smesh/src/SMESH_SWIG/smeshDC.py

3478 lines
146 KiB
Python
Raw Normal View History

# Copyright (C) 2005 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
# CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
#
# File : smesh.py
# Author : Francis KLOSS, OCC
# Module : SMESH
"""
\namespace smesh
\brief Module smesh
"""
## \package smeshDC
# To get started, please look at smeshDC::smeshDC documentation for general services of smesh package.
# You can find the smeshDC::smeshDC documentation also by the first
# item in the Data Structures list on this page.
# See also the list of Data Structures and the list of Functions
# for other classes and methods of smesh python interface.
import salome
import geompyDC
import SMESH # necessary for back compatibility
from SMESH import *
import StdMeshers
import SALOME
# import NETGENPlugin module if possible
noNETGENPlugin = 0
try:
import NETGENPlugin
except ImportError:
noNETGENPlugin = 1
pass
# Types of algo
REGULAR = 1
PYTHON = 2
COMPOSITE = 3
MEFISTO = 3
NETGEN = 4
GHS3D = 5
FULL_NETGEN = 6
NETGEN_2D = 7
NETGEN_1D2D = NETGEN
NETGEN_1D2D3D = FULL_NETGEN
NETGEN_FULL = FULL_NETGEN
Hexa = 8
Hexotic = 9
BLSURF = 10
# MirrorType enumeration
POINT = SMESH_MeshEditor.POINT
AXIS = SMESH_MeshEditor.AXIS
PLANE = SMESH_MeshEditor.PLANE
# Smooth_Method enumeration
LAPLACIAN_SMOOTH = SMESH_MeshEditor.LAPLACIAN_SMOOTH
CENTROIDAL_SMOOTH = SMESH_MeshEditor.CENTROIDAL_SMOOTH
# Fineness enumeration(for NETGEN)
VeryCoarse = 0
Coarse = 1
Moderate = 2
Fine = 3
VeryFine = 4
Custom = 5
PrecisionConfusion = 1e-07
def IsEqual(val1, val2, tol=PrecisionConfusion):
if abs(val1 - val2) < tol:
return True
return False
NO_NAME = "NoName"
## Gets object name
def GetName(obj):
ior = salome.orb.object_to_string(obj)
sobj = salome.myStudy.FindObjectIOR(ior)
if sobj is None:
return NO_NAME
else:
attr = sobj.FindAttribute("AttributeName")[1]
return attr.Value()
## Sets name to object
def SetName(obj, name):
ior = salome.orb.object_to_string(obj)
sobj = salome.myStudy.FindObjectIOR(ior)
if not sobj is None:
attr = sobj.FindAttribute("AttributeName")[1]
attr.SetValue(name)
## Print error message if a hypothesis was not assigned.
def TreatHypoStatus(status, hypName, geomName, isAlgo):
if isAlgo:
hypType = "algorithm"
else:
hypType = "hypothesis"
pass
if status == HYP_UNKNOWN_FATAL :
reason = "for unknown reason"
elif status == HYP_INCOMPATIBLE :
reason = "this hypothesis mismatches algorithm"
elif status == HYP_NOTCONFORM :
reason = "not conform mesh would be built"
elif status == HYP_ALREADY_EXIST :
reason = hypType + " of the same dimension already assigned to this shape"
elif status == HYP_BAD_DIM :
reason = hypType + " mismatches shape"
elif status == HYP_CONCURENT :
reason = "there are concurrent hypotheses on sub-shapes"
elif status == HYP_BAD_SUBSHAPE :
reason = "shape is neither the main one, nor its subshape, nor a valid group"
elif status == HYP_BAD_GEOMETRY:
reason = "geometry mismatches algorithm's expectation"
elif status == HYP_HIDDEN_ALGO:
reason = "it is hidden by an algorithm of upper dimension generating all-dimensions elements"
elif status == HYP_HIDING_ALGO:
reason = "it hides algorithm(s) of lower dimension by generating all-dimensions elements"
else:
return
hypName = '"' + hypName + '"'
geomName= '"' + geomName+ '"'
if status < HYP_UNKNOWN_FATAL:
print hypName, "was assigned to", geomName,"but", reason
else:
print hypName, "was not assigned to",geomName,":", reason
pass
## Methods of package smesh.py: general services of MESH component.
#
# This class has been designed to provide general services of the MESH component.
# All methods of this class are accessible directly from the smesh.py package.
# Use these methods to create an empty mesh, to import mesh from a file,
# and also to create patterns and filtering criteria.
class smeshDC(SMESH._objref_SMESH_Gen):
## To set current study and Geometry component
def init_smesh(self,theStudy,geompyD):
self.geompyD=geompyD
self.SetGeomEngine(geompyD)
self.SetCurrentStudy(theStudy)
## Create an empty Mesh. This mesh can have underlying geometry.
# @param obj Geometrical object to build the mesh on. If not defined,
# the mesh will not have underlying geometry.
# @param name A name for the new mesh.
# @return instance of Mesh class.
def Mesh(self, obj=0, name=0):
return Mesh(self,self.geompyD,obj,name)
## Returns long value from enumeration
# To be used for SMESH.FunctorType enumeration
def EnumToLong(self,theItem):
return theItem._v
## Get PointStruct from vertex
# @param theVertex is GEOM object(vertex)
# @return SMESH.PointStruct
def GetPointStruct(self,theVertex):
[x, y, z] = self.geompyD.PointCoordinates(theVertex)
return PointStruct(x,y,z)
## Get DirStruct from vector
# @param theVector is GEOM object(vector)
# @return SMESH.DirStruct
def GetDirStruct(self,theVector):
vertices = self.geompyD.SubShapeAll( theVector, geompyDC.ShapeType["VERTEX"] )
if(len(vertices) != 2):
print "Error: vector object is incorrect."
return None
p1 = self.geompyD.PointCoordinates(vertices[0])
p2 = self.geompyD.PointCoordinates(vertices[1])
pnt = PointStruct(p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
dirst = DirStruct(pnt)
return dirst
## Make DirStruct from a triplet
# @param x,y,z are vector components
# @return SMESH.DirStruct
def MakeDirStruct(self,x,y,z):
pnt = PointStruct(x,y,z)
return DirStruct(pnt)
## Get AxisStruct from object
# @param theObj is GEOM object(line or plane)
# @return SMESH.AxisStruct
def GetAxisStruct(self,theObj):
edges = self.geompyD.SubShapeAll( theObj, geompyDC.ShapeType["EDGE"] )
if len(edges) > 1:
vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geompyDC.ShapeType["VERTEX"] )
vertex3, vertex4 = self.geompyD.SubShapeAll( edges[1], geompyDC.ShapeType["VERTEX"] )
vertex1 = self.geompyD.PointCoordinates(vertex1)
vertex2 = self.geompyD.PointCoordinates(vertex2)
vertex3 = self.geompyD.PointCoordinates(vertex3)
vertex4 = self.geompyD.PointCoordinates(vertex4)
v1 = [vertex2[0]-vertex1[0], vertex2[1]-vertex1[1], vertex2[2]-vertex1[2]]
v2 = [vertex4[0]-vertex3[0], vertex4[1]-vertex3[1], vertex4[2]-vertex3[2]]
normal = [ v1[1]*v2[2]-v2[1]*v1[2], v1[2]*v2[0]-v2[2]*v1[0], v1[0]*v2[1]-v2[0]*v1[1] ]
axis = AxisStruct(vertex1[0], vertex1[1], vertex1[2], normal[0], normal[1], normal[2])
return axis
elif len(edges) == 1:
vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geompyDC.ShapeType["VERTEX"] )
p1 = self.geompyD.PointCoordinates( vertex1 )
p2 = self.geompyD.PointCoordinates( vertex2 )
axis = AxisStruct(p1[0], p1[1], p1[2], p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
return axis
return None
# From SMESH_Gen interface:
# ------------------------
## Set the current mode
def SetEmbeddedMode( self,theMode ):
#self.SetEmbeddedMode(theMode)
SMESH._objref_SMESH_Gen.SetEmbeddedMode(self,theMode)
## Get the current mode
def IsEmbeddedMode(self):
#return self.IsEmbeddedMode()
return SMESH._objref_SMESH_Gen.IsEmbeddedMode(self)
## Set the current study
def SetCurrentStudy( self, theStudy ):
#self.SetCurrentStudy(theStudy)
SMESH._objref_SMESH_Gen.SetCurrentStudy(self,theStudy)
## Get the current study
def GetCurrentStudy(self):
#return self.GetCurrentStudy()
return SMESH._objref_SMESH_Gen.GetCurrentStudy(self)
## Create Mesh object importing data from given UNV file
# @return an instance of Mesh class
def CreateMeshesFromUNV( self,theFileName ):
aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromUNV(self,theFileName)
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
return aMesh
## Create Mesh object(s) importing data from given MED file
# @return a list of Mesh class instances
def CreateMeshesFromMED( self,theFileName ):
aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromMED(self,theFileName)
aMeshes = []
for iMesh in range(len(aSmeshMeshes)) :
aMesh = Mesh(self, self.geompyD, aSmeshMeshes[iMesh])
aMeshes.append(aMesh)
return aMeshes, aStatus
## Create Mesh object importing data from given STL file
# @return an instance of Mesh class
def CreateMeshesFromSTL( self, theFileName ):
aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromSTL(self,theFileName)
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
return aMesh
## From SMESH_Gen interface
# @return list of integer values
def GetSubShapesId( self, theMainObject, theListOfSubObjects ):
return SMESH._objref_SMESH_Gen.GetSubShapesId(self,theMainObject, theListOfSubObjects)
## From SMESH_Gen interface. Creates pattern
# @return an instance of SMESH_Pattern
def GetPattern(self):
return SMESH._objref_SMESH_Gen.GetPattern(self)
# Filtering. Auxiliary functions:
# ------------------------------
## Creates an empty criterion
# @return SMESH.Filter.Criterion
def GetEmptyCriterion(self):
Type = self.EnumToLong(FT_Undefined)
Compare = self.EnumToLong(FT_Undefined)
Threshold = 0
ThresholdStr = ""
ThresholdID = ""
UnaryOp = self.EnumToLong(FT_Undefined)
BinaryOp = self.EnumToLong(FT_Undefined)
Tolerance = 1e-07
TypeOfElement = ALL
Precision = -1 ##@1e-07
return Filter.Criterion(Type, Compare, Threshold, ThresholdStr, ThresholdID,
UnaryOp, BinaryOp, Tolerance, TypeOfElement, Precision)
## Creates a criterion by given parameters
# @param elementType is the type of elements(NODE, EDGE, FACE, VOLUME)
# @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
# @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
# @param Treshold is threshold value (range of ids as string, shape, numeric)
# @param UnaryOp is FT_LogicalNOT or FT_Undefined
# @param BinaryOp is binary logical operation FT_LogicalAND, FT_LogicalOR or
# FT_Undefined(must be for the last criterion in criteria)
# @return SMESH.Filter.Criterion
def GetCriterion(self,elementType,
CritType,
Compare = FT_EqualTo,
Treshold="",
UnaryOp=FT_Undefined,
BinaryOp=FT_Undefined):
aCriterion = self.GetEmptyCriterion()
aCriterion.TypeOfElement = elementType
aCriterion.Type = self.EnumToLong(CritType)
aTreshold = Treshold
if Compare in [FT_LessThan, FT_MoreThan, FT_EqualTo]:
aCriterion.Compare = self.EnumToLong(Compare)
elif Compare == "=" or Compare == "==":
aCriterion.Compare = self.EnumToLong(FT_EqualTo)
elif Compare == "<":
aCriterion.Compare = self.EnumToLong(FT_LessThan)
elif Compare == ">":
aCriterion.Compare = self.EnumToLong(FT_MoreThan)
else:
aCriterion.Compare = self.EnumToLong(FT_EqualTo)
aTreshold = Compare
if CritType in [FT_BelongToGeom, FT_BelongToPlane, FT_BelongToGenSurface,
FT_BelongToCylinder, FT_LyingOnGeom]:
# Check treshold
if isinstance(aTreshold, geompyDC.GEOM._objref_GEOM_Object):
aCriterion.ThresholdStr = GetName(aTreshold)
aCriterion.ThresholdID = salome.ObjectToID(aTreshold)
else:
print "Error: Treshold should be a shape."
return None
elif CritType == FT_RangeOfIds:
# Check treshold
if isinstance(aTreshold, str):
aCriterion.ThresholdStr = aTreshold
else:
print "Error: Treshold should be a string."
return None
elif CritType in [FT_FreeBorders, FT_FreeEdges, FT_BadOrientedVolume]:
# Here we do not need treshold
if aTreshold == FT_LogicalNOT:
aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
elif aTreshold in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = aTreshold
else:
# Check treshold
try:
aTreshold = float(aTreshold)
aCriterion.Threshold = aTreshold
except:
print "Error: Treshold should be a number."
return None
if Treshold == FT_LogicalNOT or UnaryOp == FT_LogicalNOT:
aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
if Treshold in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = self.EnumToLong(Treshold)
if UnaryOp in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = self.EnumToLong(UnaryOp)
if BinaryOp in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = self.EnumToLong(BinaryOp)
return aCriterion
## Creates filter by given parameters of criterion
# @param elementType is the type of elements in the group
# @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
# @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
# @param Treshold is threshold value (range of id ids as string, shape, numeric)
# @param UnaryOp is FT_LogicalNOT or FT_Undefined
# @return SMESH_Filter
def GetFilter(self,elementType,
CritType=FT_Undefined,
Compare=FT_EqualTo,
Treshold="",
UnaryOp=FT_Undefined):
aCriterion = self.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
aFilterMgr = self.CreateFilterManager()
aFilter = aFilterMgr.CreateFilter()
aCriteria = []
aCriteria.append(aCriterion)
aFilter.SetCriteria(aCriteria)
return aFilter
## Creates numerical functor by its type
# @param theCrierion is FT_...; functor type
# @return SMESH_NumericalFunctor
def GetFunctor(self,theCriterion):
aFilterMgr = self.CreateFilterManager()
if theCriterion == FT_AspectRatio:
return aFilterMgr.CreateAspectRatio()
elif theCriterion == FT_AspectRatio3D:
return aFilterMgr.CreateAspectRatio3D()
elif theCriterion == FT_Warping:
return aFilterMgr.CreateWarping()
elif theCriterion == FT_MinimumAngle:
return aFilterMgr.CreateMinimumAngle()
elif theCriterion == FT_Taper:
return aFilterMgr.CreateTaper()
elif theCriterion == FT_Skew:
return aFilterMgr.CreateSkew()
elif theCriterion == FT_Area:
return aFilterMgr.CreateArea()
elif theCriterion == FT_Volume3D:
return aFilterMgr.CreateVolume3D()
elif theCriterion == FT_MultiConnection:
return aFilterMgr.CreateMultiConnection()
elif theCriterion == FT_MultiConnection2D:
return aFilterMgr.CreateMultiConnection2D()
elif theCriterion == FT_Length:
return aFilterMgr.CreateLength()
elif theCriterion == FT_Length2D:
return aFilterMgr.CreateLength2D()
else:
print "Error: given parameter is not numerucal functor type."
import omniORB
#Register the new proxy for SMESH_Gen
omniORB.registerObjref(SMESH._objref_SMESH_Gen._NP_RepositoryId, smeshDC)
# Public class: Mesh
# ==================
## Class to define a mesh
#
# This class allows to define and manage a mesh.
# It has a set of methods to build a mesh on the given geometry, including definition of sub-meshes.
# Also it has methods to define groups of mesh elements, to modify a mesh (by addition of
# new nodes and elements and by changind of existing entities), to take information
# about a mesh and to export a mesh into different formats.
class Mesh:
geom = 0
mesh = 0
editor = 0
## Constructor
#
# Creates mesh on the shape \a obj (or the empty mesh if obj is equal to 0),
# sets GUI name of this mesh to \a name.
# @param obj Shape to be meshed or SMESH_Mesh object
# @param name Study name of the mesh
def __init__(self, smeshpyD, geompyD, obj=0, name=0):
self.smeshpyD=smeshpyD
self.geompyD=geompyD
if obj is None:
obj = 0
if obj != 0:
if isinstance(obj, geompyDC.GEOM._objref_GEOM_Object):
self.geom = obj
self.mesh = self.smeshpyD.CreateMesh(self.geom)
elif isinstance(obj, SMESH._objref_SMESH_Mesh):
self.SetMesh(obj)
else:
self.mesh = self.smeshpyD.CreateEmptyMesh()
if name != 0:
SetName(self.mesh, name)
elif obj != 0:
SetName(self.mesh, GetName(obj))
self.editor = self.mesh.GetMeshEditor()
## Method that inits the Mesh object from instance of SMESH_Mesh interface
# @param theMesh is SMESH_Mesh object
def SetMesh(self, theMesh):
self.mesh = theMesh
self.geom = self.mesh.GetShapeToMesh()
## Method that returns the mesh, that is instance of SMESH_Mesh interface
# @return SMESH_Mesh object
def GetMesh(self):
return self.mesh
## Get mesh name
# @return name of the mesh as a string
def GetName(self):
name = GetName(self.GetMesh())
return name
## Set name to mesh
# @param name a new name for the mesh
def SetName(self, name):
SetName(self.GetMesh(), name)
## Get the subMesh object associated to \a theSubObject geometrical object.
# The subMesh object gives access to nodes and elements IDs.
# @param theSubObject A geometrical object (shape)
# @return object of type SMESH_SubMesh, representing part of mesh, which lays on the given shape
def GetSubMesh(self, theSubObject, name):
submesh = self.mesh.GetSubMesh(theSubObject, name)
return submesh
## Method that returns the shape associated to the mesh
# @return GEOM_Object
def GetShape(self):
return self.geom
## Method that associates given shape to the mesh(entails the mesh recreation)
# @param geom shape to be meshed (GEOM_Object)
def SetShape(self, geom):
self.mesh = self.smeshpyD.CreateMesh(geom)
## Return true if hypotheses are defined well
# @param theSubObject subshape of a mesh shape
# @return True or False
def IsReadyToCompute(self, theSubObject):
return self.smeshpyD.IsReadyToCompute(self.mesh, theSubObject)
## Return errors of hypotheses definition.
# Errors list is empty if everything is OK.
# @param theSubObject subshape of a mesh shape
# @return a list of errors
def GetAlgoState(self, theSubObject):
return self.smeshpyD.GetAlgoState(self.mesh, theSubObject)
## Return geometrical object the given element is built on.
# The returned geometrical object, if not nil, is either found in the
# study or is published by this method with the given name
# @param theElementID an id of the mesh element
# @param theGeomName user defined name of geometrical object
# @return GEOM::GEOM_Object instance
def GetGeometryByMeshElement(self, theElementID, theGeomName):
return self.smeshpyD.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName )
## Returns mesh dimension depending on that of the underlying shape
# @return mesh dimension as an integer value [0,3]
def MeshDimension(self):
shells = self.geompyD.SubShapeAllIDs( self.geom, geompyDC.ShapeType["SHELL"] )
if len( shells ) > 0 :
return 3
elif self.geompyD.NumberOfFaces( self.geom ) > 0 :
return 2
elif self.geompyD.NumberOfEdges( self.geom ) > 0 :
return 1
else:
return 0;
pass
## Creates a segment discretization 1D algorithm.
# If the optional \a algo parameter is not set, this algorithm is REGULAR.
# \n If the optional \a geom parameter is not set, this algorithm is global.
# Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param algo type of desired algorithm. Possible values are:
# - smesh.REGULAR,
# - smesh.PYTHON for discretization via python function,
# - smesh.COMPOSITE for meshing a set of edges on one face side as a whole.
# @param geom If defined, subshape to be meshed
# @return instance of Mesh_Segment or Mesh_Segment_Python, or Mesh_CompositeSegment class
def Segment(self, algo=REGULAR, geom=0):
## if Segment(geom) is called by mistake
if isinstance( algo, geompyDC.GEOM._objref_GEOM_Object):
algo, geom = geom, algo
if not algo: algo = REGULAR
pass
if algo == REGULAR:
return Mesh_Segment(self, geom)
elif algo == PYTHON:
return Mesh_Segment_Python(self, geom)
elif algo == COMPOSITE:
return Mesh_CompositeSegment(self, geom)
else:
return Mesh_Segment(self, geom)
## Enable creation of nodes and segments usable by 2D algoritms.
# Added nodes and segments must be bound to edges and vertices by
# SetNodeOnVertex(), SetNodeOnEdge() and SetMeshElementOnShape()
# If the optional \a geom parameter is not sets, this algorithm is global.
# \n Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param geom subshape to be manually meshed
# @return StdMeshers_UseExisting_1D algorithm that generates nothing
def UseExistingSegments(self, geom=0):
algo = Mesh_UseExisting(1,self,geom)
return algo.GetAlgorithm()
## Enable creation of nodes and faces usable by 3D algoritms.
# Added nodes and faces must be bound to geom faces by SetNodeOnFace()
# and SetMeshElementOnShape()
# If the optional \a geom parameter is not sets, this algorithm is global.
# \n Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param geom subshape to be manually meshed
# @return StdMeshers_UseExisting_2D algorithm that generates nothing
def UseExistingFaces(self, geom=0):
algo = Mesh_UseExisting(2,self,geom)
return algo.GetAlgorithm()
## Creates a triangle 2D algorithm for faces.
# If the optional \a geom parameter is not sets, this algorithm is global.
# \n Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param algo values are: smesh.MEFISTO || smesh.NETGEN_1D2D || smesh.NETGEN_2D || smesh.BLSURF
# @param geom If defined, subshape to be meshed (GEOM_Object)
# @return an instance of Mesh_Triangle algorithm
def Triangle(self, algo=MEFISTO, geom=0):
## if Triangle(geom) is called by mistake
if (isinstance(algo, geompyDC.GEOM._objref_GEOM_Object)):
geom = algo
algo = MEFISTO
return Mesh_Triangle(self, algo, geom)
## Creates a quadrangle 2D algorithm for faces.
# If the optional \a geom parameter is not sets, this algorithm is global.
# \n Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param geom If defined, subshape to be meshed (GEOM_Object)
# @return an instance of Mesh_Quadrangle algorithm
def Quadrangle(self, geom=0):
return Mesh_Quadrangle(self, geom)
## Creates a tetrahedron 3D algorithm for solids.
# The parameter \a algo permits to choice the algorithm: NETGEN or GHS3D
# If the optional \a geom parameter is not sets, this algorithm is global.
# \n Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param algo values are: smesh.NETGEN, smesh.GHS3D, smesh.FULL_NETGEN
# @param geom If defined, subshape to be meshed (GEOM_Object)
# @return an instance of Mesh_Tetrahedron algorithm
def Tetrahedron(self, algo=NETGEN, geom=0):
## if Tetrahedron(geom) is called by mistake
if ( isinstance( algo, geompyDC.GEOM._objref_GEOM_Object)):
algo, geom = geom, algo
if not algo: algo = NETGEN
pass
return Mesh_Tetrahedron(self, algo, geom)
## Creates a hexahedron 3D algorithm for solids.
# If the optional \a geom parameter is not sets, this algorithm is global.
# \n Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param algo possible values are: smesh.Hexa, smesh.Hexotic
# @param geom If defined, subshape to be meshed (GEOM_Object)
# @return an instance of Mesh_Hexahedron algorithm
def Hexahedron(self, algo=Hexa, geom=0):
## if Hexahedron(geom, algo) or Hexahedron(geom) is called by mistake
if ( isinstance(algo, geompyDC.GEOM._objref_GEOM_Object) ):
if geom in [Hexa, Hexotic]: algo, geom = geom, algo
elif geom == 0: algo, geom = Hexa, algo
return Mesh_Hexahedron(self, algo, geom)
## Deprecated, only for compatibility!
# @return an instance of Mesh_Netgen algorithm
def Netgen(self, is3D, geom=0):
return Mesh_Netgen(self, is3D, geom)
## Creates a projection 1D algorithm for edges.
# If the optional \a geom parameter is not sets, this algorithm is global.
# Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param geom If defined, subshape to be meshed
# @return an instance of Mesh_Projection1D algorithm
def Projection1D(self, geom=0):
return Mesh_Projection1D(self, geom)
## Creates a projection 2D algorithm for faces.
# If the optional \a geom parameter is not sets, this algorithm is global.
# Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param geom If defined, subshape to be meshed
# @return an instance of Mesh_Projection2D algorithm
def Projection2D(self, geom=0):
return Mesh_Projection2D(self, geom)
## Creates a projection 3D algorithm for solids.
# If the optional \a geom parameter is not sets, this algorithm is global.
# Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param geom If defined, subshape to be meshed
# @return an instance of Mesh_Projection3D algorithm
def Projection3D(self, geom=0):
return Mesh_Projection3D(self, geom)
## Creates a 3D extrusion (Prism 3D) or RadialPrism 3D algorithm for solids.
# If the optional \a geom parameter is not sets, this algorithm is global.
# Otherwise, this algorithm define a submesh based on \a geom subshape.
# @param geom If defined, subshape to be meshed
# @return an instance of Mesh_Prism3D or Mesh_RadialPrism3D algorithm
def Prism(self, geom=0):
shape = geom
if shape==0:
shape = self.geom
nbSolids = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SOLID"] ))
nbShells = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SHELL"] ))
if nbSolids == 0 or nbSolids == nbShells:
return Mesh_Prism3D(self, geom)
return Mesh_RadialPrism3D(self, geom)
## Compute the mesh and return the status of the computation
# @return True or False
def Compute(self, geom=0):
if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object):
if self.geom == 0:
print "Compute impossible: mesh is not constructed on geom shape."
return 0
else:
geom = self.geom
ok = False
try:
ok = self.smeshpyD.Compute(self.mesh, geom)
except SALOME.SALOME_Exception, ex:
print "Mesh computation failed, exception caught:"
print " ", ex.details.text
except:
import traceback
print "Mesh computation failed, exception caught:"
traceback.print_exc()
if not ok:
errors = self.smeshpyD.GetAlgoState( self.mesh, geom )
allReasons = ""
for err in errors:
if err.isGlobalAlgo:
glob = "global"
else:
glob = "local"
pass
dim = err.algoDim
name = err.algoName
if len(name) == 0:
reason = '%s %sD algorithm is missing' % (glob, dim)
elif err.state == HYP_MISSING:
reason = ('%s %sD algorithm "%s" misses %sD hypothesis'
% (glob, dim, name, dim))
elif err.state == HYP_NOTCONFORM:
reason = 'Global "Not Conform mesh allowed" hypothesis is missing'
elif err.state == HYP_BAD_PARAMETER:
reason = ('Hypothesis of %s %sD algorithm "%s" has a bad parameter value'
% ( glob, dim, name ))
elif err.state == HYP_BAD_GEOMETRY:
reason = ('%s %sD algorithm "%s" is assigned to geometry mismatching'
'its expectation' % ( glob, dim, name ))
else:
reason = "For unknown reason."+\
" Revise Mesh.Compute() implementation in smeshDC.py!"
pass
if allReasons != "":
allReasons += "\n"
pass
allReasons += reason
pass
if allReasons != "":
print '"' + GetName(self.mesh) + '"',"has not been computed:"
print allReasons
else:
print '"' + GetName(self.mesh) + '"',"has not been computed."
pass
pass
if salome.sg.hasDesktop():
smeshgui = salome.ImportComponentGUI("SMESH")
smeshgui.Init(salome.myStudyId)
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), ok, (self.NbNodes()==0) )
salome.sg.updateObjBrowser(1)
pass
return ok
## Compute tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN
# The parameter \a fineness [0,-1] defines mesh fineness
# @return True or False
def AutomaticTetrahedralization(self, fineness=0):
dim = self.MeshDimension()
# assign hypotheses
self.RemoveGlobalHypotheses()
self.Segment().AutomaticLength(fineness)
if dim > 1 :
self.Triangle().LengthFromEdges()
pass
if dim > 2 :
self.Tetrahedron(NETGEN)
pass
return self.Compute()
## Compute hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
# The parameter \a fineness [0,-1] defines mesh fineness
# @return True or False
def AutomaticHexahedralization(self, fineness=0):
dim = self.MeshDimension()
# assign hypotheses
self.RemoveGlobalHypotheses()
self.Segment().AutomaticLength(fineness)
if dim > 1 :
self.Quadrangle()
pass
if dim > 2 :
self.Hexahedron()
pass
return self.Compute()
## Assign hypothesis
# @param hyp is a hypothesis to assign
# @param geom is subhape of mesh geometry
# @return SMESH.Hypothesis_Status
def AddHypothesis(self, hyp, geom=0):
if isinstance( hyp, Mesh_Algorithm ):
hyp = hyp.GetAlgorithm()
pass
if not geom:
geom = self.geom
pass
status = self.mesh.AddHypothesis(geom, hyp)
isAlgo = hyp._narrow( SMESH_Algo )
TreatHypoStatus( status, GetName( hyp ), GetName( geom ), isAlgo )
return status
## Unassign hypothesis
# @param hyp is a hypothesis to unassign
# @param geom is subhape of mesh geometry
# @return SMESH.Hypothesis_Status
def RemoveHypothesis(self, hyp, geom=0):
if isinstance( hyp, Mesh_Algorithm ):
hyp = hyp.GetAlgorithm()
pass
if not geom:
geom = self.geom
pass
status = self.mesh.RemoveHypothesis(geom, hyp)
return status
## Get the list of hypothesis added on a geom
# @param geom is subhape of mesh geometry
# @return sequence of SMESH_Hypothesis
def GetHypothesisList(self, geom):
return self.mesh.GetHypothesisList( geom )
## Removes all global hypotheses
def RemoveGlobalHypotheses(self):
current_hyps = self.mesh.GetHypothesisList( self.geom )
for hyp in current_hyps:
self.mesh.RemoveHypothesis( self.geom, hyp )
pass
pass
## Create a mesh group based on geometric object \a grp
# and give a \a name, \n if this parameter is not defined
# the name is the same as the geometric group name \n
# Note: Works like GroupOnGeom().
# @param grp is a geometric group, a vertex, an edge, a face or a solid
# @param name is the name of the mesh group
# @return SMESH_GroupOnGeom
def Group(self, grp, name=""):
return self.GroupOnGeom(grp, name)
## Deprecated, only for compatibility! Please, use ExportMED() method instead.
# Export the mesh in a file with the MED format and choice the \a version of MED format
# @param f is the file name
# @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2
def ExportToMED(self, f, version, opt=0):
self.mesh.ExportToMED(f, opt, version)
## Export the mesh in a file with the MED format
# @param f is the file name
# @param auto_groups boolean parameter for creating/not creating
# the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
# the typical use is auto_groups=false.
# @param version MED format version(MED_V2_1 or MED_V2_2)
def ExportMED(self, f, auto_groups=0, version=MED_V2_2):
self.mesh.ExportToMED(f, auto_groups, version)
## Export the mesh in a file with the DAT format
# @param f is the file name
def ExportDAT(self, f):
self.mesh.ExportDAT(f)
## Export the mesh in a file with the UNV format
# @param f is the file name
def ExportUNV(self, f):
self.mesh.ExportUNV(f)
## Export the mesh in a file with the STL format
# @param f is the file name
# @param ascii defined the kind of file contents
def ExportSTL(self, f, ascii=1):
self.mesh.ExportSTL(f, ascii)
# Operations with groups:
# ----------------------
## Creates an empty mesh group
# @param elementType is the type of elements in the group
# @param name is the name of the mesh group
# @return SMESH_Group
def CreateEmptyGroup(self, elementType, name):
return self.mesh.CreateGroup(elementType, name)
## Creates a mesh group based on geometric object \a grp
# and give a \a name, \n if this parameter is not defined
# the name is the same as the geometric group name
# @param grp is a geometric group, a vertex, an edge, a face or a solid
# @param name is the name of the mesh group
# @return SMESH_GroupOnGeom
def GroupOnGeom(self, grp, name="", typ=None):
if name == "":
name = grp.GetName()
if typ == None:
tgeo = str(grp.GetShapeType())
if tgeo == "VERTEX":
typ = NODE
elif tgeo == "EDGE":
typ = EDGE
elif tgeo == "FACE":
typ = FACE
elif tgeo == "SOLID":
typ = VOLUME
elif tgeo == "SHELL":
typ = VOLUME
elif tgeo == "COMPOUND":
if len( self.geompyD.GetObjectIDs( grp )) == 0:
print "Mesh.Group: empty geometric group", GetName( grp )
return 0
tgeo = self.geompyD.GetType(grp)
if tgeo == geompyDC.ShapeType["VERTEX"]:
typ = NODE
elif tgeo == geompyDC.ShapeType["EDGE"]:
typ = EDGE
elif tgeo == geompyDC.ShapeType["FACE"]:
typ = FACE
elif tgeo == geompyDC.ShapeType["SOLID"]:
typ = VOLUME
if typ == None:
print "Mesh.Group: bad first argument: expected a group, a vertex, an edge, a face or a solid"
return 0
else:
return self.mesh.CreateGroupFromGEOM(typ, name, grp)
## Create a mesh group by the given ids of elements
# @param groupName is the name of the mesh group
# @param elementType is the type of elements in the group
# @param elemIDs is the list of ids
# @return SMESH_Group
def MakeGroupByIds(self, groupName, elementType, elemIDs):
group = self.mesh.CreateGroup(elementType, groupName)
group.Add(elemIDs)
return group
## Create a mesh group by the given conditions
# @param groupName is the name of the mesh group
# @param elementType is the type of elements in the group
# @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
# @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
# @param Treshold is threshold value (range of id ids as string, shape, numeric)
# @param UnaryOp is FT_LogicalNOT or FT_Undefined
# @return SMESH_Group
def MakeGroup(self,
groupName,
elementType,
CritType=FT_Undefined,
Compare=FT_EqualTo,
Treshold="",
UnaryOp=FT_Undefined):
aCriterion = self.smeshpyD.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
group = self.MakeGroupByCriterion(groupName, aCriterion)
return group
## Create a mesh group by the given criterion
# @param groupName is the name of the mesh group
# @param Criterion is the instance of Criterion class
# @return SMESH_Group
def MakeGroupByCriterion(self, groupName, Criterion):
aFilterMgr = self.smeshpyD.CreateFilterManager()
aFilter = aFilterMgr.CreateFilter()
aCriteria = []
aCriteria.append(Criterion)
aFilter.SetCriteria(aCriteria)
group = self.MakeGroupByFilter(groupName, aFilter)
return group
## Create a mesh group by the given criteria(list of criterions)
# @param groupName is the name of the mesh group
# @param Criteria is the list of criterions
# @return SMESH_Group
def MakeGroupByCriteria(self, groupName, theCriteria):
aFilterMgr = self.smeshpyD.CreateFilterManager()
aFilter = aFilterMgr.CreateFilter()
aFilter.SetCriteria(theCriteria)
group = self.MakeGroupByFilter(groupName, aFilter)
return group
## Create a mesh group by the given filter
# @param groupName is the name of the mesh group
# @param Criterion is the instance of Filter class
# @return SMESH_Group
def MakeGroupByFilter(self, groupName, theFilter):
anIds = theFilter.GetElementsId(self.mesh)
anElemType = theFilter.GetElementType()
group = self.MakeGroupByIds(groupName, anElemType, anIds)
return group
## Pass mesh elements through the given filter and return ids
# @param theFilter is SMESH_Filter
# @return list of ids
def GetIdsFromFilter(self, theFilter):
return theFilter.GetElementsId(self.mesh)
## Verify whether 2D mesh element has free edges(edges connected to one face only)\n
# Returns list of special structures(borders).
# @return list of SMESH.FreeEdges.Border structure: edge id and two its nodes ids.
def GetFreeBorders(self):
aFilterMgr = self.smeshpyD.CreateFilterManager()
aPredicate = aFilterMgr.CreateFreeEdges()
aPredicate.SetMesh(self.mesh)
aBorders = aPredicate.GetBorders()
return aBorders
## Remove a group
def RemoveGroup(self, group):
self.mesh.RemoveGroup(group)
## Remove group with its contents
def RemoveGroupWithContents(self, group):
self.mesh.RemoveGroupWithContents(group)
## Get the list of groups existing in the mesh
# @return sequence of SMESH_GroupBase
def GetGroups(self):
return self.mesh.GetGroups()
## Get number of groups existing in the mesh
# @return quantity of groups as an integer value
def NbGroups(self):
return self.mesh.NbGroups()
## Get the list of names of groups existing in the mesh
# @return list of strings
def GetGroupNames(self):
groups = self.GetGroups()
names = []
for group in groups:
names.append(group.GetName())
return names
## Union of two groups
# New group is created. All mesh elements that are
# present in initial groups are added to the new one
# @return an instance of SMESH_Group
def UnionGroups(self, group1, group2, name):
return self.mesh.UnionGroups(group1, group2, name)
## Intersection of two groups
# New group is created. All mesh elements that are
# present in both initial groups are added to the new one.
# @return an instance of SMESH_Group
def IntersectGroups(self, group1, group2, name):
return self.mesh.IntersectGroups(group1, group2, name)
## Cut of two groups
# New group is created. All mesh elements that are present in
# main group but do not present in tool group are added to the new one
# @return an instance of SMESH_Group
def CutGroups(self, mainGroup, toolGroup, name):
return self.mesh.CutGroups(mainGroup, toolGroup, name)
# Get some info about mesh:
# ------------------------
## Get the log of nodes and elements added or removed since previous
# clear of the log.
# @param clearAfterGet log is emptied after Get (safe if concurrents access)
# @return list of log_block structures:
# commandType
# number
# coords
# indexes
def GetLog(self, clearAfterGet):
return self.mesh.GetLog(clearAfterGet)
## Clear the log of nodes and elements added or removed since previous
# clear. Must be used immediately after GetLog if clearAfterGet is false.
def ClearLog(self):
self.mesh.ClearLog()
## Toggle auto color mode on the object.
# @param theAutoColor flag which toggles auto color mode.
def SetAutoColor(self, theAutoColor):
self.mesh.SetAutoColor(theAutoColor)
## Get flag of object auto color mode.
# @return True or False
def GetAutoColor(self):
return self.mesh.GetAutoColor()
## Get the internal Id
# @return integer value, which is the internal Id of the mesh
def GetId(self):
return self.mesh.GetId()
## Get the study Id
# @return integer value, which is the study Id of the mesh
def GetStudyId(self):
return self.mesh.GetStudyId()
## Check group names for duplications.
# Consider maximum group name length stored in MED file.
# @return True or False
def HasDuplicatedGroupNamesMED(self):
return self.mesh.HasDuplicatedGroupNamesMED()
## Obtain mesh editor tool
# @return an instance of SMESH_MeshEditor
def GetMeshEditor(self):
return self.mesh.GetMeshEditor()
## Get MED Mesh
# @return an instance of SALOME_MED::MESH
def GetMEDMesh(self):
return self.mesh.GetMEDMesh()
# Get informations about mesh contents:
# ------------------------------------
## Returns number of nodes in mesh
# @return an integer value
def NbNodes(self):
return self.mesh.NbNodes()
## Returns number of elements in mesh
# @return an integer value
def NbElements(self):
return self.mesh.NbElements()
## Returns number of edges in mesh
# @return an integer value
def NbEdges(self):
return self.mesh.NbEdges()
## Returns number of edges with given order in mesh
# @param elementOrder is order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
def NbEdgesOfOrder(self, elementOrder):
return self.mesh.NbEdgesOfOrder(elementOrder)
## Returns number of faces in mesh
# @return an integer value
def NbFaces(self):
return self.mesh.NbFaces()
## Returns number of faces with given order in mesh
# @param elementOrder is order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
def NbFacesOfOrder(self, elementOrder):
return self.mesh.NbFacesOfOrder(elementOrder)
## Returns number of triangles in mesh
# @return an integer value
def NbTriangles(self):
return self.mesh.NbTriangles()
## Returns number of triangles with given order in mesh
# @param elementOrder is order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
def NbTrianglesOfOrder(self, elementOrder):
return self.mesh.NbTrianglesOfOrder(elementOrder)
## Returns number of quadrangles in mesh
# @return an integer value
def NbQuadrangles(self):
return self.mesh.NbQuadrangles()
## Returns number of quadrangles with given order in mesh
# @param elementOrder is order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
def NbQuadranglesOfOrder(self, elementOrder):
return self.mesh.NbQuadranglesOfOrder(elementOrder)
## Returns number of polygons in mesh
# @return an integer value
def NbPolygons(self):
return self.mesh.NbPolygons()
## Returns number of volumes in mesh
# @return an integer value
def NbVolumes(self):
return self.mesh.NbVolumes()
## Returns number of volumes with given order in mesh
# @param elementOrder is order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
def NbVolumesOfOrder(self, elementOrder):
return self.mesh.NbVolumesOfOrder(elementOrder)
## Returns number of tetrahedrons in mesh
# @return an integer value
def NbTetras(self):
return self.mesh.NbTetras()
## Returns number of tetrahedrons with given order in mesh
# @param elementOrder is order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
def NbTetrasOfOrder(self, elementOrder):
return self.mesh.NbTetrasOfOrder(elementOrder)
## Returns number of hexahedrons in mesh
# @return an integer value
def NbHexas(self):
return self.mesh.NbHexas()
## Returns number of hexahedrons with given order in mesh
# @param elementOrder is order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
def NbHexasOfOrder(self, elementOrder):
return self.mesh.NbHexasOfOrder(elementOrder)
## Returns number of pyramids in mesh
# @return an integer value
def NbPyramids(self):
return self.mesh.NbPyramids()
## Returns number of pyramids with given order in mesh
# @param elementOrder is order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
def NbPyramidsOfOrder(self, elementOrder):
return self.mesh.NbPyramidsOfOrder(elementOrder)
## Returns number of prisms in mesh
# @return an integer value
def NbPrisms(self):
return self.mesh.NbPrisms()
## Returns number of prisms with given order in mesh
# @param elementOrder is order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
def NbPrismsOfOrder(self, elementOrder):
return self.mesh.NbPrismsOfOrder(elementOrder)
## Returns number of polyhedrons in mesh
# @return an integer value
def NbPolyhedrons(self):
return self.mesh.NbPolyhedrons()
## Returns number of submeshes in mesh
# @return an integer value
def NbSubMesh(self):
return self.mesh.NbSubMesh()
## Returns list of mesh elements ids
# @return list of integer values
def GetElementsId(self):
return self.mesh.GetElementsId()
## Returns list of ids of mesh elements with given type
# @param elementType is required type of elements
# @return list of integer values
def GetElementsByType(self, elementType):
return self.mesh.GetElementsByType(elementType)
## Returns list of mesh nodes ids
# @return list of integer values
def GetNodesId(self):
return self.mesh.GetNodesId()
# Get informations about mesh elements:
# ------------------------------------
## Returns type of mesh element
# @return value from SMESH::ElementType enumeration
def GetElementType(self, id, iselem):
return self.mesh.GetElementType(id, iselem)
## Returns list of submesh elements ids
# @param Shape is geom object(subshape) IOR
# Shape must be subshape of a ShapeToMesh()
# @return list of integer values
def GetSubMeshElementsId(self, Shape):
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
ShapeID = Shape.GetSubShapeIndices()[0]
else:
ShapeID = Shape
return self.mesh.GetSubMeshElementsId(ShapeID)
## Returns list of submesh nodes ids
# @param Shape is geom object(subshape) IOR
# Shape must be subshape of a ShapeToMesh()
# @return list of integer values
def GetSubMeshNodesId(self, Shape, all):
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
ShapeID = Shape.GetSubShapeIndices()[0]
else:
ShapeID = Shape
return self.mesh.GetSubMeshNodesId(ShapeID, all)
## Returns list of ids of submesh elements with given type
# @param Shape is geom object(subshape) IOR
# Shape must be subshape of a ShapeToMesh()
# @return list of integer values
def GetSubMeshElementType(self, Shape):
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
ShapeID = Shape.GetSubShapeIndices()[0]
else:
ShapeID = Shape
return self.mesh.GetSubMeshElementType(ShapeID)
## Get mesh description
# @return string value
def Dump(self):
return self.mesh.Dump()
# Get information about nodes and elements of mesh by its ids:
# -----------------------------------------------------------
## Get XYZ coordinates of node
# \n If there is not node for given ID - returns empty list
# @return a list of double precision values
def GetNodeXYZ(self, id):
return self.mesh.GetNodeXYZ(id)
## For given node returns list of IDs of inverse elements
# \n If there is not node for given ID - returns empty list
# @return list of integer values
def GetNodeInverseElements(self, id):
return self.mesh.GetNodeInverseElements(id)
## @brief Return position of a node on shape
# @return SMESH::NodePosition
def GetNodePosition(self,NodeID):
return self.mesh.GetNodePosition(NodeID)
## If given element is node returns IDs of shape from position
# \n If there is not node for given ID - returns -1
# @return integer value
def GetShapeID(self, id):
return self.mesh.GetShapeID(id)
## For given element returns ID of result shape after
# FindShape() from SMESH_MeshEditor
# \n If there is not element for given ID - returns -1
# @return integer value
def GetShapeIDForElem(self,id):
return self.mesh.GetShapeIDForElem(id)
## Returns number of nodes for given element
# \n If there is not element for given ID - returns -1
# @return integer value
def GetElemNbNodes(self, id):
return self.mesh.GetElemNbNodes(id)
## Returns ID of node by given index for given element
# \n If there is not element for given ID - returns -1
# \n If there is not node for given index - returns -2
# @return integer value
def GetElemNode(self, id, index):
return self.mesh.GetElemNode(id, index)
## Returns IDs of nodes of given element
# @return list of integer values
def GetElemNodes(self, id):
return self.mesh.GetElemNodes(id)
## Returns true if given node is medium node in given quadratic element
def IsMediumNode(self, elementID, nodeID):
return self.mesh.IsMediumNode(elementID, nodeID)
## Returns true if given node is medium node in one of quadratic elements
def IsMediumNodeOfAnyElem(self, nodeID, elementType):
return self.mesh.IsMediumNodeOfAnyElem(nodeID, elementType)
## Returns number of edges for given element
def ElemNbEdges(self, id):
return self.mesh.ElemNbEdges(id)
## Returns number of faces for given element
def ElemNbFaces(self, id):
return self.mesh.ElemNbFaces(id)
## Returns true if given element is polygon
def IsPoly(self, id):
return self.mesh.IsPoly(id)
## Returns true if given element is quadratic
def IsQuadratic(self, id):
return self.mesh.IsQuadratic(id)
## Returns XYZ coordinates of bary center for given element
# \n If there is not element for given ID - returns empty list
# @return a list of three double values
def BaryCenter(self, id):
return self.mesh.BaryCenter(id)
# Mesh edition (SMESH_MeshEditor functionality):
# ---------------------------------------------
## Removes elements from mesh by ids
# @param IDsOfElements is list of ids of elements to remove
# @return True or False
def RemoveElements(self, IDsOfElements):
return self.editor.RemoveElements(IDsOfElements)
## Removes nodes from mesh by ids
# @param IDsOfNodes is list of ids of nodes to remove
# @return True or False
def RemoveNodes(self, IDsOfNodes):
return self.editor.RemoveNodes(IDsOfNodes)
## Add node to mesh by coordinates
# @return Id of the new node
def AddNode(self, x, y, z):
return self.editor.AddNode( x, y, z)
## Create edge either linear or quadratic (this is determined
# by number of given nodes).
# @param IdsOfNodes List of node IDs for creation of element.
# Needed order of nodes in this list corresponds to description
# of MED. \n This description is located by the following link:
# http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
# @return Id of the new edge
def AddEdge(self, IDsOfNodes):
return self.editor.AddEdge(IDsOfNodes)
## Create face either linear or quadratic (this is determined
# by number of given nodes).
# @param IdsOfNodes List of node IDs for creation of element.
# Needed order of nodes in this list corresponds to description
# of MED. \n This description is located by the following link:
# http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
# @return Id of the new face
def AddFace(self, IDsOfNodes):
return self.editor.AddFace(IDsOfNodes)
## Add polygonal face to mesh by list of nodes ids
# @return Id of the new face
def AddPolygonalFace(self, IdsOfNodes):
return self.editor.AddPolygonalFace(IdsOfNodes)
## Create volume both similar and quadratic (this is determed
# by number of given nodes).
# @param IdsOfNodes List of node IDs for creation of element.
# Needed order of nodes in this list corresponds to description
# of MED. \n This description is located by the following link:
# http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
# @return Id of the new volumic element
def AddVolume(self, IDsOfNodes):
return self.editor.AddVolume(IDsOfNodes)
## Create volume of many faces, giving nodes for each face.
# @param IdsOfNodes List of node IDs for volume creation face by face.
# @param Quantities List of integer values, Quantities[i]
# gives quantity of nodes in face number i.
# @return Id of the new volumic element
def AddPolyhedralVolume (self, IdsOfNodes, Quantities):
return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities)
## Create volume of many faces, giving IDs of existing faces.
# @param IdsOfFaces List of face IDs for volume creation.
#
# Note: The created volume will refer only to nodes
# of the given faces, not to the faces itself.
# @return Id of the new volumic element
def AddPolyhedralVolumeByFaces (self, IdsOfFaces):
return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces)
## @brief Bind a node to a vertex
# @param NodeID - node ID
# @param Vertex - vertex or vertex ID
# @return True if succeed else raise an exception
def SetNodeOnVertex(self, NodeID, Vertex):
if ( isinstance( Vertex, geompyDC.GEOM._objref_GEOM_Object)):
VertexID = Vertex.GetSubShapeIndices()[0]
else:
VertexID = Vertex
try:
self.editor.SetNodeOnVertex(NodeID, VertexID)
except SALOME.SALOME_Exception, inst:
raise ValueError, inst.details.text
return True
## @brief Store node position on an edge
# @param NodeID - node ID
# @param Edge - edge or edge ID
# @param paramOnEdge - parameter on edge where the node is located
# @return True if succeed else raise an exception
def SetNodeOnEdge(self, NodeID, Edge, paramOnEdge):
if ( isinstance( Edge, geompyDC.GEOM._objref_GEOM_Object)):
EdgeID = Edge.GetSubShapeIndices()[0]
else:
EdgeID = Edge
try:
self.editor.SetNodeOnEdge(NodeID, EdgeID, paramOnEdge)
except SALOME.SALOME_Exception, inst:
raise ValueError, inst.details.text
return True
## @brief Store node position on a face
# @param NodeID - node ID
# @param Face - face or face ID
# @param u - U parameter on face where the node is located
# @param v - V parameter on face where the node is located
# @return True if succeed else raise an exception
def SetNodeOnFace(self, NodeID, Face, u, v):
if ( isinstance( Face, geompyDC.GEOM._objref_GEOM_Object)):
FaceID = Face.GetSubShapeIndices()[0]
else:
FaceID = Face
try:
self.editor.SetNodeOnFace(NodeID, FaceID, u, v)
except SALOME.SALOME_Exception, inst:
raise ValueError, inst.details.text
return True
## @brief Bind a node to a solid
# @param NodeID - node ID
# @param Solid - solid or solid ID
# @return True if succeed else raise an exception
def SetNodeInVolume(self, NodeID, Solid):
if ( isinstance( Solid, geompyDC.GEOM._objref_GEOM_Object)):
SolidID = Solid.GetSubShapeIndices()[0]
else:
SolidID = Solid
try:
self.editor.SetNodeInVolume(NodeID, SolidID)
except SALOME.SALOME_Exception, inst:
raise ValueError, inst.details.text
return True
## @brief Bind an element to a shape
# @param ElementID - element ID
# @param Shape - shape or shape ID
# @return True if succeed else raise an exception
def SetMeshElementOnShape(self, ElementID, Shape):
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
ShapeID = Shape.GetSubShapeIndices()[0]
else:
ShapeID = Shape
try:
self.editor.SetMeshElementOnShape(ElementID, ShapeID)
except SALOME.SALOME_Exception, inst:
raise ValueError, inst.details.text
return True
## Move node with given id
# @param NodeID id of the node
# @param x new X coordinate
# @param y new Y coordinate
# @param z new Z coordinate
# @return True if succeed else False
def MoveNode(self, NodeID, x, y, z):
return self.editor.MoveNode(NodeID, x, y, z)
## Find a node closest to a point
# @param x X coordinate of a point
# @param y Y coordinate of a point
# @param z Z coordinate of a point
# @return id of a node
def FindNodeClosestTo(self, x, y, z):
preview = self.mesh.GetMeshEditPreviewer()
return preview.MoveClosestNodeToPoint(x, y, z, -1)
## Find a node closest to a point and move it to a point location
# @param x X coordinate of a point
# @param y Y coordinate of a point
# @param z Z coordinate of a point
# @return id of a moved node
def MeshToPassThroughAPoint(self, x, y, z):
return self.editor.MoveClosestNodeToPoint(x, y, z, -1)
## Replace two neighbour triangles sharing Node1-Node2 link
# with ones built on the same 4 nodes but having other common link.
# @param NodeID1 first node id
# @param NodeID2 second node id
# @return false if proper faces not found
def InverseDiag(self, NodeID1, NodeID2):
return self.editor.InverseDiag(NodeID1, NodeID2)
## Replace two neighbour triangles sharing Node1-Node2 link
# with a quadrangle built on the same 4 nodes.
# @param NodeID1 first node id
# @param NodeID2 second node id
# @return false if proper faces not found
def DeleteDiag(self, NodeID1, NodeID2):
return self.editor.DeleteDiag(NodeID1, NodeID2)
## Reorient elements by ids
# @param IDsOfElements if undefined reorient all mesh elements
# @return True if succeed else False
def Reorient(self, IDsOfElements=None):
if IDsOfElements == None:
IDsOfElements = self.GetElementsId()
return self.editor.Reorient(IDsOfElements)
## Reorient all elements of the object
# @param theObject is mesh, submesh or group
# @return True if succeed else False
def ReorientObject(self, theObject):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.ReorientObject(theObject)
## Fuse neighbour triangles into quadrangles.
# @param IDsOfElements The triangles to be fused,
# @param theCriterion is FT_...; used to choose a neighbour to fuse with.
# @param MaxAngle is a max angle between element normals at which fusion
# is still performed; theMaxAngle is mesured in radians.
# @return TRUE in case of success, FALSE otherwise.
def TriToQuad(self, IDsOfElements, theCriterion, MaxAngle):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
return self.editor.TriToQuad(IDsOfElements, self.smeshpyD.GetFunctor(theCriterion), MaxAngle)
## Fuse neighbour triangles of the object into quadrangles
# @param theObject is mesh, submesh or group
# @param theCriterion is FT_...; used to choose a neighbour to fuse with.
# @param MaxAngle is a max angle between element normals at which fusion
# is still performed; theMaxAngle is mesured in radians.
# @return TRUE in case of success, FALSE otherwise.
def TriToQuadObject (self, theObject, theCriterion, MaxAngle):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.TriToQuadObject(theObject, self.smeshpyD.GetFunctor(theCriterion), MaxAngle)
## Split quadrangles into triangles.
# @param IDsOfElements the faces to be splitted.
# @param theCriterion is FT_...; used to choose a diagonal for splitting.
# @return TRUE in case of success, FALSE otherwise.
def QuadToTri (self, IDsOfElements, theCriterion):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
return self.editor.QuadToTri(IDsOfElements, self.smeshpyD.GetFunctor(theCriterion))
## Split quadrangles into triangles.
# @param theObject object to taking list of elements from, is mesh, submesh or group
# @param theCriterion is FT_...; used to choose a diagonal for splitting.
# @return TRUE in case of success, FALSE otherwise.
def QuadToTriObject (self, theObject, theCriterion):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.QuadToTriObject(theObject, self.smeshpyD.GetFunctor(theCriterion))
## Split quadrangles into triangles.
# @param theElems The faces to be splitted
# @param the13Diag is used to choose a diagonal for splitting.
# @return TRUE in case of success, FALSE otherwise.
def SplitQuad (self, IDsOfElements, Diag13):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
return self.editor.SplitQuad(IDsOfElements, Diag13)
## Split quadrangles into triangles.
# @param theObject is object to taking list of elements from, is mesh, submesh or group
# @return TRUE in case of success, FALSE otherwise.
def SplitQuadObject (self, theObject, Diag13):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.SplitQuadObject(theObject, Diag13)
## Find better splitting of the given quadrangle.
# @param IDOfQuad ID of the quadrangle to be splitted.
# @param theCriterion is FT_...; a criterion to choose a diagonal for splitting.
# @return 1 if 1-3 diagonal is better, 2 if 2-4
# diagonal is better, 0 if error occurs.
def BestSplit (self, IDOfQuad, theCriterion):
return self.editor.BestSplit(IDOfQuad, self.smeshpyD.GetFunctor(theCriterion))
## Split quadrangle faces near triangular facets of volumes
#
def SplitQuadsNearTriangularFacets(self):
faces_array = self.GetElementsByType(SMESH.FACE)
for face_id in faces_array:
if self.GetElemNbNodes(face_id) == 4: # quadrangle
quad_nodes = self.mesh.GetElemNodes(face_id)
node1_elems = self.GetNodeInverseElements(quad_nodes[1 -1])
isVolumeFound = False
for node1_elem in node1_elems:
if not isVolumeFound:
if self.GetElementType(node1_elem, True) == SMESH.VOLUME:
nb_nodes = self.GetElemNbNodes(node1_elem)
if 3 < nb_nodes and nb_nodes < 7: # tetra or penta, or prism
volume_elem = node1_elem
volume_nodes = self.mesh.GetElemNodes(volume_elem)
if volume_nodes.count(quad_nodes[2 -1]) > 0: # 1,2
if volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,2,4
isVolumeFound = True
if volume_nodes.count(quad_nodes[3 -1]) == 0: # 1,2,4 & !3
self.SplitQuad([face_id], False) # diagonal 2-4
elif volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,2,3 & !4
isVolumeFound = True
self.SplitQuad([face_id], True) # diagonal 1-3
elif volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,4 & !2
if volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,4,3 & !2
isVolumeFound = True
self.SplitQuad([face_id], True) # diagonal 1-3
## @brief Split hexahedrons into tetrahedrons.
#
# Use pattern mapping functionality for splitting.
# @param theObject object to take list of hexahedrons from; is mesh, submesh or group.
# @param theNode000,theNode001 is in range [0,7]; give an orientation of the
# pattern relatively each hexahedron: the (0,0,0) key-point of pattern
# will be mapped into <theNode000>-th node of each volume, the (0,0,1)
# key-point will be mapped into <theNode001>-th node of each volume.
# The (0,0,0) key-point of used pattern corresponds to not split corner.
# @return TRUE in case of success, FALSE otherwise.
def SplitHexaToTetras (self, theObject, theNode000, theNode001):
# Pattern: 5.---------.6
# /|#* /|
# / | #* / |
# / | # * / |
# / | # /* |
# (0,0,1) 4.---------.7 * |
# |#* |1 | # *|
# | # *.----|---#.2
# | #/ * | /
# | /# * | /
# | / # * | /
# |/ #*|/
# (0,0,0) 0.---------.3
pattern_tetra = "!!! Nb of points: \n 8 \n\
!!! Points: \n\
0 0 0 !- 0 \n\
0 1 0 !- 1 \n\
1 1 0 !- 2 \n\
1 0 0 !- 3 \n\
0 0 1 !- 4 \n\
0 1 1 !- 5 \n\
1 1 1 !- 6 \n\
1 0 1 !- 7 \n\
!!! Indices of points of 6 tetras: \n\
0 3 4 1 \n\
7 4 3 1 \n\
4 7 5 1 \n\
6 2 5 7 \n\
1 5 2 7 \n\
2 3 1 7 \n"
pattern = self.smeshpyD.GetPattern()
isDone = pattern.LoadFromFile(pattern_tetra)
if not isDone:
print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
return isDone
pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
isDone = pattern.MakeMesh(self.mesh, False, False)
if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
# split quafrangle faces near triangular facets of volumes
self.SplitQuadsNearTriangularFacets()
return isDone
## @brief Split hexahedrons into prisms.
#
# Use pattern mapping functionality for splitting.
# @param theObject object to take list of hexahedrons from; is mesh, submesh or group.
# @param theNode000,theNode001 is in range [0,7]; give an orientation of the
# pattern relatively each hexahedron: the (0,0,0) key-point of pattern
# will be mapped into <theNode000>-th node of each volume, the (0,0,1)
# key-point will be mapped into <theNode001>-th node of each volume.
# The edge (0,0,0)-(0,0,1) of used pattern connects two not split corners.
# @return TRUE in case of success, FALSE otherwise.
def SplitHexaToPrisms (self, theObject, theNode000, theNode001):
# Pattern: 5.---------.6
# /|# /|
# / | # / |
# / | # / |
# / | # / |
# (0,0,1) 4.---------.7 |
# | | | |
# | 1.----|----.2
# | / * | /
# | / * | /
# | / * | /
# |/ *|/
# (0,0,0) 0.---------.3
pattern_prism = "!!! Nb of points: \n 8 \n\
!!! Points: \n\
0 0 0 !- 0 \n\
0 1 0 !- 1 \n\
1 1 0 !- 2 \n\
1 0 0 !- 3 \n\
0 0 1 !- 4 \n\
0 1 1 !- 5 \n\
1 1 1 !- 6 \n\
1 0 1 !- 7 \n\
!!! Indices of points of 2 prisms: \n\
0 1 3 4 5 7 \n\
2 3 1 6 7 5 \n"
pattern = self.smeshpyD.GetPattern()
isDone = pattern.LoadFromFile(pattern_prism)
if not isDone:
print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
return isDone
pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
isDone = pattern.MakeMesh(self.mesh, False, False)
if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
# split quafrangle faces near triangular facets of volumes
self.SplitQuadsNearTriangularFacets()
return isDone
## Smooth elements
# @param IDsOfElements list if ids of elements to smooth
# @param IDsOfFixedNodes list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
# @param MaxNbOfIterations maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
# @return TRUE in case of success, FALSE otherwise.
def Smooth(self, IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
## Smooth elements belong to given object
# @param theObject object to smooth
# @param IDsOfFixedNodes list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
# @param MaxNbOfIterations maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
# @return TRUE in case of success, FALSE otherwise.
def SmoothObject(self, theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxxAspectRatio, Method):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.SmoothObject(theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxxAspectRatio, Method)
## Parametric smooth the given elements
# @param IDsOfElements list if ids of elements to smooth
# @param IDsOfFixedNodes list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
# @param MaxNbOfIterations maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
# @return TRUE in case of success, FALSE otherwise.
def SmoothParametric(self, IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
## Parametric smooth elements belong to given object
# @param theObject object to smooth
# @param IDsOfFixedNodes list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
# @param MaxNbOfIterations maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
# @return TRUE in case of success, FALSE otherwise.
def SmoothParametricObject(self, theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
## Converts all mesh to quadratic one, deletes old elements, replacing
# them with quadratic ones with the same id.
def ConvertToQuadratic(self, theForce3d):
self.editor.ConvertToQuadratic(theForce3d)
## Converts all mesh from quadratic to ordinary ones,
# deletes old quadratic elements, \n replacing
# them with ordinary mesh elements with the same id.
# @return TRUE in case of success, FALSE otherwise.
def ConvertFromQuadratic(self):
return self.editor.ConvertFromQuadratic()
## Renumber mesh nodes
def RenumberNodes(self):
self.editor.RenumberNodes()
## Renumber mesh elements
def RenumberElements(self):
self.editor.RenumberElements()
## Generate new elements by rotation of the elements around the axis
# @param IDsOfElements list of ids of elements to sweep
# @param Axix axis of rotation, AxisStruct or line(geom object)
# @param AngleInRadians angle of Rotation
# @param NbOfSteps number of steps
# @param Tolerance tolerance
# @param MakeGroups to generate new groups from existing ones
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def RotationSweep(self, IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance, MakeGroups=False):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Axix, geompyDC.GEOM._objref_GEOM_Object)):
Axix = self.smeshpyD.GetAxisStruct(Axix)
if MakeGroups:
return self.editor.RotationSweepMakeGroups(IDsOfElements, Axix,
AngleInRadians, NbOfSteps, Tolerance)
self.editor.RotationSweep(IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance)
return []
## Generate new elements by rotation of the elements of object around the axis
# @param theObject object wich elements should be sweeped
# @param Axix axis of rotation, AxisStruct or line(geom object)
# @param AngleInRadians angle of Rotation
# @param NbOfSteps number of steps
# @param Tolerance tolerance
# @param MakeGroups to generate new groups from existing ones
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def RotationSweepObject(self, theObject, Axix, AngleInRadians, NbOfSteps, Tolerance, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( Axix, geompyDC.GEOM._objref_GEOM_Object)):
Axix = self.smeshpyD.GetAxisStruct(Axix)
if MakeGroups:
return self.editor.RotationSweepObjectMakeGroups(theObject, Axix, AngleInRadians,
NbOfSteps, Tolerance)
self.editor.RotationSweepObject(theObject, Axix, AngleInRadians, NbOfSteps, Tolerance)
return []
## Generate new elements by extrusion of the elements with given ids
# @param IDsOfElements list of elements ids for extrusion
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
# @param MakeGroups to generate new groups from existing ones
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps, MakeGroups=False):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
StepVector = self.smeshpyD.GetDirStruct(StepVector)
if MakeGroups:
return self.editor.ExtrusionSweepMakeGroups(IDsOfElements, StepVector, NbOfSteps)
self.editor.ExtrusionSweep(IDsOfElements, StepVector, NbOfSteps)
return []
## Generate new elements by extrusion of the elements with given ids
# @param IDsOfElements is ids of elements
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
# @param ExtrFlags set flags for performing extrusion
# @param SewTolerance uses for comparing locations of nodes if flag
# EXTRUSION_FLAG_SEW is set
# @param MakeGroups to generate new groups from existing ones
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps, ExtrFlags, SewTolerance, MakeGroups=False):
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
StepVector = self.smeshpyD.GetDirStruct(StepVector)
if MakeGroups:
return self.editor.AdvancedExtrusionMakeGroups(IDsOfElements, StepVector, NbOfSteps,
ExtrFlags, SewTolerance)
self.editor.AdvancedExtrusion(IDsOfElements, StepVector, NbOfSteps,
ExtrFlags, SewTolerance)
return []
## Generate new elements by extrusion of the elements belong to object
# @param theObject object wich elements should be processed
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
# @param MakeGroups to generate new groups from existing ones
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
StepVector = self.smeshpyD.GetDirStruct(StepVector)
if MakeGroups:
return self.editor.ExtrusionSweepObjectMakeGroups(theObject, StepVector, NbOfSteps)
self.editor.ExtrusionSweepObject(theObject, StepVector, NbOfSteps)
return []
## Generate new elements by extrusion of the elements belong to object
# @param theObject object wich elements should be processed
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
# @param MakeGroups to generate new groups from existing ones
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def ExtrusionSweepObject1D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
StepVector = self.smeshpyD.GetDirStruct(StepVector)
if MakeGroups:
return self.editor.ExtrusionSweepObject1DMakeGroups(theObject, StepVector, NbOfSteps)
self.editor.ExtrusionSweepObject1D(theObject, StepVector, NbOfSteps)
return []
## Generate new elements by extrusion of the elements belong to object
# @param theObject object wich elements should be processed
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
# @param MakeGroups to generate new groups from existing ones
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
StepVector = self.smeshpyD.GetDirStruct(StepVector)
if MakeGroups:
return self.editor.ExtrusionSweepObject2DMakeGroups(theObject, StepVector, NbOfSteps)
self.editor.ExtrusionSweepObject2D(theObject, StepVector, NbOfSteps)
return []
## Generate new elements by extrusion of the given elements
# A path of extrusion must be a meshed edge.
# @param IDsOfElements is ids of elements
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
# @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path
# @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion
# @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion
# @param Angles list of angles
# @param HasRefPoint allows to use base point
# @param RefPoint point around which the shape is rotated(the mass center of the shape by default).
# User can specify any point as the Base Point and the shape will be rotated with respect to this point.
# @param MakeGroups to generate new groups from existing ones
# @param LinearVariation makes compute rotation angles as linear variation of given Angles along path steps
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
# only SMESH::Extrusion_Error otherwise
def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart,
HasAngles, Angles, HasRefPoint, RefPoint,
MakeGroups=False, LinearVariation=False):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
pass
if MakeGroups:
return self.editor.ExtrusionAlongPathMakeGroups(IDsOfElements, PathMesh.GetMesh(),
PathShape, NodeStart, HasAngles,
Angles, HasRefPoint, RefPoint)
return self.editor.ExtrusionAlongPath(IDsOfElements, PathMesh.GetMesh(), PathShape,
NodeStart, HasAngles, Angles, HasRefPoint, RefPoint)
## Generate new elements by extrusion of the elements belong to object
# A path of extrusion must be a meshed edge.
# @param IDsOfElements is ids of elements
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
# @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path
# @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion
# @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion
# @param Angles list of angles
# @param HasRefPoint allows to use base point
# @param RefPoint point around which the shape is rotated(the mass center of the shape by default).
# User can specify any point as the Base Point and the shape will be rotated with respect to this point.
# @param MakeGroups to generate new groups from existing ones
# @param LinearVariation makes compute rotation angles as linear variation of given Angles along path steps
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
# only SMESH::Extrusion_Error otherwise
def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart,
HasAngles, Angles, HasRefPoint, RefPoint,
MakeGroups=False, LinearVariation=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
if MakeGroups:
return self.editor.ExtrusionAlongPathObjectMakeGroups(theObject, PathMesh.GetMesh(),
PathShape, NodeStart, HasAngles,
Angles, HasRefPoint, RefPoint)
return self.editor.ExtrusionAlongPathObject(theObject, PathMesh.GetMesh(), PathShape,
NodeStart, HasAngles, Angles, HasRefPoint,
RefPoint)
## Symmetrical copy of mesh elements
# @param IDsOfElements list of elements ids
# @param Mirror is AxisStruct or geom object(point, line, plane)
# @param theMirrorType is POINT, AXIS or PLANE
# If the Mirror is geom object this parameter is unnecessary
# @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0)
# @param MakeGroups to generate new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def Mirror(self, IDsOfElements, Mirror, theMirrorType, Copy=0, MakeGroups=False):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
if Copy and MakeGroups:
return self.editor.MirrorMakeGroups(IDsOfElements, Mirror, theMirrorType)
self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy)
return []
## Create a new mesh by symmetrical copy of mesh elements
# @param IDsOfElements list of elements ids
# @param Mirror is AxisStruct or geom object(point, line, plane)
# @param theMirrorType is POINT, AXIS or PLANE
# If the Mirror is geom object this parameter is unnecessary
# @param MakeGroups to generate new groups from existing ones
# @param NewMeshName is a name of new mesh to create
# @return instance of Mesh class
def MirrorMakeMesh(self, IDsOfElements, Mirror, theMirrorType, MakeGroups=0, NewMeshName=""):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
mesh = self.editor.MirrorMakeMesh(IDsOfElements, Mirror, theMirrorType,
MakeGroups, NewMeshName)
return Mesh(self.smeshpyD,self.geompyD,mesh)
## Symmetrical copy of object
# @param theObject mesh, submesh or group
# @param Mirror is AxisStruct or geom object(point, line, plane)
# @param theMirrorType is POINT, AXIS or PLANE
# If the Mirror is geom object this parameter is unnecessary
# @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0)
# @param MakeGroups to generate new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def MirrorObject (self, theObject, Mirror, theMirrorType, Copy=0, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
if Copy and MakeGroups:
return self.editor.MirrorObjectMakeGroups(theObject, Mirror, theMirrorType)
self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy)
return []
## Create a new mesh by symmetrical copy of object
# @param theObject mesh, submesh or group
# @param Mirror is AxisStruct or geom object(point, line, plane)
# @param theMirrorType is POINT, AXIS or PLANE
# If the Mirror is geom object this parameter is unnecessary
# @param MakeGroups to generate new groups from existing ones
# @param NewMeshName is a name of new mesh to create
# @return instance of Mesh class
def MirrorObjectMakeMesh (self, theObject, Mirror, theMirrorType,MakeGroups=0, NewMeshName=""):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if (isinstance(Mirror, geompyDC.GEOM._objref_GEOM_Object)):
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
mesh = self.editor.MirrorObjectMakeMesh(theObject, Mirror, theMirrorType,
MakeGroups, NewMeshName)
return Mesh( self.smeshpyD,self.geompyD,mesh )
## Translates the elements
# @param IDsOfElements list of elements ids
# @param Vector direction of translation(DirStruct or vector)
# @param Copy allows to copy the translated elements
# @param MakeGroups to generate new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def Translate(self, IDsOfElements, Vector, Copy, MakeGroups=False):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
Vector = self.smeshpyD.GetDirStruct(Vector)
if Copy and MakeGroups:
return self.editor.TranslateMakeGroups(IDsOfElements, Vector)
self.editor.Translate(IDsOfElements, Vector, Copy)
return []
## Create a new mesh of translated elements
# @param IDsOfElements list of elements ids
# @param Vector direction of translation(DirStruct or vector)
# @param MakeGroups to generate new groups from existing ones
# @param NewMeshName is a name of new mesh to create
# @return instance of Mesh class
def TranslateMakeMesh(self, IDsOfElements, Vector, MakeGroups=False, NewMeshName=""):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
Vector = self.smeshpyD.GetDirStruct(Vector)
mesh = self.editor.TranslateMakeMesh(IDsOfElements, Vector, MakeGroups, NewMeshName)
return Mesh ( self.smeshpyD, self.geompyD, mesh )
## Translates the object
# @param theObject object to translate(mesh, submesh, or group)
# @param Vector direction of translation(DirStruct or geom vector)
# @param Copy allows to copy the translated elements
# @param MakeGroups to generate new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def TranslateObject(self, theObject, Vector, Copy, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
Vector = self.smeshpyD.GetDirStruct(Vector)
if Copy and MakeGroups:
return self.editor.TranslateObjectMakeGroups(theObject, Vector)
self.editor.TranslateObject(theObject, Vector, Copy)
return []
## Create a new mesh from translated object
# @param theObject object to translate(mesh, submesh, or group)
# @param Vector direction of translation(DirStruct or geom vector)
# @param MakeGroups to generate new groups from existing ones
# @param NewMeshName is a name of new mesh to create
# @return instance of Mesh class
def TranslateObjectMakeMesh(self, theObject, Vector, MakeGroups=False, NewMeshName=""):
if (isinstance(theObject, Mesh)):
theObject = theObject.GetMesh()
if (isinstance(Vector, geompyDC.GEOM._objref_GEOM_Object)):
Vector = self.smeshpyD.GetDirStruct(Vector)
mesh = self.editor.TranslateObjectMakeMesh(theObject, Vector, MakeGroups, NewMeshName)
return Mesh( self.smeshpyD, self.geompyD, mesh )
## Rotates the elements
# @param IDsOfElements list of elements ids
# @param Axis axis of rotation(AxisStruct or geom line)
# @param AngleInRadians angle of rotation(in radians)
# @param Copy allows to copy the rotated elements
# @param MakeGroups to generate new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy, MakeGroups=False):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
if Copy and MakeGroups:
return self.editor.RotateMakeGroups(IDsOfElements, Axis, AngleInRadians)
self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy)
return []
## Create a new mesh of rotated elements
# @param IDsOfElements list of element ids
# @param Axis axis of rotation(AxisStruct or geom line)
# @param AngleInRadians angle of rotation(in radians)
# @param MakeGroups to generate new groups from existing ones
# @param NewMeshName is a name of new mesh to create
# @return instance of Mesh class
def RotateMakeMesh (self, IDsOfElements, Axis, AngleInRadians, MakeGroups=0, NewMeshName=""):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
mesh = self.editor.RotateMakeMesh(IDsOfElements, Axis, AngleInRadians,
MakeGroups, NewMeshName)
return Mesh( self.smeshpyD, self.geompyD, mesh )
## Rotates the object
# @param theObject object to rotate(mesh, submesh, or group)
# @param Axis axis of rotation(AxisStruct or geom line)
# @param AngleInRadians angle of rotation(in radians)
# @param Copy allows to copy the rotated elements
# @param MakeGroups to generate new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
def RotateObject (self, theObject, Axis, AngleInRadians, Copy, MakeGroups=False):
if (isinstance(theObject, Mesh)):
theObject = theObject.GetMesh()
if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
if Copy and MakeGroups:
return self.editor.RotateObjectMakeGroups(theObject, Axis, AngleInRadians)
self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy)
return []
## Create a new mesh from a rotated object
# @param theObject object to rotate (mesh, submesh, or group)
# @param Axis axis of rotation(AxisStruct or geom line)
# @param AngleInRadians angle of rotation(in radians)
# @param MakeGroups to generate new groups from existing ones
# @param NewMeshName is a name of new mesh to create
# @return instance of Mesh class
def RotateObjectMakeMesh(self, theObject, Axis, AngleInRadians, MakeGroups=0,NewMeshName=""):
if (isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
mesh = self.editor.RotateObjectMakeMesh(theObject, Axis, AngleInRadians,
MakeGroups, NewMeshName)
return Mesh( self.smeshpyD, self.geompyD, mesh )
## Find group of nodes close to each other within Tolerance.
# @param Tolerance tolerance value
# @return list of group of nodes
def FindCoincidentNodes (self, Tolerance):
return self.editor.FindCoincidentNodes(Tolerance)
## Find group of nodes close to each other within Tolerance.
# @param Tolerance tolerance value
# @param SubMeshOrGroup SubMesh or Group
# @return list of group of nodes
def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance):
return self.editor.FindCoincidentNodesOnPart(SubMeshOrGroup, Tolerance)
## Merge nodes
# @param GroupsOfNodes list of group of nodes
def MergeNodes (self, GroupsOfNodes):
self.editor.MergeNodes(GroupsOfNodes)
## Find elements built on the same nodes.
# @param MeshOrSubMeshOrGroup Mesh or SubMesh, or Group of elements for searching
# @return a list of groups of equal elements
def FindEqualElements (self, MeshOrSubMeshOrGroup):
return self.editor.FindEqualElements(MeshOrSubMeshOrGroup)
## Merge elements in each given group.
# @param GroupsOfElementsID groups of elements for merging
def MergeElements(self, GroupsOfElementsID):
self.editor.MergeElements(GroupsOfElementsID)
## Remove all but one of elements built on the same nodes.
def MergeEqualElements(self):
self.editor.MergeEqualElements()
## Sew free borders
# @return SMESH::Sew_Error
def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2, LastNodeID2,
CreatePolygons, CreatePolyedrs):
return self.editor.SewFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2, LastNodeID2,
CreatePolygons, CreatePolyedrs)
## Sew conform free borders
# @return SMESH::Sew_Error
def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2):
return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2)
## Sew border to side
# @return SMESH::Sew_Error
def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs):
return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs)
## Sew two sides of a mesh. Nodes belonging to Side1 are
# merged with nodes of elements of Side2.
# Number of elements in theSide1 and in theSide2 must be
# equal and they should have similar node connectivity.
# The nodes to merge should belong to sides borders and
# the first node should be linked to the second.
# @return SMESH::Sew_Error
def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements,
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge):
return self.editor.SewSideElements(IDsOfSide1Elements, IDsOfSide2Elements,
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge)
## Set new nodes for given element.
# @param ide the element id
# @param newIDs nodes ids
# @return If number of nodes is not corresponded to type of element - returns false
def ChangeElemNodes(self, ide, newIDs):
return self.editor.ChangeElemNodes(ide, newIDs)
## If during last operation of MeshEditor some nodes were
# created this method returns list of its IDs, \n
# if new nodes not created - returns empty list
# @return list of integer values (can be empty)
def GetLastCreatedNodes(self):
return self.editor.GetLastCreatedNodes()
## If during last operation of MeshEditor some elements were
# created this method returns list of its IDs, \n
# if new elements not creared - returns empty list
# @return list of integer values (can be empty)
def GetLastCreatedElems(self):
return self.editor.GetLastCreatedElems()
## Mother class to define algorithm, recommended to do not use directly.
#
# More details.
class Mesh_Algorithm:
# @class Mesh_Algorithm
# @brief Class Mesh_Algorithm
#def __init__(self,smesh):
# self.smesh=smesh
def __init__(self):
self.mesh = None
self.geom = None
self.subm = None
self.algo = None
## Find hypothesis in study by its type name and parameters.
# Find only those hypothesis, which was created in smeshpyD engine.
# @return SMESH.SMESH_Hypothesis
def FindHypothesis (self, hypname, args, CompareMethod, smeshpyD):
study = smeshpyD.GetCurrentStudy()
#to do: find component by smeshpyD object, not by its data type
scomp = study.FindComponent(smeshpyD.ComponentDataType())
if scomp is not None:
res,hypRoot = scomp.FindSubObject(SMESH.Tag_HypothesisRoot)
# is hypotheses root label exists?
if res and hypRoot is not None:
iter = study.NewChildIterator(hypRoot)
# check all published hypotheses
while iter.More():
hypo_so_i = iter.Value()
attr = hypo_so_i.FindAttribute("AttributeIOR")[1]
if attr is not None:
anIOR = attr.Value()
hypo_o_i = salome.orb.string_to_object(anIOR)
if hypo_o_i is not None:
# is hypothesis?
hypo_i = hypo_o_i._narrow(SMESH.SMESH_Hypothesis)
if hypo_i is not None:
# belongs to this engine?
if smeshpyD.GetObjectId(hypo_i) > 0:
# is it the needed hypothesis?
if hypo_i.GetName() == hypname:
# check args
if CompareMethod(hypo_i, args):
# found!!!
return hypo_i
pass
pass
pass
pass
pass
iter.Next()
pass
pass
pass
return None
## Find algorithm in study by its type name.
# Find only those algorithm, which was created in smeshpyD engine.
# @return SMESH.SMESH_Algo
def FindAlgorithm (self, algoname, smeshpyD):
study = smeshpyD.GetCurrentStudy()
#to do: find component by smeshpyD object, not by its data type
scomp = study.FindComponent(smeshpyD.ComponentDataType())
if scomp is not None:
res,hypRoot = scomp.FindSubObject(SMESH.Tag_AlgorithmsRoot)
# is algorithms root label exists?
if res and hypRoot is not None:
iter = study.NewChildIterator(hypRoot)
# check all published algorithms
while iter.More():
algo_so_i = iter.Value()
attr = algo_so_i.FindAttribute("AttributeIOR")[1]
if attr is not None:
anIOR = attr.Value()
algo_o_i = salome.orb.string_to_object(anIOR)
if algo_o_i is not None:
# is algorithm?
algo_i = algo_o_i._narrow(SMESH.SMESH_Algo)
if algo_i is not None:
# belongs to this engine?
if smeshpyD.GetObjectId(algo_i) > 0:
# is it the needed algorithm?
if algo_i.GetName() == algoname:
# found!!!
return algo_i
pass
pass
pass
pass
iter.Next()
pass
pass
pass
return None
## If the algorithm is global, return 0; \n
# else return the submesh associated to this algorithm.
def GetSubMesh(self):
return self.subm
## Return the wrapped mesher.
def GetAlgorithm(self):
return self.algo
## Get list of hypothesis that can be used with this algorithm
def GetCompatibleHypothesis(self):
mylist = []
if self.algo:
mylist = self.algo.GetCompatibleHypothesis()
return mylist
## Get name of algo
def GetName(self):
GetName(self.algo)
## Set name to algo
def SetName(self, name):
SetName(self.algo, name)
## Get id of algo
def GetId(self):
return self.algo.GetId()
## Private method.
def Create(self, mesh, geom, hypo, so="libStdMeshersEngine.so"):
if geom is None:
raise RuntimeError, "Attemp to create " + hypo + " algoritm on None shape"
algo = self.FindAlgorithm(hypo, mesh.smeshpyD)
if algo is None:
algo = mesh.smeshpyD.CreateHypothesis(hypo, so)
pass
self.Assign(algo, mesh, geom)
return self.algo
## Private method
def Assign(self, algo, mesh, geom):
if geom is None:
raise RuntimeError, "Attemp to create " + algo + " algoritm on None shape"
self.mesh = mesh
piece = mesh.geom
if not geom:
self.geom = piece
else:
self.geom = geom
name = GetName(geom)
if name==NO_NAME:
name = mesh.geompyD.SubShapeName(geom, piece)
mesh.geompyD.addToStudyInFather(piece, geom, name)
self.subm = mesh.mesh.GetSubMesh(geom, algo.GetName())
self.algo = algo
status = mesh.mesh.AddHypothesis(self.geom, self.algo)
TreatHypoStatus( status, algo.GetName(), GetName(self.geom), True )
def CompareHyp (self, hyp, args):
print "CompareHyp is not implemented for ", self.__class__.__name__, ":", hyp.GetName()
return False
def CompareEqualHyp (self, hyp, args):
return True
## Private method
def Hypothesis (self, hyp, args=[], so="libStdMeshersEngine.so",
UseExisting=0, CompareMethod=""):
hypo = None
if UseExisting:
if CompareMethod == "": CompareMethod = self.CompareHyp
hypo = self.FindHypothesis(hyp, args, CompareMethod, self.mesh.smeshpyD)
pass
if hypo is None:
hypo = self.mesh.smeshpyD.CreateHypothesis(hyp, so)
a = ""
s = "="
i = 0
n = len(args)
while i<n:
a = a + s + str(args[i])
s = ","
i = i + 1
pass
SetName(hypo, hyp + a)
pass
status = self.mesh.mesh.AddHypothesis(self.geom, hypo)
TreatHypoStatus( status, GetName(hypo), GetName(self.geom), 0 )
return hypo
# Public class: Mesh_Segment
# --------------------------
## Class to define a segment 1D algorithm for discretization
#
# More details.
class Mesh_Segment(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, "Regular_1D")
## Define "LocalLength" hypothesis to cut an edge in several segments with the same length
# @param l for the length of segments that cut an edge
# @param UseExisting if ==true - search existing hypothesis created with
# same parameters, else (default) - create new
# @param p precision, used for number of segments calculation.
# It must be pozitive, meaningfull values are in range [0,1].
# In general, number of segments is calculated with formula:
# nb = ceil((edge_length / l) - p)
# Function ceil rounds its argument to the higher integer.
# So, p=0 means rounding of (edge_length / l) to the higher integer,
# p=0.5 means rounding of (edge_length / l) to the nearest integer,
# p=1 means rounding of (edge_length / l) to the lower integer.
# Default value is 1e-07.
# @return an instance of StdMeshers_LocalLength hypothesis
def LocalLength(self, l, UseExisting=0, p=1e-07):
hyp = self.Hypothesis("LocalLength", [l,p], UseExisting=UseExisting,
CompareMethod=self.CompareLocalLength)
hyp.SetLength(l)
hyp.SetPrecision(p)
return hyp
## Private method
## Check if the given "LocalLength" hypothesis has the same parameters as given arguments
def CompareLocalLength(self, hyp, args):
if IsEqual(hyp.GetLength(), args[0]):
return IsEqual(hyp.GetPrecision(), args[1])
return False
## Define "NumberOfSegments" hypothesis to cut an edge in several fixed number of segments
# @param n for the number of segments that cut an edge
# @param s for the scale factor (optional)
# @param UseExisting if ==true - search existing hypothesis created with
# same parameters, else (default) - create new
# @return an instance of StdMeshers_NumberOfSegments hypothesis
def NumberOfSegments(self, n, s=[], UseExisting=0):
if s == []:
hyp = self.Hypothesis("NumberOfSegments", [n], UseExisting=UseExisting,
CompareMethod=self.CompareNumberOfSegments)
else:
hyp = self.Hypothesis("NumberOfSegments", [n,s], UseExisting=UseExisting,
CompareMethod=self.CompareNumberOfSegments)
hyp.SetDistrType( 1 )
hyp.SetScaleFactor(s)
hyp.SetNumberOfSegments(n)
return hyp
## Private method
## Check if the given "NumberOfSegments" hypothesis has the same parameters as given arguments
def CompareNumberOfSegments(self, hyp, args):
if hyp.GetNumberOfSegments() == args[0]:
if len(args) == 1:
return True
else:
if hyp.GetDistrType() == 1:
if IsEqual(hyp.GetScaleFactor(), args[1]):
return True
return False
## Define "Arithmetic1D" hypothesis to cut an edge in several segments with arithmetic length increasing
# @param start for the length of the first segment
# @param end for the length of the last segment
# @param UseExisting if ==true - search existing hypothesis created with
# same parameters, else (default) - create new
# @return an instance of StdMeshers_Arithmetic1D hypothesis
def Arithmetic1D(self, start, end, UseExisting=0):
hyp = self.Hypothesis("Arithmetic1D", [start, end], UseExisting=UseExisting,
CompareMethod=self.CompareArithmetic1D)
hyp.SetLength(start, 1)
hyp.SetLength(end , 0)
return hyp
## Private method
## Check if the given "Arithmetic1D" hypothesis has the same parameters as given arguments
def CompareArithmetic1D(self, hyp, args):
if IsEqual(hyp.GetLength(1), args[0]):
if IsEqual(hyp.GetLength(0), args[1]):
return True
return False
## Define "StartEndLength" hypothesis to cut an edge in several segments with geometric length increasing
# @param start for the length of the first segment
# @param end for the length of the last segment
# @param UseExisting if ==true - search existing hypothesis created with
# same parameters, else (default) - create new
# @return an instance of StdMeshers_StartEndLength hypothesis
def StartEndLength(self, start, end, UseExisting=0):
hyp = self.Hypothesis("StartEndLength", [start, end], UseExisting=UseExisting,
CompareMethod=self.CompareStartEndLength)
hyp.SetLength(start, 1)
hyp.SetLength(end , 0)
return hyp
## Check if the given "StartEndLength" hypothesis has the same parameters as given arguments
def CompareStartEndLength(self, hyp, args):
if IsEqual(hyp.GetLength(1), args[0]):
if IsEqual(hyp.GetLength(0), args[1]):
return True
return False
## Define "Deflection1D" hypothesis
# @param d for the deflection
# @param UseExisting if ==true - search existing hypothesis created with
# same parameters, else (default) - create new
def Deflection1D(self, d, UseExisting=0):
hyp = self.Hypothesis("Deflection1D", [d], UseExisting=UseExisting,
CompareMethod=self.CompareDeflection1D)
hyp.SetDeflection(d)
return hyp
## Check if the given "Deflection1D" hypothesis has the same parameters as given arguments
def CompareDeflection1D(self, hyp, args):
return IsEqual(hyp.GetDeflection(), args[0])
## Define "Propagation" hypothesis that propagate all other hypothesis on all others edges that are in
# the opposite side in the case of quadrangular faces
def Propagation(self):
return self.Hypothesis("Propagation", UseExisting=1, CompareMethod=self.CompareEqualHyp)
## Define "AutomaticLength" hypothesis
# @param fineness for the fineness [0-1]
# @param UseExisting if ==true - search existing hypothesis created with
# same parameters, else (default) - create new
def AutomaticLength(self, fineness=0, UseExisting=0):
hyp = self.Hypothesis("AutomaticLength",[fineness],UseExisting=UseExisting,
CompareMethod=self.CompareAutomaticLength)
hyp.SetFineness( fineness )
return hyp
## Check if the given "AutomaticLength" hypothesis has the same parameters as given arguments
def CompareAutomaticLength(self, hyp, args):
return IsEqual(hyp.GetFineness(), args[0])
## Define "SegmentLengthAroundVertex" hypothesis
# @param length for the segment length
# @param vertex for the length localization: vertex index [0,1] | vertex object.
# Any other integer value means what hypo will be set on the
# whole 1D shape, where Mesh_Segment algorithm is assigned.
# @param UseExisting if ==true - search existing hypothesis created with
# same parameters, else (default) - create new
def LengthNearVertex(self, length, vertex=0, UseExisting=0):
import types
store_geom = self.geom
if type(vertex) is types.IntType:
if vertex == 0 or vertex == 1:
vertex = self.mesh.geompyD.SubShapeAllSorted(self.geom, geompyDC.ShapeType["VERTEX"])[vertex]
self.geom = vertex
pass
pass
else:
self.geom = vertex
pass
### 0D algorithm
if self.geom is None:
raise RuntimeError, "Attemp to create SegmentAroundVertex_0D algoritm on None shape"
name = GetName(self.geom)
if name == NO_NAME:
piece = self.mesh.geom
name = self.mesh.geompyD.SubShapeName(self.geom, piece)
self.mesh.geompyD.addToStudyInFather(piece, self.geom, name)
algo = self.FindAlgorithm("SegmentAroundVertex_0D", self.mesh.smeshpyD)
if algo is None:
algo = self.mesh.smeshpyD.CreateHypothesis("SegmentAroundVertex_0D", "libStdMeshersEngine.so")
pass
status = self.mesh.mesh.AddHypothesis(self.geom, algo)
TreatHypoStatus(status, "SegmentAroundVertex_0D", name, True)
###
hyp = self.Hypothesis("SegmentLengthAroundVertex", [length], UseExisting=UseExisting,
CompareMethod=self.CompareLengthNearVertex)
self.geom = store_geom
hyp.SetLength( length )
return hyp
## Check if the given "LengthNearVertex" hypothesis has the same parameters as given arguments
def CompareLengthNearVertex(self, hyp, args):
return IsEqual(hyp.GetLength(), args[0])
## Define "QuadraticMesh" hypothesis, forcing construction of quadratic edges.
# If the 2D mesher sees that all boundary edges are quadratic ones,
# it generates quadratic faces, else it generates linear faces using
# medium nodes as if they were vertex ones.
# The 3D mesher generates quadratic volumes only if all boundary faces
# are quadratic ones, else it fails.
def QuadraticMesh(self):
hyp = self.Hypothesis("QuadraticMesh", UseExisting=1, CompareMethod=self.CompareEqualHyp)
return hyp
# Public class: Mesh_CompositeSegment
# --------------------------
## Class to define a segment 1D algorithm for discretization
#
# More details.
class Mesh_CompositeSegment(Mesh_Segment):
## Private constructor.
def __init__(self, mesh, geom=0):
self.Create(mesh, geom, "CompositeSegment_1D")
# Public class: Mesh_Segment_Python
# ---------------------------------
## Class to define a segment 1D algorithm for discretization with python function
#
# More details.
class Mesh_Segment_Python(Mesh_Segment):
## Private constructor.
def __init__(self, mesh, geom=0):
import Python1dPlugin
self.Create(mesh, geom, "Python_1D", "libPython1dEngine.so")
## Define "PythonSplit1D" hypothesis based on the Erwan Adam patch, awaiting equivalent SALOME functionality
# @param n for the number of segments that cut an edge
# @param func for the python function that calculate the length of all segments
# @param UseExisting if ==true - search existing hypothesis created with
# same parameters, else (default) - create new
def PythonSplit1D(self, n, func, UseExisting=0):
hyp = self.Hypothesis("PythonSplit1D", [n], "libPython1dEngine.so",
UseExisting=UseExisting, CompareMethod=self.ComparePythonSplit1D)
hyp.SetNumberOfSegments(n)
hyp.SetPythonLog10RatioFunction(func)
return hyp
## Check if the given "PythonSplit1D" hypothesis has the same parameters as given arguments
def ComparePythonSplit1D(self, hyp, args):
#if hyp.GetNumberOfSegments() == args[0]:
# if hyp.GetPythonLog10RatioFunction() == args[1]:
# return True
return False
# Public class: Mesh_Triangle
# ---------------------------
## Class to define a triangle 2D algorithm
#
# More details.
class Mesh_Triangle(Mesh_Algorithm):
# default values
algoType = 0
params = 0
_angleMeshS = 8
_gradation = 1.1
## Private constructor.
def __init__(self, mesh, algoType, geom=0):
Mesh_Algorithm.__init__(self)
self.algoType = algoType
if algoType == MEFISTO:
self.Create(mesh, geom, "MEFISTO_2D")
pass
elif algoType == BLSURF:
import BLSURFPlugin
self.Create(mesh, geom, "BLSURF", "libBLSURFEngine.so")
self.SetPhysicalMesh()
elif algoType == NETGEN:
if noNETGENPlugin:
print "Warning: NETGENPlugin module unavailable"
pass
self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
pass
elif algoType == NETGEN_2D:
if noNETGENPlugin:
print "Warning: NETGENPlugin module unavailable"
pass
self.Create(mesh, geom, "NETGEN_2D_ONLY", "libNETGENEngine.so")
pass
## Define "MaxElementArea" hypothesis to give the maximum area of each triangle
# @param area for the maximum area of each triangle
# @param UseExisting if ==true - search existing hypothesis created with
# same parameters, else (default) - create new
#
# Only for algoType == MEFISTO || NETGEN_2D
def MaxElementArea(self, area, UseExisting=0):
if self.algoType == MEFISTO or self.algoType == NETGEN_2D:
hyp = self.Hypothesis("MaxElementArea", [area], UseExisting=UseExisting,
CompareMethod=self.CompareMaxElementArea)
hyp.SetMaxElementArea(area)
return hyp
elif self.algoType == NETGEN:
print "Netgen 1D-2D algo doesn't support this hypothesis"
return None
## Check if the given "MaxElementArea" hypothesis has the same parameters as given arguments
def CompareMaxElementArea(self, hyp, args):
return IsEqual(hyp.GetMaxElementArea(), args[0])
## Define "LengthFromEdges" hypothesis to build triangles
# based on the length of the edges taken from the wire
#
# Only for algoType == MEFISTO || NETGEN_2D
def LengthFromEdges(self):
if self.algoType == MEFISTO or self.algoType == NETGEN_2D:
hyp = self.Hypothesis("LengthFromEdges", UseExisting=1, CompareMethod=self.CompareEqualHyp)
return hyp
elif self.algoType == NETGEN:
print "Netgen 1D-2D algo doesn't support this hypothesis"
return None
## Set PhysicalMesh
# @param thePhysicalMesh is:
# DefaultSize or Custom
def SetPhysicalMesh(self, thePhysicalMesh=1):
if self.params == 0:
self.Parameters()
self.params.SetPhysicalMesh(thePhysicalMesh)
## Set PhySize flag
def SetPhySize(self, theVal):
if self.params == 0:
self.Parameters()
self.params.SetPhySize(theVal)
## Set GeometricMesh
# @param theGeometricMesh is:
# DefaultGeom or Custom
def SetGeometricMesh(self, theGeometricMesh=0):
if self.params == 0:
self.Parameters()
if self.params.GetPhysicalMesh() == 0: theGeometricMesh = 1
self.params.SetGeometricMesh(theGeometricMesh)
## Set AngleMeshS flag
def SetAngleMeshS(self, theVal=_angleMeshS):
if self.params == 0:
self.Parameters()
if self.params.GetGeometricMesh() == 0: theVal = self._angleMeshS
self.params.SetAngleMeshS(theVal)
## Set Gradation flag
def SetGradation(self, theVal=_gradation):
if self.params == 0:
self.Parameters()
if self.params.GetGeometricMesh() == 0: theVal = self._gradation
self.params.SetGradation(theVal)
## Set QuadAllowed flag
#
# Only for algoType == NETGEN || NETGEN_2D
def SetQuadAllowed(self, toAllow=True):
if self.algoType == NETGEN_2D:
if toAllow: # add QuadranglePreference
self.Hypothesis("QuadranglePreference", UseExisting=1, CompareMethod=self.CompareEqualHyp)
else: # remove QuadranglePreference
for hyp in self.mesh.GetHypothesisList( self.geom ):
if hyp.GetName() == "QuadranglePreference":
self.mesh.RemoveHypothesis( self.geom, hyp )
pass
pass
pass
return
if self.params == 0:
self.Parameters()
if self.params:
self.params.SetQuadAllowed(toAllow)
return
## Define "Netgen 2D Parameters" hypothesis
#
# Only for algoType == NETGEN
def Parameters(self):
if self.algoType == NETGEN:
self.params = self.Hypothesis("NETGEN_Parameters_2D", [],
"libNETGENEngine.so", UseExisting=0)
return self.params
elif self.algoType == MEFISTO:
print "Mefisto algo doesn't support NETGEN_Parameters_2D hypothesis"
return None
elif self.algoType == NETGEN_2D:
print "NETGEN_2D_ONLY algo doesn't support 'NETGEN_Parameters_2D' hypothesis"
print "NETGEN_2D_ONLY uses 'MaxElementArea' and 'LengthFromEdges' ones"
return None
elif self.algoType == BLSURF:
self.params = self.Hypothesis("BLSURF_Parameters", [],
"libBLSURFEngine.so", UseExisting=0)
return self.params
return None
## Set MaxSize
#
# Only for algoType == NETGEN
def SetMaxSize(self, theSize):
if self.params == 0:
self.Parameters()
if self.params is not None:
self.params.SetMaxSize(theSize)
## Set SecondOrder flag
#
# Only for algoType == NETGEN
def SetSecondOrder(self, theVal):
if self.params == 0:
self.Parameters()
if self.params is not None:
self.params.SetSecondOrder(theVal)
## Set Optimize flag
#
# Only for algoType == NETGEN
def SetOptimize(self, theVal):
if self.params == 0:
self.Parameters()
if self.params is not None:
self.params.SetOptimize(theVal)
## Set Fineness
# @param theFineness is:
# VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
#
# Only for algoType == NETGEN
def SetFineness(self, theFineness):
if self.params == 0:
self.Parameters()
if self.params is not None:
self.params.SetFineness(theFineness)
## Set GrowthRate
#
# Only for algoType == NETGEN
def SetGrowthRate(self, theRate):
if self.params == 0:
self.Parameters()
if self.params is not None:
self.params.SetGrowthRate(theRate)
## Set NbSegPerEdge
#
# Only for algoType == NETGEN
def SetNbSegPerEdge(self, theVal):
if self.params == 0:
self.Parameters()
if self.params is not None:
self.params.SetNbSegPerEdge(theVal)
## Set NbSegPerRadius
#
# Only for algoType == NETGEN
def SetNbSegPerRadius(self, theVal):
if self.params == 0:
self.Parameters()
if self.params is not None:
self.params.SetNbSegPerRadius(theVal)
## Set Decimesh flag
def SetDecimesh(self, toAllow=False):
if self.params == 0:
self.Parameters()
self.params.SetDecimesh(toAllow)
pass
# Public class: Mesh_Quadrangle
# -----------------------------
## Class to define a quadrangle 2D algorithm
#
# More details.
class Mesh_Quadrangle(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, "Quadrangle_2D")
## Define "QuadranglePreference" hypothesis, forcing construction
# of quadrangles if the number of nodes on opposite edges is not the same
# in the case where the global number of nodes on edges is even
def QuadranglePreference(self):
hyp = self.Hypothesis("QuadranglePreference", UseExisting=1,
CompareMethod=self.CompareEqualHyp)
return hyp
# Public class: Mesh_Tetrahedron
# ------------------------------
## Class to define a tetrahedron 3D algorithm
#
# More details.
class Mesh_Tetrahedron(Mesh_Algorithm):
params = 0
algoType = 0
## Private constructor.
def __init__(self, mesh, algoType, geom=0):
Mesh_Algorithm.__init__(self)
if algoType == NETGEN:
self.Create(mesh, geom, "NETGEN_3D", "libNETGENEngine.so")
pass
elif algoType == GHS3D:
import GHS3DPlugin
self.Create(mesh, geom, "GHS3D_3D" , "libGHS3DEngine.so")
pass
elif algoType == FULL_NETGEN:
if noNETGENPlugin:
print "Warning: NETGENPlugin module has not been imported."
self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
pass
self.algoType = algoType
## Define "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedral
# @param vol for the maximum volume of each tetrahedral
# @param UseExisting if ==true - search existing hypothesis created with
# same parameters, else (default) - create new
def MaxElementVolume(self, vol, UseExisting=0):
hyp = self.Hypothesis("MaxElementVolume", [vol], UseExisting=UseExisting,
CompareMethod=self.CompareMaxElementVolume)
hyp.SetMaxElementVolume(vol)
return hyp
## Check if the given "MaxElementVolume" hypothesis has the same parameters as given arguments
def CompareMaxElementVolume(self, hyp, args):
return IsEqual(hyp.GetMaxElementVolume(), args[0])
## Define "Netgen 3D Parameters" hypothesis
def Parameters(self):
if (self.algoType == FULL_NETGEN):
self.params = self.Hypothesis("NETGEN_Parameters", [],
"libNETGENEngine.so", UseExisting=0)
return self.params
else:
print "Algo doesn't support this hypothesis"
return None
## Set MaxSize
def SetMaxSize(self, theSize):
if self.params == 0:
self.Parameters()
self.params.SetMaxSize(theSize)
## Set SecondOrder flag
def SetSecondOrder(self, theVal):
if self.params == 0:
self.Parameters()
self.params.SetSecondOrder(theVal)
## Set Optimize flag
def SetOptimize(self, theVal):
if self.params == 0:
self.Parameters()
self.params.SetOptimize(theVal)
## Set Fineness
# @param theFineness is:
# VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
def SetFineness(self, theFineness):
if self.params == 0:
self.Parameters()
self.params.SetFineness(theFineness)
## Set GrowthRate
def SetGrowthRate(self, theRate):
if self.params == 0:
self.Parameters()
self.params.SetGrowthRate(theRate)
## Set NbSegPerEdge
def SetNbSegPerEdge(self, theVal):
if self.params == 0:
self.Parameters()
self.params.SetNbSegPerEdge(theVal)
## Set NbSegPerRadius
def SetNbSegPerRadius(self, theVal):
if self.params == 0:
self.Parameters()
self.params.SetNbSegPerRadius(theVal)
# Public class: Mesh_Hexahedron
# ------------------------------
## Class to define a hexahedron 3D algorithm
#
# More details.
class Mesh_Hexahedron(Mesh_Algorithm):
params = 0
algoType = 0
## Private constructor.
def __init__(self, mesh, algoType=Hexa, geom=0):
Mesh_Algorithm.__init__(self)
self.algoType = algoType
if algoType == Hexa:
self.Create(mesh, geom, "Hexa_3D")
pass
elif algoType == Hexotic:
import HexoticPlugin
self.Create(mesh, geom, "Hexotic_3D", "libHexoticEngine.so")
pass
## Define "MinMaxQuad" hypothesis to give the three hexotic parameters
def MinMaxQuad(self, min=3, max=8, quad=True):
self.params = self.Hypothesis("Hexotic_Parameters", [], "libHexoticEngine.so",
UseExisting=0)
self.params.SetHexesMinLevel(min)
self.params.SetHexesMaxLevel(max)
self.params.SetHexoticQuadrangles(quad)
return self.params
# Deprecated, only for compatibility!
# Public class: Mesh_Netgen
# ------------------------------
## Class to define a NETGEN-based 2D or 3D algorithm
# that need no discrete boundary (i.e. independent)
#
# This class is deprecated, only for compatibility!
#
# More details.
class Mesh_Netgen(Mesh_Algorithm):
is3D = 0
## Private constructor.
def __init__(self, mesh, is3D, geom=0):
Mesh_Algorithm.__init__(self)
if noNETGENPlugin:
print "Warning: NETGENPlugin module has not been imported."
self.is3D = is3D
if is3D:
self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
pass
else:
self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
pass
## Define hypothesis containing parameters of the algorithm
def Parameters(self):
if self.is3D:
hyp = self.Hypothesis("NETGEN_Parameters", [],
"libNETGENEngine.so", UseExisting=0)
else:
hyp = self.Hypothesis("NETGEN_Parameters_2D", [],
"libNETGENEngine.so", UseExisting=0)
return hyp
# Public class: Mesh_Projection1D
# ------------------------------
## Class to define a projection 1D algorithm
#
# More details.
class Mesh_Projection1D(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, "Projection_1D")
## Define "Source Edge" hypothesis, specifying a meshed edge to
# take a mesh pattern from, and optionally association of vertices
# between the source edge and a target one (where a hipothesis is assigned to)
# @param edge to take nodes distribution from
# @param mesh to take nodes distribution from (optional)
# @param srcV is vertex of \a edge to associate with \a tgtV (optional)
# @param tgtV is vertex of \a the edge where the algorithm is assigned,
# to associate with \a srcV (optional)
# @param UseExisting if ==true - search existing hypothesis created with
# same parameters, else (default) - create new
def SourceEdge(self, edge, mesh=None, srcV=None, tgtV=None, UseExisting=0):
hyp = self.Hypothesis("ProjectionSource1D", [edge,mesh,srcV,tgtV],
UseExisting=0)
#UseExisting=UseExisting, CompareMethod=self.CompareSourceEdge)
hyp.SetSourceEdge( edge )
if not mesh is None and isinstance(mesh, Mesh):
mesh = mesh.GetMesh()
hyp.SetSourceMesh( mesh )
hyp.SetVertexAssociation( srcV, tgtV )
return hyp
## Check if the given "SourceEdge" hypothesis has the same parameters as given arguments
#def CompareSourceEdge(self, hyp, args):
# # seems to be not really useful to reuse existing "SourceEdge" hypothesis
# return False
# Public class: Mesh_Projection2D
# ------------------------------
## Class to define a projection 2D algorithm
#
# More details.
class Mesh_Projection2D(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, "Projection_2D")
## Define "Source Face" hypothesis, specifying a meshed face to
# take a mesh pattern from, and optionally association of vertices
# between the source face and a target one (where a hipothesis is assigned to)
# @param face to take mesh pattern from
# @param mesh to take mesh pattern from (optional)
# @param srcV1 is vertex of \a face to associate with \a tgtV1 (optional)
# @param tgtV1 is vertex of \a the face where the algorithm is assigned,
# to associate with \a srcV1 (optional)
# @param srcV2 is vertex of \a face to associate with \a tgtV1 (optional)
# @param tgtV2 is vertex of \a the face where the algorithm is assigned,
# to associate with \a srcV2 (optional)
# @param UseExisting if ==true - search existing hypothesis created with
# same parameters, else (default) - create new
#
# Note: association vertices must belong to one edge of a face
def SourceFace(self, face, mesh=None, srcV1=None, tgtV1=None,
srcV2=None, tgtV2=None, UseExisting=0):
hyp = self.Hypothesis("ProjectionSource2D", [face,mesh,srcV1,tgtV1,srcV2,tgtV2],
UseExisting=0)
#UseExisting=UseExisting, CompareMethod=self.CompareSourceFace)
hyp.SetSourceFace( face )
if not mesh is None and isinstance(mesh, Mesh):
mesh = mesh.GetMesh()
hyp.SetSourceMesh( mesh )
hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
return hyp
## Check if the given "SourceFace" hypothesis has the same parameters as given arguments
#def CompareSourceFace(self, hyp, args):
# # seems to be not really useful to reuse existing "SourceFace" hypothesis
# return False
# Public class: Mesh_Projection3D
# ------------------------------
## Class to define a projection 3D algorithm
#
# More details.
class Mesh_Projection3D(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, "Projection_3D")
## Define "Source Shape 3D" hypothesis, specifying a meshed solid to
# take a mesh pattern from, and optionally association of vertices
# between the source solid and a target one (where a hipothesis is assigned to)
# @param solid to take mesh pattern from
# @param mesh to take mesh pattern from (optional)
# @param srcV1 is vertex of \a solid to associate with \a tgtV1 (optional)
# @param tgtV1 is vertex of \a the solid where the algorithm is assigned,
# to associate with \a srcV1 (optional)
# @param srcV2 is vertex of \a solid to associate with \a tgtV1 (optional)
# @param tgtV2 is vertex of \a the solid where the algorithm is assigned,
# to associate with \a srcV2 (optional)
# @param UseExisting - if ==true - search existing hypothesis created with
# same parameters, else (default) - create new
#
# Note: association vertices must belong to one edge of a solid
def SourceShape3D(self, solid, mesh=0, srcV1=0, tgtV1=0,
srcV2=0, tgtV2=0, UseExisting=0):
hyp = self.Hypothesis("ProjectionSource3D",
[solid,mesh,srcV1,tgtV1,srcV2,tgtV2],
UseExisting=0)
#UseExisting=UseExisting, CompareMethod=self.CompareSourceShape3D)
hyp.SetSource3DShape( solid )
if not mesh is None and isinstance(mesh, Mesh):
mesh = mesh.GetMesh()
hyp.SetSourceMesh( mesh )
hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
return hyp
## Check if the given "SourceShape3D" hypothesis has the same parameters as given arguments
#def CompareSourceShape3D(self, hyp, args):
# # seems to be not really useful to reuse existing "SourceShape3D" hypothesis
# return False
# Public class: Mesh_Prism
# ------------------------
## Class to define a 3D extrusion algorithm
#
# More details.
class Mesh_Prism3D(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, "Prism_3D")
# Public class: Mesh_RadialPrism
# -------------------------------
## Class to define a Radial Prism 3D algorithm
#
# More details.
class Mesh_RadialPrism3D(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, "RadialPrism_3D")
self.distribHyp = self.Hypothesis("LayerDistribution", UseExisting=0)
self.nbLayers = None
## Return 3D hypothesis holding the 1D one
def Get3DHypothesis(self):
return self.distribHyp
## Private method creating 1D hypothes and storing it in the LayerDistribution
# hypothes. Returns the created hypothes
def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"):
#print "OwnHypothesis",hypType
if not self.nbLayers is None:
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers )
self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp )
study = self.mesh.smeshpyD.GetCurrentStudy() # prevent publishing of own 1D hypothesis
hyp = self.mesh.smeshpyD.CreateHypothesis(hypType, so)
self.mesh.smeshpyD.SetCurrentStudy( study ) # anable publishing
self.distribHyp.SetLayerDistribution( hyp )
return hyp
## Define "NumberOfLayers" hypothesis, specifying a number of layers of
# prisms to build between the inner and outer shells
# @param UseExisting if ==true - search existing hypothesis created with
# same parameters, else (default) - create new
def NumberOfLayers(self, n, UseExisting=0):
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.distribHyp )
self.nbLayers = self.Hypothesis("NumberOfLayers", [n], UseExisting=UseExisting,
CompareMethod=self.CompareNumberOfLayers)
self.nbLayers.SetNumberOfLayers( n )
return self.nbLayers
## Check if the given "NumberOfLayers" hypothesis has the same parameters as given arguments
def CompareNumberOfLayers(self, hyp, args):
return IsEqual(hyp.GetNumberOfLayers(), args[0])
## Define "LocalLength" hypothesis, specifying segment length
# to build between the inner and outer shells
# @param l for the length of segments
# @param p for the precision of rounding
def LocalLength(self, l, p=1e-07):
hyp = self.OwnHypothesis("LocalLength", [l,p])
hyp.SetLength(l)
hyp.SetPrecision(p)
return hyp
## Define "NumberOfSegments" hypothesis, specifying a number of layers of
# prisms to build between the inner and outer shells
# @param n for the number of segments
# @param s for the scale factor (optional)
def NumberOfSegments(self, n, s=[]):
if s == []:
hyp = self.OwnHypothesis("NumberOfSegments", [n])
else:
hyp = self.OwnHypothesis("NumberOfSegments", [n,s])
hyp.SetDistrType( 1 )
hyp.SetScaleFactor(s)
hyp.SetNumberOfSegments(n)
return hyp
## Define "Arithmetic1D" hypothesis, specifying distribution of segments
# to build between the inner and outer shells as arithmetic length increasing
# @param start for the length of the first segment
# @param end for the length of the last segment
def Arithmetic1D(self, start, end ):
hyp = self.OwnHypothesis("Arithmetic1D", [start, end])
hyp.SetLength(start, 1)
hyp.SetLength(end , 0)
return hyp
## Define "StartEndLength" hypothesis, specifying distribution of segments
# to build between the inner and outer shells as geometric length increasing
# @param start for the length of the first segment
# @param end for the length of the last segment
def StartEndLength(self, start, end):
hyp = self.OwnHypothesis("StartEndLength", [start, end])
hyp.SetLength(start, 1)
hyp.SetLength(end , 0)
return hyp
## Define "AutomaticLength" hypothesis, specifying number of segments
# to build between the inner and outer shells
# @param fineness for the fineness [0-1]
def AutomaticLength(self, fineness=0):
hyp = self.OwnHypothesis("AutomaticLength")
hyp.SetFineness( fineness )
return hyp
# Private class: Mesh_UseExisting
# -------------------------------
class Mesh_UseExisting(Mesh_Algorithm):
def __init__(self, dim, mesh, geom=0):
if dim == 1:
self.Create(mesh, geom, "UseExisting_1D")
else:
self.Create(mesh, geom, "UseExisting_2D")