetVertexAssociation() will become the 3-th and 4-th args of hyp creation command
hyp->AddArgMethod( "SetVertexAssociation", 2 );
}
// Projection_2D ---------
else if ( hypType == "Projection_2D" ) {
algo->SetConvMethodAndType( "Projection2D", hypType.ToCString());
}
else if ( hypType == "ProjectionSource2D" ) {
hyp->SetConvMethodAndType( "SourceFace", "Projection_2D");
hyp->AddArgMethod( "SetSourceFace");
hyp->AddArgMethod( "SetSourceMesh");
hyp->AddArgMethod( "SetVertexAssociation", 4 );
}
// Projection_3D ---------
else if ( hypType == "Projection_3D" ) {
algo->SetConvMethodAndType( "Projection3D", hypType.ToCString());
}
else if ( hypType == "ProjectionSource3D" ) {
hyp->SetConvMethodAndType( "SourceShape3D", "Projection_3D");
hyp->AddArgMethod( "SetSource3DShape");
hyp->AddArgMethod( "SetSourceMesh");
hyp->AddArgMethod( "SetVertexAssociation", 4 );
}
// Prism_3D ---------
else if ( hypType == "Prism_3D" ) {
algo->SetConvMethodAndType( "Prism", hypType.ToCString());
}
// RadialPrism_3D ---------
else if ( hypType == "RadialPrism_3D" ) {
algo->SetConvMethodAndType( "Prism", hypType.ToCString());
}
else if ( hypType == "NumberOfLayers" ) {
hyp->SetConvMethodAndType( "NumberOfLayers", "RadialPrism_3D");
hyp->AddArgMethod( "SetNumberOfLayers" );
}
else if ( hypType == "LayerDistribution" ) {
hyp = new _pyLayerDistributionHypo( theCreationCmd );
hyp->SetConvMethodAndType( "LayerDistribution", "RadialPrism_3D");
}
if ( algo->IsValid() ) {
return algo;
}
return hyp;
}
//================================================================================
/*!
* \brief Convert the command adding a hypothesis to mesh into a smesh command
* \param theCmd - The command like mesh.AddHypothesis( geom, hypo )
* \param theAlgo - The algo that can create this hypo
* \retval bool - false if the command cant be converted
*/
//================================================================================
bool _pyHypothesis::Addition2Creation( const Handle(_pyCommand)& theCmd,
const _pyID& theMesh)
{
ASSERT(( theCmd->GetMethod() == "AddHypothesis" ));
if ( !IsWrappable( theMesh ))
return false;
myGeom = theCmd->GetArg( 1 );
Handle(_pyHypothesis) algo;
if ( !IsAlgo() ) {
// find algo created on myGeom in theMesh
algo = theGen->FindAlgo( myGeom, theMesh, this );
if ( algo.IsNull() )
return false;
algo->GetCreationCmd()->AddDependantCmd( theCmd );
}
myIsWrapped = true;
// mesh.AddHypothesis(geom,hyp) --> hyp = <theMesh or algo>.myCreationMethod(args)
theCmd->SetResultValue( GetID() );
theCmd->SetObject( IsAlgo() ? theMesh : algo->GetID());
theCmd->SetMethod( IsAlgo() ? GetAlgoCreationMethod() : GetCreationMethod( algo->GetAlgoType() ));
// set args
theCmd->RemoveArgs();
for ( int i = 1; i <= myArgs.Length(); ++i ) {
if ( !myArgs( i ).IsEmpty() )
theCmd->SetArg( i, myArgs( i ));
else
theCmd->SetArg( i, "[]");
}
// set a new creation command
GetCreationCmd()->Clear();
SetCreationCmd( theCmd );
// clear commands setting arg values
list < Handle(_pyCommand) >::iterator argCmd = myArgCommands.begin();
for ( ; argCmd != myArgCommands.end(); ++argCmd )
(*argCmd)->Clear();
// set unknown arg commands after hypo creation
Handle(_pyCommand) afterCmd = myIsWrapped ? theCmd : GetCreationCmd();
list<Handle(_pyCommand)>::iterator cmd = myUnknownCommands.begin();
for ( ; cmd != myUnknownCommands.end(); ++cmd ) {
afterCmd->AddDependantCmd( *cmd );
}
return myIsWrapped;
}
//================================================================================
/*!
* \brief Remember hypothesis parameter values
* \param theCommand - The called hypothesis method
*/
//================================================================================
void _pyHypothesis::Process( const Handle(_pyCommand)& theCommand)
{
ASSERT( !myIsAlgo );
// set args
int nbArgs = 0;
for ( int i = 1; i <= myArgMethods.Length(); ++i ) {
if ( myArgMethods( i ) == theCommand->GetMethod() ) {
while ( myArgs.Length() < nbArgs + myNbArgsByMethod( i ))
myArgs.Append( "[]" );
for ( int iArg = 1; iArg <= myNbArgsByMethod( i ); ++iArg )
myArgs( nbArgs + iArg ) = theCommand->GetArg( iArg ); // arg value
myArgCommands.push_back( theCommand );
return;
}
nbArgs += myNbArgsByMethod( i );
}
myUnknownCommands.push_back( theCommand );
}
//================================================================================
/*!
* \brief Finish conversion
*/
//================================================================================
void _pyHypothesis::Flush()
{
if ( IsWrapped() ) {
}
else {
list < Handle(_pyCommand) >::iterator cmd = myArgCommands.begin();
for ( ; cmd != myArgCommands.end(); ++cmd ) {
// Add access to a wrapped mesh
theGen->AddMeshAccessorMethod( *cmd );
// Add access to a wrapped algorithm
theGen->AddAlgoAccessorMethod( *cmd );
}
cmd = myUnknownCommands.begin();
for ( ; cmd != myUnknownCommands.end(); ++cmd ) {
// Add access to a wrapped mesh
theGen->AddMeshAccessorMethod( *cmd );
// Add access to a wrapped algorithm
theGen->AddAlgoAccessorMethod( *cmd );
}
}
// forget previous hypothesis modifications
myArgCommands.clear();
myUnknownCommands.clear();
}
//================================================================================
/*!
* \brief clear creation, arg and unkown commands
*/
//================================================================================
void _pyHypothesis::ClearAllCommands()
{
GetCreationCmd()->Clear();
list<Handle(_pyCommand)>::iterator cmd = myArgCommands.begin();
for ( ; cmd != myArgCommands.end(); ++cmd )
( *cmd )->Clear();
cmd = myUnknownCommands.begin();
for ( ; cmd != myUnknownCommands.end(); ++cmd )
( *cmd )->Clear();
}
//================================================================================
/*!
* \brief Remember hypothesis parameter values
* \param theCommand - The called hypothesis method
*/
//================================================================================
void _pyComplexParamHypo::Process( const Handle(_pyCommand)& theCommand)
{
// ex: hyp.SetLength(start, 1)
// hyp.SetLength(end, 0)
ASSERT(( theCommand->GetMethod() == "SetLength" ));
ASSERT(( theCommand->GetArg( 2 ).IsIntegerValue() ));
int i = 2 - theCommand->GetArg( 2 ).IntegerValue();
while ( myArgs.Length() < i )
myArgs.Append( "[]" );
myArgs( i ) = theCommand->GetArg( 1 ); // arg value
myArgCommands.push_back( theCommand );
}
//================================================================================
/*!
* \brief Convert methods of 1D hypotheses to my own methods
* \param theCommand - The called hypothesis method
*/
//================================================================================
void _pyLayerDistributionHypo::Process( const Handle(_pyCommand)& theCommand)
{
if ( theCommand->GetMethod() != "SetLayerDistribution" )
return;
_pyID newName; // name for 1D hyp = "HypType" + "_Distribution"
const _pyID& hyp1dID = theCommand->GetArg( 1 );
Handle(_pyHypothesis) hyp1d = theGen->FindHyp( hyp1dID );
if ( hyp1d.IsNull() ) // apparently hypId changed at study restoration
hyp1d = my1dHyp;
else if ( !my1dHyp.IsNull() && hyp1dID != my1dHyp->GetID() ) {
// 1D hypo is already set, so distribution changes and the old
// 1D hypo is thrown away
my1dHyp->ClearAllCommands();
}
my1dHyp = hyp1d;
if ( my1dHyp.IsNull() )
return; // something wrong :(
// make a new name for 1D hyp = "HypType" + "_Distribution"
if ( my1dHyp->GetCreationCmd()->GetMethod() == "CreateHypothesis" ) {
// not yet converted creation cmd
TCollection_AsciiString hypTypeQuoted = my1dHyp->GetCreationCmd()->GetArg(1);
TCollection_AsciiString hypType = hypTypeQuoted.SubString( 2, hypTypeQuoted.Length() - 1 );
newName = hypType + "_Distribution";
my1dHyp->GetCreationCmd()->SetResultValue( newName );
}
else {
// already converted creation cmd
newName = my1dHyp->GetCreationCmd()->GetResultValue();
}
// as creation of 1D hyp was written later then it's edition,
// we need to find all it's edition calls and process them
list< Handle(_pyCommand) >& cmds = theGen->GetCommands();
list< Handle(_pyCommand) >::iterator cmdIt = cmds.begin();
for ( ; cmdIt != cmds.end(); ++cmdIt ) {
const _pyID& objID = (*cmdIt)->GetObject();
if ( objID == hyp1dID ) {
my1dHyp->Process( *cmdIt );
my1dHyp->GetCreationCmd()->AddDependantCmd( *cmdIt );
( *cmdIt )->SetObject( newName );
}
}
if ( !myArgCommands.empty() )
myArgCommands.front()->Clear();
theCommand->SetArg( 1, newName );
myArgCommands.push_back( theCommand );
// copy hyp1d's creation method and args
// myCreationMethod = hyp1d->GetCreationMethod();
// myArgs = hyp1d->GetArgs();
// // make them cleared at conversion
// myArgCommands = hyp1d->GetArgCommands();
// // to be cleared at convertion only
// myArgCommands.push_back( theCommand );
}
//================================================================================
/*!
* \brief
* \param theAdditionCmd -
* \param theMesh -
* \retval bool -
*/
//================================================================================
bool _pyLayerDistributionHypo::Addition2Creation( const Handle(_pyCommand)& theAdditionCmd,
const _pyID& theMesh)
{
myIsWrapped = false;
if ( my1dHyp.IsNull() )
return false;
// set "SetLayerDistribution()" after addition cmd
theAdditionCmd->AddDependantCmd( myArgCommands.front() );
_pyID geom = theAdditionCmd->GetArg( 1 );
my1dHyp->SetMesh( theMesh );
if ( !my1dHyp->Addition2Creation( theAdditionCmd, theMesh ))
return false;
// clear "SetLayerDistribution()" cmd
myArgCommands.front()->Clear();
// Convert my creation => me = RadialPrismAlgo.Get3DHypothesis()
// find RadialPrism algo created on <geom> for theMesh
Handle(_pyHypothesis) algo = theGen->FindAlgo( geom, theMesh, this );
if ( !algo.IsNull() ) {
GetCreationCmd()->SetObject( algo->GetID() );
GetCreationCmd()->SetMethod( "Get3DHypothesis" );
GetCreationCmd()->RemoveArgs();
theAdditionCmd->AddDependantCmd( GetCreationCmd() );
myIsWrapped = true;
}
return myIsWrapped;
}
//================================================================================
/*!
* \brief
*/
//================================================================================
void _pyLayerDistributionHypo::Flush()
{
//my1dHyp.Nullify();
//_pyHypothesis::Flush();
}
//================================================================================
/*!
* \brief additionally to Addition2Creation, clears SetDistrType() command
* \param theCmd - AddHypothesis() command
* \param theMesh - mesh to which a hypothesis is added
* \retval bool - convertion result
*/
//================================================================================
bool _pyNumberOfSegmentsHyp::Addition2Creation( const Handle(_pyCommand)& theCmd,
const _pyID& theMesh)
{
if ( IsWrappable( theMesh ) && myArgs.Length() > 1 ) {
// scale factor (2-nd arg) is provided: clear SetDistrType(1) command
bool scaleDistrType = false;
list<Handle(_pyCommand)>::reverse_iterator cmd = myUnknownCommands.rbegin();
for ( ; cmd != myUnknownCommands.rend(); ++cmd ) {
if ( (*cmd)->GetMethod() == "SetDistrType" ) {
if ( (*cmd)->GetArg( 1 ) == "1" ) {
scaleDistrType = true;
(*cmd)->Clear();
}
else if ( !scaleDistrType ) {
// distribution type changed: remove scale factor from args
myArgs.Remove( 2, myArgs.Length() );
break;
}
}
}
}
return _pyHypothesis::Addition2Creation( theCmd, theMesh );
}
//================================================================================
/*!
* \brief remove repeated commands defining distribution
*/
//================================================================================
void _pyNumberOfSegmentsHyp::Flush()
{
// find number of the last SetDistrType() command
list<Handle(_pyCommand)>::reverse_iterator cmd = myUnknownCommands.rbegin();
int distrTypeNb = 0;
for ( ; !distrTypeNb && cmd != myUnknownCommands.rend(); ++cmd )
if ( (*cmd)->GetMethod() == "SetDistrType" )
distrTypeNb = (*cmd)->GetOrderNb();
// clear commands before the last SetDistrType()
list<Handle(_pyCommand)> * cmds[2] = { &myArgCommands, &myUnknownCommands };
for ( int i = 0; i < 2; ++i ) {
set<TCollection_AsciiString> uniqueMethods;
list<Handle(_pyCommand)> & cmdList = *cmds[i];
for ( cmd = cmdList.rbegin(); cmd != cmdList.rend(); ++cmd )
{
bool clear = ( (*cmd)->GetOrderNb() < distrTypeNb );
const TCollection_AsciiString& method = (*cmd)->GetMethod();
if ( !clear || method == "SetNumberOfSegments" ) {
bool isNewInSet = uniqueMethods.insert( method ).second;
clear = !isNewInSet;
}
if ( clear )
(*cmd)->Clear();
}
cmdList.clear();
}
}
//================================================================================
/*!
* \brief Convert the command adding "SegmentLengthAroundVertex" to mesh
* into regular1D.LengthNearVertex( length, vertex )
* \param theCmd - The command like mesh.AddHypothesis( vertex, SegmentLengthAroundVertex )
* \param theMesh - The mesh needing this hypo
* \retval bool - false if the command cant be converted
*/
//================================================================================
bool _pySegmentLengthAroundVertexHyp::Addition2Creation( const Handle(_pyCommand)& theCmd,
const _pyID& theMeshID)
{
if ( IsWrappable( theMeshID )) {
_pyID vertex = theCmd->GetArg( 1 );
// the problem here is that segment algo will not be found
// by pyHypothesis::Addition2Creation() for <vertex>, so we try to find
// geometry where segment algorithm is assigned
Handle(_pyHypothesis) algo;
_pyID geom = vertex;
while ( algo.IsNull() && !geom.IsEmpty()) {
// try to find geom as a father of <vertex>
geom = FatherID( geom );
algo = theGen->FindAlgo( geom, theMeshID, this );
}
if ( algo.IsNull() )
return false; // also possible to find geom as brother of veretex...
// set geom instead of vertex
theCmd->SetArg( 1, geom );
// set vertex as a second arg
if ( myArgs.Length() < 1) myArgs.Append( "1" ); // :(
myArgs.Append( vertex );
// mesh.AddHypothesis(vertex, SegmentLengthAroundVertex) -->
// theMeshID.LengthNearVertex( length, vertex )
return _pyHypothesis::Addition2Creation( theCmd, theMeshID );
}
return false;
}
//================================================================================
/*!
* \brief _pyAlgorithm constructor
* \param theCreationCmd - The command like "algo = smeshgen.CreateHypothesis(type,lib)"
*/
//================================================================================
_pyAlgorithm::_pyAlgorithm(const Handle(_pyCommand)& theCreationCmd)
: _pyHypothesis( theCreationCmd )
{
myIsAlgo = true;
}
//================================================================================
/*!
* \brief Convert the command adding an algorithm to mesh
* \param theCmd - The command like mesh.AddHypothesis( geom, algo )
* \param theMesh - The mesh needing this algo
* \retval bool - false if the command cant be converted
*/
//================================================================================
bool _pyAlgorithm::Addition2Creation( const Handle(_pyCommand)& theCmd,
const _pyID& theMeshID)
{
// mesh.AddHypothesis(geom,algo) --> theMeshID.myCreationMethod()
if ( _pyHypothesis::Addition2Creation( theCmd, theMeshID )) {
theGen->SetAccessorMethod( GetID(), "GetAlgorithm()" );
return true;
}
return false;
}
//================================================================================
/*!
* \brief Return starting position of a part of python command
* \param thePartIndex - The index of command part
* \retval int - Part position
*/
//================================================================================
int _pyCommand::GetBegPos( int thePartIndex )
{
if ( IsEmpty() )
return EMPTY;
if ( myBegPos.Length() < thePartIndex )
return UNKNOWN;
return myBegPos( thePartIndex );
}
//================================================================================
/*!
* \brief Store starting position of a part of python command
* \param thePartIndex - The index of command part
* \param thePosition - Part position
*/
//================================================================================
void _pyCommand::SetBegPos( int thePartIndex, int thePosition )
{
while ( myBegPos.Length() < thePartIndex )
myBegPos.Append( UNKNOWN );
myBegPos( thePartIndex ) = thePosition;
}
//================================================================================
/*!
* \brief Returns whitespace symbols at the line beginning
* \retval TCollection_AsciiString - result
*/
//================================================================================
TCollection_AsciiString _pyCommand::GetIndentation()
{
int end = 1;
if ( GetBegPos( RESULT_IND ) == UNKNOWN )
GetWord( myString, end, true );
else
end = GetBegPos( RESULT_IND );
return myString.SubString( 1, end - 1 );
}
//================================================================================
/*!
* \brief Return substring of python command looking like ResultValue = Obj.Meth()
* \retval const TCollection_AsciiString & - ResultValue substring
*/
//================================================================================
const TCollection_AsciiString & _pyCommand::GetResultValue()
{
if ( GetBegPos( RESULT_IND ) == UNKNOWN )
{
int begPos = myString.Location( "=", 1, Length() );
if ( begPos )
myRes = GetWord( myString, begPos, false );
else
begPos = EMPTY;
SetBegPos( RESULT_IND, begPos );
}
return myRes;
}
//================================================================================
/*!
* \brief Return number of python command result value ResultValue = Obj.Meth()
* \retval const int
*/
//================================================================================
const int _pyCommand::GetNbResultValues()
{
int begPos = 1;
int Nb=0;
int endPos = myString.Location( "=", 1, Length() );
TCollection_AsciiString str = "";
while ( begPos < endPos) {
str = GetWord( myString, begPos, true );
begPos = begPos+ str.Length();
Nb++;
}
return (Nb-1);
}
//================================================================================
/*!
* \brief Return substring of python command looking like
* ResultValue1 , ResultValue1,... = Obj.Meth() with res index
* \retval const TCollection_AsciiString & - ResultValue with res index substring
*/
//================================================================================
const TCollection_AsciiString & _pyCommand::GetResultValue(int res)
{
int begPos = 1;
int Nb=0;
int endPos = myString.Location( "=", 1, Length() );
while ( begPos < endPos) {
myRes = GetWord( myString, begPos, true );
begPos = begPos + myRes.Length();
Nb++;
if(res == Nb){
myRes.RemoveAll('[');myRes.RemoveAll(']');
return myRes;
}
if(Nb>res)
break;
}
return theEmptyString;
}
//================================================================================
/*!
* \brief Return substring of python command looking like ResVal = Object.Meth()
* \retval const TCollection_AsciiString & - Object substring
*/
//================================================================================
const TCollection_AsciiString & _pyCommand::GetObject()
{
if ( GetBegPos( OBJECT_IND ) == UNKNOWN )
{
// beginning
int begPos = GetBegPos( RESULT_IND ) + myRes.Length();
if ( begPos < 1 )
begPos = myString.Location( "=", 1, Length() ) + 1;
// store
myObj = GetWord( myString, begPos, true );
SetBegPos( OBJECT_IND, begPos );
}
//SCRUTE(myObj);
return myObj;
}
//================================================================================
/*!
* \brief Return substring of python command looking like ResVal = Obj.Method()
* \retval const TCollection_AsciiString & - Method substring
*/
//================================================================================
const TCollection_AsciiString & _pyCommand::GetMethod()
{
if ( GetBegPos( METHOD_IND ) == UNKNOWN )
{
// beginning
int begPos = GetBegPos( OBJECT_IND ) + myObj.Length();
bool forward = true;
if ( begPos < 1 ) {
begPos = myString.Location( "(", 1, Length() ) - 1;
forward = false;
}
// store
myMeth = GetWord( myString, begPos, forward );
SetBegPos( METHOD_IND, begPos );
}
//SCRUTE(myMeth);
return myMeth;
}
//================================================================================
/*!
* \brief Return substring of python command looking like ResVal = Obj.Meth(Arg1,...)
* \retval const TCollection_AsciiString & - Arg<index> substring
*/
//================================================================================
const TCollection_AsciiString & _pyCommand::GetArg( int index )
{
if ( GetBegPos( ARG1_IND ) == UNKNOWN )
{
// find all args
int begPos = GetBegPos( METHOD_IND ) + myMeth.Length();
if ( begPos < 1 )
begPos = myString.Location( "(", 1, Length() ) + 1;
int i = 0, prevLen = 0;
while ( begPos != EMPTY ) {
begPos += prevLen;
// check if we are looking at the closing parenthesis
while ( begPos <= Length() && isspace( myString.Value( begPos )))
++begPos;
if ( begPos > Length() || myString.Value( begPos ) == ')' )
break;
myArgs.Append( GetWord( myString, begPos, true, true ));
SetBegPos( ARG1_IND + i, begPos );
prevLen = myArgs.Last().Length();
if ( prevLen == 0 )
myArgs.Remove( myArgs.Length() ); // no more args
i++;
}
}
if ( myArgs.Length() < index )
return theEmptyString;
return myArgs( index );
}
//================================================================================
/*!
* \brief Check if char is a word part
* \param c - The character to check
* \retval bool - The check result
*/
//================================================================================
static inline bool isWord(const char c, const bool dotIsWord)
{
return
!isspace(c) && c != ',' && c != '=' && c != ')' && c != '(' && ( dotIsWord || c != '.');
}
//================================================================================
/*!
* \brief Looks for a word in the string and returns word's beginning
* \param theString - The input string
* \param theStartPos - The position to start the search, returning word's beginning
* \param theForward - The search direction
* \retval TCollection_AsciiString - The found word
*/
//================================================================================
TCollection_AsciiString _pyCommand::GetWord( const TCollection_AsciiString & theString,
int & theStartPos,
const bool theForward,
const bool dotIsWord )
{
int beg = theStartPos, end = theStartPos;
theStartPos = EMPTY;
if ( beg < 1 || beg > theString.Length() )
return theEmptyString;
if ( theForward ) { // search forward
// beg
while ( beg <= theString.Length() && !isWord( theString.Value( beg ), dotIsWord))
++beg;
if ( beg > theString.Length() )
return theEmptyString; // no word found
// end
end = beg + 1;
while ( end <= theString.Length() && isWord( theString.Value( end ), dotIsWord))
++end;
--end;
}
else { // search backward
// end
while ( end > 0 && !isWord( theString.Value( end ), dotIsWord))
--end;
if ( end == 0 )
return theEmptyString; // no word found
beg = end - 1;
while ( beg > 0 && isWord( theString.Value( beg ), dotIsWord))
--beg;
++beg;
}
theStartPos = beg;
//cout << theString << " ---- " << beg << " - " << end << endl;
return theString.SubString( beg, end );
}
//================================================================================
/*!
* \brief Look for position where not space char is
* \param theString - The string
* \param thePos - The position to search from and which returns result
* \retval bool - false if there are only space after thePos in theString
*
*
*/
//================================================================================
bool _pyCommand::SkipSpaces( const TCollection_AsciiString & theString, int & thePos )
{
if ( thePos < 1 || thePos > theString.Length() )
return false;
while ( thePos <= theString.Length() && isspace( theString.Value( thePos )))
++thePos;
return thePos <= theString.Length();
}
//================================================================================
/*!
* \brief Modify a part of the command
* \param thePartIndex - The index of the part
* \param thePart - The new part string
* \param theOldPart - The old part
*/
//================================================================================
void _pyCommand::SetPart(int thePartIndex, const TCollection_AsciiString& thePart,
TCollection_AsciiString& theOldPart)
{
int pos = GetBegPos( thePartIndex );
if ( pos <= Length() && theOldPart != thePart)
{
TCollection_AsciiString seperator;
if ( pos < 1 ) {
pos = GetBegPos( thePartIndex + 1 );
if ( pos < 1 ) return;
switch ( thePartIndex ) {
case RESULT_IND: seperator = " = "; break;
case OBJECT_IND: seperator = "."; break;
case METHOD_IND: seperator = "()"; break;
default:;
}
}
myString.Remove( pos, theOldPart.Length() );
if ( !seperator.IsEmpty() )
myString.Insert( pos , seperator );
myString.Insert( pos, thePart );
// update starting positions of the following parts
int posDelta = thePart.Length() + seperator.Length() - theOldPart.Length();
for ( int i = thePartIndex + 1; i <= myBegPos.Length(); ++i ) {
if ( myBegPos( i ) > 0 )
myBegPos( i ) += posDelta;
}
theOldPart = thePart;
}
}
//================================================================================
/*!
* \brief Set agrument
* \param index - The argument index, it counts from 1
* \param theArg - The argument string
*/
//================================================================================
void _pyCommand::SetArg( int index, const TCollection_AsciiString& theArg)
{
FindAllArgs();
int argInd = ARG1_IND + index - 1;
int pos = GetBegPos( argInd );
if ( pos < 1 ) // no index-th arg exist, append inexistent args
{
// find a closing parenthesis
if ( int lastArgInd = GetNbArgs() ) {
pos = GetBegPos( ARG1_IND + lastArgInd - 1 ) + GetArg( lastArgInd ).Length();
while ( pos > 0 && pos <= Length() && myString.Value( pos ) != ')' )
++pos;
}
else {
pos = Length();
while ( pos > 0 && myString.Value( pos ) != ')' )
--pos;
}
if ( pos < 1 || myString.Value( pos ) != ')' ) { // no parentheses at all
myString += "()";
pos = Length();
}
while ( myArgs.Length() < index ) {
if ( myArgs.Length() )
myString.Insert( pos++, "," );
myArgs.Append("None");
myString.Insert( pos, myArgs.Last() );
SetBegPos( ARG1_IND + myArgs.Length() - 1, pos );
pos += myArgs.Last().Length();
}
}
SetPart( argInd, theArg, myArgs( index ));
}
//================================================================================
/*!
* \brief Empty arg list
*/
//================================================================================
void _pyCommand::RemoveArgs()
{
if ( int pos = myString.Location( '(', 1, Length() ))
myString.Trunc( pos );
myString += ")";
myArgs.Clear();
if ( myBegPos.Length() >= ARG1_IND )
myBegPos.Remove( ARG1_IND, myBegPos.Length() );
}
//================================================================================
/*!
* \brief Set dependent commands after this one
*/
//================================================================================
bool _pyCommand::SetDependentCmdsAfter() const
{
bool orderChanged = false;
list< Handle(_pyCommand)>::const_reverse_iterator cmd = myDependentCmds.rbegin();
for ( ; cmd != myDependentCmds.rend(); ++cmd ) {
if ( (*cmd)->GetOrderNb() < GetOrderNb() ) {
orderChanged = true;
theGen->SetCommandAfter( *cmd, this );
(*cmd)->SetDependentCmdsAfter();
}
}
return orderChanged;
}
//================================================================================
/*!
* \brief Insert accessor method after theObjectID
* \param theObjectID - id of the accessed object
* \param theAcsMethod - name of the method giving access to the object
* \retval bool - false if theObjectID is not found in the command string
*/
//================================================================================
bool _pyCommand::AddAccessorMethod( _pyID theObjectID, const char* theAcsMethod )
{
if ( !theAcsMethod )
return false;
// start object search from the object, i.e. ignore result
GetObject();
int beg = GetBegPos( OBJECT_IND );
if ( beg < 1 || beg > Length() )
return false;
bool added = false;
while (( beg = myString.Location( theObjectID, beg, Length() )))
{
// check that theObjectID is not just a part of a longer ID
int afterEnd = beg + theObjectID.Length();
Standard_Character c = myString.Value( afterEnd );
if ( !isalnum( c ) && c != ':' ) {
// check if accessor method already present
if ( c != '.' ||
myString.Location( (char*) theAcsMethod, afterEnd, Length() ) != afterEnd+1) {
// insertion
int oldLen = Length();
myString.Insert( afterEnd, (char*) theAcsMethod );
myString.Insert( afterEnd, "." );
// update starting positions of the parts following the modified one
int posDelta = Length() - oldLen;
for ( int i = 1; i <= myBegPos.Length(); ++i ) {
if ( myBegPos( i ) > afterEnd )
myBegPos( i ) += posDelta;
}
added = true;
}
}
beg = afterEnd; // is a part - next search
}
return added;
}
//================================================================================
/*!
* \brief Return method name giving access to an interaface object wrapped by python class
* \retval const char* - method name
*/
//================================================================================
const char* _pyObject::AccessorMethod() const
{
return 0;
}
//================================================================================
/*!
* \brief Return ID of a father
*/
//================================================================================
_pyID _pyObject::FatherID(const _pyID & childID)
{
int colPos = childID.SearchFromEnd(':');
if ( colPos > 0 )
return childID.SubString( 1, colPos-1 );
return "";
}