smesh/src/SMDS/SMDS_UnstructuredGrid.cxx

1163 lines
44 KiB
C++
Raw Normal View History

2012-08-09 16:03:55 +06:00
// Copyright (C) 2010-2012 CEA/DEN, EDF R&D, OPEN CASCADE
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
#include "SMDS_UnstructuredGrid.hxx"
#include "SMDS_Mesh.hxx"
#include "SMDS_MeshInfo.hxx"
#include "SMDS_Downward.hxx"
#include "SMDS_MeshVolume.hxx"
#include "utilities.h"
#include <vtkCellArray.h>
#include <vtkCellData.h>
#include <vtkCellLinks.h>
#include <vtkDoubleArray.h>
#include <vtkIdTypeArray.h>
#include <vtkUnsignedCharArray.h>
#include <list>
#include <climits>
using namespace std;
SMDS_CellLinks* SMDS_CellLinks::New()
{
MESSAGE("SMDS_CellLinks::New");
return new SMDS_CellLinks();
}
2013-02-12 20:37:44 +06:00
void SMDS_CellLinks::ResizeForPoint(vtkIdType vtkID)
2012-08-09 16:03:55 +06:00
{
2013-02-12 20:37:44 +06:00
if ( vtkID > this->MaxId )
{
this->MaxId = vtkID;
if ( vtkID >= this->Size )
vtkCellLinks::Resize( vtkID+SMDS_Mesh::chunkSize );
}
2012-08-09 16:03:55 +06:00
}
SMDS_CellLinks::SMDS_CellLinks() :
vtkCellLinks()
{
}
SMDS_CellLinks::~SMDS_CellLinks()
{
}
SMDS_UnstructuredGrid* SMDS_UnstructuredGrid::New()
{
MESSAGE("SMDS_UnstructuredGrid::New");
return new SMDS_UnstructuredGrid();
}
SMDS_UnstructuredGrid::SMDS_UnstructuredGrid() :
vtkUnstructuredGrid()
{
_cellIdToDownId.clear();
_downTypes.clear();
_downArray.clear();
_mesh = 0;
}
SMDS_UnstructuredGrid::~SMDS_UnstructuredGrid()
{
}
unsigned long SMDS_UnstructuredGrid::GetMTime()
{
unsigned long mtime = vtkUnstructuredGrid::GetMTime();
MESSAGE("vtkUnstructuredGrid::GetMTime: " << mtime);
return mtime;
}
void SMDS_UnstructuredGrid::Update()
{
MESSAGE("SMDS_UnstructuredGrid::Update");
return vtkUnstructuredGrid::Update();
}
void SMDS_UnstructuredGrid::UpdateInformation()
{
MESSAGE("SMDS_UnstructuredGrid::UpdateInformation");
return vtkUnstructuredGrid::UpdateInformation();
}
vtkPoints* SMDS_UnstructuredGrid::GetPoints()
{
// TODO erreur incomprehensible de la macro vtk GetPoints apparue avec la version paraview de fin aout 2010
//MESSAGE("*********************** SMDS_UnstructuredGrid::GetPoints " << this->Points << " " << vtkUnstructuredGrid::GetPoints());
return this->Points;
}
//#ifdef VTK_HAVE_POLYHEDRON
int SMDS_UnstructuredGrid::InsertNextLinkedCell(int type, int npts, vtkIdType *pts)
{
if (type != VTK_POLYHEDRON)
return vtkUnstructuredGrid::InsertNextLinkedCell(type, npts, pts);
// --- type = VTK_POLYHEDRON
//MESSAGE("InsertNextLinkedCell VTK_POLYHEDRON");
int cellid = this->InsertNextCell(type, npts, pts);
set<vtkIdType> setOfNodes;
setOfNodes.clear();
int nbfaces = npts;
int i = 0;
for (int nf = 0; nf < nbfaces; nf++)
{
int nbnodes = pts[i];
i++;
for (int k = 0; k < nbnodes; k++)
{
//MESSAGE(" cell " << cellid << " face " << nf << " node " << pts[i]);
setOfNodes.insert(pts[i]);
i++;
}
}
set<vtkIdType>::iterator it = setOfNodes.begin();
for (; it != setOfNodes.end(); ++it)
{
//MESSAGE("reverse link for node " << *it << " cell " << cellid);
this->Links->ResizeCellList(*it, 1);
this->Links->AddCellReference(cellid, *it);
}
return cellid;
}
//#endif
void SMDS_UnstructuredGrid::setSMDS_mesh(SMDS_Mesh *mesh)
{
_mesh = mesh;
}
void SMDS_UnstructuredGrid::compactGrid(std::vector<int>& idNodesOldToNew, int newNodeSize,
std::vector<int>& idCellsOldToNew, int newCellSize)
{
2013-02-12 20:37:44 +06:00
MESSAGE("------------------------- SMDS_UnstructuredGrid::compactGrid " << newNodeSize << " " << newCellSize);//CHRONO(1);
2012-08-09 16:03:55 +06:00
int alreadyCopied = 0;
// --- if newNodeSize, create a new compacted vtkPoints
vtkPoints *newPoints = vtkPoints::New();
newPoints->SetDataType(VTK_DOUBLE);
newPoints->SetNumberOfPoints(newNodeSize);
if (newNodeSize)
{
MESSAGE("-------------- compactGrid, newNodeSize " << newNodeSize);
// rnv: to fix bug "21125: EDF 1233 SMESH: Degradation of precision in a test case for quadratic conversion"
// using double type for storing coordinates of nodes instead float.
int oldNodeSize = idNodesOldToNew.size();
int i = 0;
while ( i < oldNodeSize )
{
// skip a hole if any
while ( i < oldNodeSize && idNodesOldToNew[i] < 0 )
++i;
int startBloc = i;
// look for a block end
while ( i < oldNodeSize && idNodesOldToNew[i] >= 0 )
++i;
int endBloc = i;
copyNodes(newPoints, idNodesOldToNew, alreadyCopied, startBloc, endBloc);
}
newPoints->Squeeze();
}
// --- create new compacted Connectivity, Locations and Types
int oldCellSize = this->Types->GetNumberOfTuples();
vtkCellArray *newConnectivity = vtkCellArray::New();
newConnectivity->Initialize();
int oldCellDataSize = this->Connectivity->GetData()->GetSize();
newConnectivity->Allocate(oldCellDataSize);
MESSAGE("oldCellSize="<< oldCellSize << " oldCellDataSize=" << oldCellDataSize);
vtkUnsignedCharArray *newTypes = vtkUnsignedCharArray::New();
newTypes->Initialize();
newTypes->SetNumberOfValues(newCellSize);
vtkIdTypeArray *newLocations = vtkIdTypeArray::New();
newLocations->Initialize();
newLocations->SetNumberOfValues(newCellSize);
// TODO some polyhedron may be huge (only in some tests)
vtkIdType tmpid[NBMAXNODESINCELL];
vtkIdType *pointsCell = &tmpid[0]; // --- points id to fill a new cell
alreadyCopied = 0;
int i = 0;
while ( i < oldCellSize )
{
// skip a hole if any
while ( i < oldCellSize && this->Types->GetValue(i) == VTK_EMPTY_CELL )
++i;
int startBloc = i;
// look for a block end
while ( i < oldCellSize && this->Types->GetValue(i) != VTK_EMPTY_CELL )
++i;
int endBloc = i;
if ( endBloc > startBloc )
copyBloc(newTypes,
idCellsOldToNew, idNodesOldToNew,
newConnectivity, newLocations,
pointsCell, alreadyCopied,
startBloc, endBloc);
}
newConnectivity->Squeeze();
if (1/*newNodeSize*/)
{
MESSAGE("------- newNodeSize, setPoints");
this->SetPoints(newPoints);
MESSAGE("NumberOfPoints: " << this->GetNumberOfPoints());
}
if (vtkDoubleArray* diameters =
vtkDoubleArray::SafeDownCast( vtkDataSet::CellData->GetScalars() )) // Balls
{
for (int oldCellID = 0; oldCellID < oldCellSize; oldCellID++)
{
if (this->Types->GetValue(oldCellID) == VTK_EMPTY_CELL)
continue;
int newCellId = idCellsOldToNew[ oldCellID ];
if (newTypes->GetValue(newCellId) == VTK_POLY_VERTEX)
diameters->SetValue( newCellId, diameters->GetValue( oldCellID ));
}
}
if (this->FaceLocations)
{
vtkIdTypeArray *newFaceLocations = vtkIdTypeArray::New();
newFaceLocations->Initialize();
newFaceLocations->Allocate(newTypes->GetSize());
vtkIdTypeArray *newFaces = vtkIdTypeArray::New();
newFaces->Initialize();
newFaces->Allocate(this->Faces->GetSize());
for (int i = 0; i < oldCellSize; i++)
{
if (this->Types->GetValue(i) == VTK_EMPTY_CELL)
continue;
int newCellId = idCellsOldToNew[i];
if (newTypes->GetValue(newCellId) == VTK_POLYHEDRON)
{
newFaceLocations->InsertNextValue(newFaces->GetMaxId()+1);
int oldFaceLoc = this->FaceLocations->GetValue(i);
int nCellFaces = this->Faces->GetValue(oldFaceLoc++);
newFaces->InsertNextValue(nCellFaces);
for (int n=0; n<nCellFaces; n++)
{
int nptsInFace = this->Faces->GetValue(oldFaceLoc++);
newFaces->InsertNextValue(nptsInFace);
for (int k=0; k<nptsInFace; k++)
{
int oldpt = this->Faces->GetValue(oldFaceLoc++);
newFaces->InsertNextValue(idNodesOldToNew[oldpt]);
}
}
}
else
{
newFaceLocations->InsertNextValue(-1);
}
}
newFaceLocations->Squeeze();
newFaces->Squeeze();
newFaceLocations->Register(this);
newFaces->Register(this);
this->SetCells(newTypes, newLocations, newConnectivity, newFaceLocations, newFaces);
newFaceLocations->Delete();
newFaces->Delete();
}
else
{
this->SetCells(newTypes, newLocations, newConnectivity, FaceLocations, Faces);
}
newPoints->Delete();
newTypes->Delete();
newLocations->Delete();
newConnectivity->Delete();
this->BuildLinks();
}
void SMDS_UnstructuredGrid::copyNodes(vtkPoints *newPoints, std::vector<int>& idNodesOldToNew, int& alreadyCopied,
int start, int end)
{
MESSAGE("copyNodes " << alreadyCopied << " " << start << " " << end << " size: " << end - start << " total: " << alreadyCopied + end - start);
void *target = newPoints->GetVoidPointer(3 * alreadyCopied);
void *source = this->Points->GetVoidPointer(3 * start);
int nbPoints = end - start;
if (nbPoints > 0)
{
memcpy(target, source, 3 * sizeof(double) * nbPoints);
for (int j = start; j < end; j++)
idNodesOldToNew[j] = alreadyCopied++; // old vtkId --> new vtkId
}
}
void SMDS_UnstructuredGrid::copyBloc(vtkUnsignedCharArray *newTypes,
std::vector<int>& idCellsOldToNew,
std::vector<int>& idNodesOldToNew,
vtkCellArray* newConnectivity,
vtkIdTypeArray* newLocations,
vtkIdType* pointsCell,
int& alreadyCopied,
int start,
int end)
{
MESSAGE("copyBloc " << alreadyCopied << " " << start << " " << end << " size: " << end - start << " total: " << alreadyCopied + end - start);
for (int j = start; j < end; j++)
{
newTypes->SetValue(alreadyCopied, this->Types->GetValue(j));
idCellsOldToNew[j] = alreadyCopied; // old vtkId --> new vtkId
vtkIdType oldLoc = this->Locations->GetValue(j);
vtkIdType nbpts;
vtkIdType *oldPtsCell = 0;
this->Connectivity->GetCell(oldLoc, nbpts, oldPtsCell);
assert(nbpts < NBMAXNODESINCELL);
//MESSAGE(j << " " << alreadyCopied << " " << (int)this->Types->GetValue(j) << " " << oldLoc << " " << nbpts );
for (int l = 0; l < nbpts; l++)
{
int oldval = oldPtsCell[l];
pointsCell[l] = idNodesOldToNew[oldval];
//MESSAGE(" " << oldval << " " << pointsCell[l]);
}
/*int newcnt = */newConnectivity->InsertNextCell(nbpts, pointsCell);
int newLoc = newConnectivity->GetInsertLocation(nbpts);
//MESSAGE(newcnt << " " << newLoc);
newLocations->SetValue(alreadyCopied, newLoc);
alreadyCopied++;
}
}
int SMDS_UnstructuredGrid::CellIdToDownId(int vtkCellId)
{
if((vtkCellId < 0) || (vtkCellId >= _cellIdToDownId.size()))
{
//MESSAGE("SMDS_UnstructuredGrid::CellIdToDownId structure not up to date: vtkCellId="
// << vtkCellId << " max="<< _cellIdToDownId.size());
return -1;
}
return _cellIdToDownId[vtkCellId];
}
void SMDS_UnstructuredGrid::setCellIdToDownId(int vtkCellId, int downId)
{
// ASSERT((vtkCellId >= 0) && (vtkCellId < _cellIdToDownId.size()));
_cellIdToDownId[vtkCellId] = downId;
}
void SMDS_UnstructuredGrid::CleanDownwardConnectivity()
{
for (int i = 0; i < _downArray.size(); i++)
{
if (_downArray[i])
delete _downArray[i];
_downArray[i] = 0;
}
_cellIdToDownId.clear();
}
/*! Build downward connectivity: to do only when needed because heavy memory load.
* Downward connectivity is no more valid if vtkUnstructuredGrid is modified.
*
*/
void SMDS_UnstructuredGrid::BuildDownwardConnectivity(bool withEdges)
{
MESSAGE("SMDS_UnstructuredGrid::BuildDownwardConnectivity");CHRONO(2);
// TODO calcul partiel sans edges
// --- erase previous data if any
this->CleanDownwardConnectivity();
// --- create SMDS_Downward structures (in _downArray vector[vtkCellType])
_downArray.resize(VTK_MAXTYPE + 1, 0);
_downArray[VTK_LINE] = new SMDS_DownEdge(this);
_downArray[VTK_QUADRATIC_EDGE] = new SMDS_DownQuadEdge(this);
_downArray[VTK_TRIANGLE] = new SMDS_DownTriangle(this);
_downArray[VTK_QUADRATIC_TRIANGLE] = new SMDS_DownQuadTriangle(this);
_downArray[VTK_QUAD] = new SMDS_DownQuadrangle(this);
_downArray[VTK_QUADRATIC_QUAD] = new SMDS_DownQuadQuadrangle(this);
_downArray[VTK_BIQUADRATIC_QUAD] = new SMDS_DownQuadQuadrangle(this);
_downArray[VTK_TETRA] = new SMDS_DownTetra(this);
_downArray[VTK_QUADRATIC_TETRA] = new SMDS_DownQuadTetra(this);
_downArray[VTK_PYRAMID] = new SMDS_DownPyramid(this);
_downArray[VTK_QUADRATIC_PYRAMID] = new SMDS_DownQuadPyramid(this);
_downArray[VTK_WEDGE] = new SMDS_DownPenta(this);
_downArray[VTK_QUADRATIC_WEDGE] = new SMDS_DownQuadPenta(this);
_downArray[VTK_HEXAHEDRON] = new SMDS_DownHexa(this);
_downArray[VTK_QUADRATIC_HEXAHEDRON] = new SMDS_DownQuadHexa(this);
_downArray[VTK_TRIQUADRATIC_HEXAHEDRON] = new SMDS_DownQuadHexa(this);
_downArray[VTK_HEXAGONAL_PRISM] = new SMDS_DownPenta(this);
// --- get detailed info of number of cells of each type, allocate SMDS_downward structures
const SMDS_MeshInfo &meshInfo = _mesh->GetMeshInfo();
int nbLinTetra = meshInfo.NbTetras (ORDER_LINEAR);
int nbQuadTetra = meshInfo.NbTetras (ORDER_QUADRATIC);
int nbLinPyra = meshInfo.NbPyramids(ORDER_LINEAR);
int nbQuadPyra = meshInfo.NbPyramids(ORDER_QUADRATIC);
int nbLinPrism = meshInfo.NbPrisms (ORDER_LINEAR);
int nbQuadPrism = meshInfo.NbPrisms (ORDER_QUADRATIC);
int nbLinHexa = meshInfo.NbHexas (ORDER_LINEAR);
int nbQuadHexa = meshInfo.NbHexas (ORDER_QUADRATIC);
int nbHexPrism = meshInfo.NbHexPrisms();
int nbLineGuess = int((4.0 / 3.0) * nbLinTetra + 2 * nbLinPrism + 2.5 * nbLinPyra + 3 * nbLinHexa);
int nbQuadEdgeGuess = int((4.0 / 3.0) * nbQuadTetra + 2 * nbQuadPrism + 2.5 * nbQuadPyra + 3 * nbQuadHexa);
int nbLinTriaGuess = 2 * nbLinTetra + nbLinPrism + 2 * nbLinPyra;
int nbQuadTriaGuess = 2 * nbQuadTetra + nbQuadPrism + 2 * nbQuadPyra;
int nbLinQuadGuess = int((2.0 / 3.0) * nbLinPrism + (1.0 / 2.0) * nbLinPyra + 3 * nbLinHexa);
int nbQuadQuadGuess = int((2.0 / 3.0) * nbQuadPrism + (1.0 / 2.0) * nbQuadPyra + 3 * nbQuadHexa);
int GuessSize[VTK_MAXTYPE];
GuessSize[VTK_LINE] = nbLineGuess;
GuessSize[VTK_QUADRATIC_EDGE] = nbQuadEdgeGuess;
GuessSize[VTK_TRIANGLE] = nbLinTriaGuess;
GuessSize[VTK_QUADRATIC_TRIANGLE] = nbQuadTriaGuess;
GuessSize[VTK_QUAD] = nbLinQuadGuess;
GuessSize[VTK_QUADRATIC_QUAD] = nbQuadQuadGuess;
GuessSize[VTK_BIQUADRATIC_QUAD] = nbQuadQuadGuess;
GuessSize[VTK_TETRA] = nbLinTetra;
GuessSize[VTK_QUADRATIC_TETRA] = nbQuadTetra;
GuessSize[VTK_PYRAMID] = nbLinPyra;
GuessSize[VTK_QUADRATIC_PYRAMID] = nbQuadPyra;
GuessSize[VTK_WEDGE] = nbLinPrism;
GuessSize[VTK_QUADRATIC_WEDGE] = nbQuadPrism;
GuessSize[VTK_HEXAHEDRON] = nbLinHexa;
GuessSize[VTK_QUADRATIC_HEXAHEDRON] = nbQuadHexa;
GuessSize[VTK_TRIQUADRATIC_HEXAHEDRON] = nbQuadHexa;
GuessSize[VTK_HEXAGONAL_PRISM] = nbHexPrism;
_downArray[VTK_LINE] ->allocate(nbLineGuess);
_downArray[VTK_QUADRATIC_EDGE] ->allocate(nbQuadEdgeGuess);
_downArray[VTK_TRIANGLE] ->allocate(nbLinTriaGuess);
_downArray[VTK_QUADRATIC_TRIANGLE] ->allocate(nbQuadTriaGuess);
_downArray[VTK_QUAD] ->allocate(nbLinQuadGuess);
_downArray[VTK_QUADRATIC_QUAD] ->allocate(nbQuadQuadGuess);
_downArray[VTK_BIQUADRATIC_QUAD] ->allocate(nbQuadQuadGuess);
_downArray[VTK_TETRA] ->allocate(nbLinTetra);
_downArray[VTK_QUADRATIC_TETRA] ->allocate(nbQuadTetra);
_downArray[VTK_PYRAMID] ->allocate(nbLinPyra);
_downArray[VTK_QUADRATIC_PYRAMID] ->allocate(nbQuadPyra);
_downArray[VTK_WEDGE] ->allocate(nbLinPrism);
_downArray[VTK_QUADRATIC_WEDGE] ->allocate(nbQuadPrism);
_downArray[VTK_HEXAHEDRON] ->allocate(nbLinHexa);
_downArray[VTK_QUADRATIC_HEXAHEDRON] ->allocate(nbQuadHexa);
_downArray[VTK_TRIQUADRATIC_HEXAHEDRON]->allocate(nbQuadHexa);
_downArray[VTK_HEXAGONAL_PRISM] ->allocate(nbHexPrism);
// --- iteration on vtkUnstructuredGrid cells, only faces
// for each vtk face:
// create a downward face entry with its downward id.
// compute vtk volumes, create downward volumes entry.
// mark face in downward volumes
// mark volumes in downward face
MESSAGE("--- iteration on vtkUnstructuredGrid cells, only faces");CHRONO(20);
int cellSize = this->Types->GetNumberOfTuples();
_cellIdToDownId.resize(cellSize, -1);
for (int i = 0; i < cellSize; i++)
{
int vtkFaceType = this->GetCellType(i);
if (SMDS_Downward::getCellDimension(vtkFaceType) == 2)
{
int vtkFaceId = i;
//ASSERT(_downArray[vtkFaceType]);
int connFaceId = _downArray[vtkFaceType]->addCell(vtkFaceId);
SMDS_Down2D* downFace = static_cast<SMDS_Down2D*> (_downArray[vtkFaceType]);
downFace->setTempNodes(connFaceId, vtkFaceId);
int vols[2] = { -1, -1 };
int nbVolumes = downFace->computeVolumeIds(vtkFaceId, vols);
//MESSAGE("nbVolumes="<< nbVolumes);
for (int ivol = 0; ivol < nbVolumes; ivol++)
{
int vtkVolId = vols[ivol];
int vtkVolType = this->GetCellType(vtkVolId);
//ASSERT(_downArray[vtkVolType]);
int connVolId = _downArray[vtkVolType]->addCell(vtkVolId);
_downArray[vtkVolType]->addDownCell(connVolId, connFaceId, vtkFaceType);
_downArray[vtkFaceType]->addUpCell(connFaceId, connVolId, vtkVolType);
// MESSAGE("Face " << vtkFaceId << " belongs to volume " << vtkVolId);
}
}
}
// --- iteration on vtkUnstructuredGrid cells, only volumes
// for each vtk volume:
// create downward volumes entry if not already done
// build a temporary list of faces described with their nodes
// for each face
// compute the vtk volumes containing this face
// check if the face is already listed in the volumes (comparison of ordered list of nodes)
// if not, create a downward face entry (resizing of structure required)
// (the downward faces store a temporary list of nodes to ease the comparison)
// create downward volumes entry if not already done
// mark volumes in downward face
// mark face in downward volumes
CHRONOSTOP(20);
MESSAGE("--- iteration on vtkUnstructuredGrid cells, only volumes");CHRONO(21);
for (int i = 0; i < cellSize; i++)
{
int vtkType = this->GetCellType(i);
if (SMDS_Downward::getCellDimension(vtkType) == 3)
{
//CHRONO(31);
int vtkVolId = i;
// MESSAGE("vtk volume " << vtkVolId);
//ASSERT(_downArray[vtkType]);
/*int connVolId = */_downArray[vtkType]->addCell(vtkVolId);
// --- find all the faces of the volume, describe the faces by their nodes
SMDS_Down3D* downVol = static_cast<SMDS_Down3D*> (_downArray[vtkType]);
ListElemByNodesType facesWithNodes;
downVol->computeFacesWithNodes(vtkVolId, facesWithNodes);
// MESSAGE("vtk volume " << vtkVolId << " contains " << facesWithNodes.nbElems << " faces");
//CHRONOSTOP(31);
for (int iface = 0; iface < facesWithNodes.nbElems; iface++)
{
// --- find the volumes containing the face
//CHRONO(32);
int vtkFaceType = facesWithNodes.elems[iface].vtkType;
SMDS_Down2D* downFace = static_cast<SMDS_Down2D*> (_downArray[vtkFaceType]);
int vols[2] = { -1, -1 };
int *nodes = &facesWithNodes.elems[iface].nodeIds[0];
int lg = facesWithNodes.elems[iface].nbNodes;
int nbVolumes = downFace->computeVolumeIdsFromNodesFace(nodes, lg, vols);
// MESSAGE("vtk volume " << vtkVolId << " face " << iface << " belongs to " << nbVolumes << " volumes");
// --- check if face is registered in the volumes
//CHRONOSTOP(32);
//CHRONO(33);
int connFaceId = -1;
for (int ivol = 0; ivol < nbVolumes; ivol++)
{
int vtkVolId2 = vols[ivol];
int vtkVolType = this->GetCellType(vtkVolId2);
//ASSERT(_downArray[vtkVolType]);
int connVolId2 = _downArray[vtkVolType]->addCell(vtkVolId2);
SMDS_Down3D* downVol2 = static_cast<SMDS_Down3D*> (_downArray[vtkVolType]);
connFaceId = downVol2->FindFaceByNodes(connVolId2, facesWithNodes.elems[iface]);
if (connFaceId >= 0)
break; // --- face already created
}//CHRONOSTOP(33);
// --- if face is not registered in the volumes, create face
//CHRONO(34);
if (connFaceId < 0)
{
connFaceId = _downArray[vtkFaceType]->addCell();
downFace->setTempNodes(connFaceId, facesWithNodes.elems[iface]);
}//CHRONOSTOP(34);
// --- mark volumes in downward face and mark face in downward volumes
//CHRONO(35);
for (int ivol = 0; ivol < nbVolumes; ivol++)
{
int vtkVolId2 = vols[ivol];
int vtkVolType = this->GetCellType(vtkVolId2);
//ASSERT(_downArray[vtkVolType]);
int connVolId2 = _downArray[vtkVolType]->addCell(vtkVolId2);
_downArray[vtkVolType]->addDownCell(connVolId2, connFaceId, vtkFaceType);
_downArray[vtkFaceType]->addUpCell(connFaceId, connVolId2, vtkVolType);
// MESSAGE(" From volume " << vtkVolId << " face " << connFaceId << " belongs to volume " << vtkVolId2);
}//CHRONOSTOP(35);
}
}
}
// --- iteration on vtkUnstructuredGrid cells, only edges
// for each vtk edge:
// create downward edge entry
// store the nodes id's in downward edge (redundant with vtkUnstructuredGrid)
// find downward faces
// (from vtk faces or volumes, get downward faces, they have a temporary list of nodes)
// mark edge in downward faces
// mark faces in downward edge
CHRONOSTOP(21);
MESSAGE("--- iteration on vtkUnstructuredGrid cells, only edges");CHRONO(22);
for (int i = 0; i < cellSize; i++)
{
int vtkEdgeType = this->GetCellType(i);
if (SMDS_Downward::getCellDimension(vtkEdgeType) == 1)
{
int vtkEdgeId = i;
//ASSERT(_downArray[vtkEdgeType]);
int connEdgeId = _downArray[vtkEdgeType]->addCell(vtkEdgeId);
SMDS_Down1D* downEdge = static_cast<SMDS_Down1D*> (_downArray[vtkEdgeType]);
downEdge->setNodes(connEdgeId, vtkEdgeId);
vector<int> vtkIds;
int nbVtkCells = downEdge->computeVtkCells(connEdgeId, vtkIds);
int downFaces[1000];
unsigned char downTypes[1000];
int nbDownFaces = downEdge->computeFaces(connEdgeId, &vtkIds[0], nbVtkCells, downFaces, downTypes);
for (int n = 0; n < nbDownFaces; n++)
{
_downArray[downTypes[n]]->addDownCell(downFaces[n], connEdgeId, vtkEdgeType);
_downArray[vtkEdgeType]->addUpCell(connEdgeId, downFaces[n], downTypes[n]);
}
}
}
// --- iteration on downward faces (they are all listed now)
// for each downward face:
// build a temporary list of edges with their ordered list of nodes
// for each edge:
// find all the vtk cells containing this edge
// then identify all the downward faces containing the edge, from the vtk cells
// check if the edge is already listed in the faces (comparison of ordered list of nodes)
// if not, create a downward edge entry with the node id's
// mark edge in downward faces
// mark downward faces in edge (size of list unknown, to be allocated)
CHRONOSTOP(22);CHRONO(23);
for (int vtkFaceType = 0; vtkFaceType < VTK_QUADRATIC_PYRAMID; vtkFaceType++)
{
if (SMDS_Downward::getCellDimension(vtkFaceType) != 2)
continue;
// --- find all the edges of the face, describe the edges by their nodes
SMDS_Down2D* downFace = static_cast<SMDS_Down2D*> (_downArray[vtkFaceType]);
int maxId = downFace->getMaxId();
for (int faceId = 0; faceId < maxId; faceId++)
{
//CHRONO(40);
ListElemByNodesType edgesWithNodes;
downFace->computeEdgesWithNodes(faceId, edgesWithNodes);
// MESSAGE("downward face type " << vtkFaceType << " num " << faceId << " contains " << edgesWithNodes.nbElems << " edges");
//CHRONOSTOP(40);
for (int iedge = 0; iedge < edgesWithNodes.nbElems; iedge++)
{
// --- check if the edge is already registered by exploration of the faces
//CHRONO(41);
vector<int> vtkIds;
unsigned char vtkEdgeType = edgesWithNodes.elems[iedge].vtkType;
int *pts = &edgesWithNodes.elems[iedge].nodeIds[0];
SMDS_Down1D* downEdge = static_cast<SMDS_Down1D*> (_downArray[vtkEdgeType]);
int nbVtkCells = downEdge->computeVtkCells(pts, vtkIds);
//CHRONOSTOP(41);CHRONO(42);
int downFaces[1000];
unsigned char downTypes[1000];
int nbDownFaces = downEdge->computeFaces(pts, &vtkIds[0], nbVtkCells, downFaces, downTypes);
//CHRONOSTOP(42);
//CHRONO(43);
int connEdgeId = -1;
for (int idf = 0; idf < nbDownFaces; idf++)
{
int faceId2 = downFaces[idf];
int faceType = downTypes[idf];
//ASSERT(_downArray[faceType]);
SMDS_Down2D* downFace2 = static_cast<SMDS_Down2D*> (_downArray[faceType]);
connEdgeId = downFace2->FindEdgeByNodes(faceId2, edgesWithNodes.elems[iedge]);
if (connEdgeId >= 0)
break; // --- edge already created
}//CHRONOSTOP(43);
// --- if edge is not registered in the faces, create edge
if (connEdgeId < 0)
{
//CHRONO(44);
connEdgeId = _downArray[vtkEdgeType]->addCell();
downEdge->setNodes(connEdgeId, edgesWithNodes.elems[iedge].nodeIds);
//CHRONOSTOP(44);
}
// --- mark faces in downward edge and mark edge in downward faces
//CHRONO(45);
for (int idf = 0; idf < nbDownFaces; idf++)
{
int faceId2 = downFaces[idf];
int faceType = downTypes[idf];
//ASSERT(_downArray[faceType]);
//SMDS_Down2D* downFace2 = static_cast<SMDS_Down2D*> (_downArray[faceType]);
_downArray[vtkEdgeType]->addUpCell(connEdgeId, faceId2, faceType);
_downArray[faceType]->addDownCell(faceId2, connEdgeId, vtkEdgeType);
// MESSAGE(" From face t:" << vtkFaceType << " " << faceId <<
// " edge " << connEdgeId << " belongs to face t:" << faceType << " " << faceId2);
}//CHRONOSTOP(45);
}
}
}
CHRONOSTOP(23);CHRONO(24);
// compact downward connectivity structure: adjust downward arrays size, replace vector<vector int>> by a single vector<int>
// 3D first then 2D and last 1D to release memory before edge upCells reorganization, (temporary memory use)
for (int vtkType = VTK_QUADRATIC_PYRAMID; vtkType >= 0; vtkType--)
{
if (SMDS_Downward *down = _downArray[vtkType])
{
down->compactStorage();
}
}
// --- Statistics
for (int vtkType = 0; vtkType <= VTK_QUADRATIC_PYRAMID; vtkType++)
{
if (SMDS_Downward *down = _downArray[vtkType])
{
if (down->getMaxId())
{
MESSAGE("Cells of Type " << vtkType << " : number of entities, est: "
<< GuessSize[vtkType] << " real: " << down->getMaxId());
}
}
}CHRONOSTOP(24);CHRONOSTOP(2);
counters::stats();
}
/*! Get the neighbors of a cell.
* Only the neighbors having the dimension of the cell are taken into account
* (neighbors of a volume are the volumes sharing a face with this volume,
* neighbors of a face are the faces sharing an edge with this face...).
* @param neighborsVtkIds vector of neighbors vtk id's to fill (reserve enough space).
* @param downIds downward id's of cells of dimension n-1, to fill (reserve enough space).
* @param downTypes vtk types of cells of dimension n-1, to fill (reserve enough space).
* @param vtkId the vtk id of the cell
* @return number of neighbors
*/
2012-10-08 17:56:59 +06:00
int SMDS_UnstructuredGrid::GetNeighbors(int* neighborsVtkIds, int* downIds, unsigned char* downTypes, int vtkId, bool getSkin)
2012-08-09 16:03:55 +06:00
{
int vtkType = this->GetCellType(vtkId);
int cellDim = SMDS_Downward::getCellDimension(vtkType);
if (cellDim <2)
return 0; // TODO voisins des edges = edges connectees
int cellId = this->_cellIdToDownId[vtkId];
int nbCells = _downArray[vtkType]->getNumberOfDownCells(cellId);
const int *downCells = _downArray[vtkType]->getDownCells(cellId);
const unsigned char* downTyp = _downArray[vtkType]->getDownTypes(cellId);
// --- iteration on faces of the 3D cell (or edges on the 2D cell).
int nb = 0;
for (int i = 0; i < nbCells; i++)
{
int downId = downCells[i];
int cellType = downTyp[i];
int nbUp = _downArray[cellType]->getNumberOfUpCells(downId);
const int *upCells = _downArray[cellType]->getUpCells(downId);
const unsigned char* upTypes = _downArray[cellType]->getUpTypes(downId);
// ---for a volume, max 2 upCells, one is this cell, the other is a neighbor
// for a face, number of neighbors (connected faces) not known
for (int j = 0; j < nbUp; j++)
{
if ((upCells[j] == cellId) && (upTypes[j] == vtkType))
continue;
int vtkNeighbor = _downArray[upTypes[j]]->getVtkCellId(upCells[j]);
neighborsVtkIds[nb] = vtkNeighbor;
downIds[nb] = downId;
downTypes[nb] = cellType;
nb++;
2012-10-08 17:56:59 +06:00
if (nb >= NBMAXNEIGHBORS)
{
INFOS("SMDS_UnstructuredGrid::GetNeighbors problem: NBMAXNEIGHBORS=" <<NBMAXNEIGHBORS << " not enough");
return nb;
}
}
if (getSkin)
{
if (cellDim == 3 && nbUp == 1) // this face is on the skin of the volume
{
neighborsVtkIds[nb] = _downArray[cellType]->getVtkCellId(downId); // OK if skin present
downIds[nb] = downId;
downTypes[nb] = cellType;
nb++;
if (nb >= NBMAXNEIGHBORS)
{
INFOS("SMDS_UnstructuredGrid::GetNeighbors problem: NBMAXNEIGHBORS=" <<NBMAXNEIGHBORS << " not enough");
return nb;
}
}
2012-08-09 16:03:55 +06:00
}
}
return nb;
}
/*! get the volumes containing a face or an edge of the grid
* The edge or face belongs to the vtkUnstructuredGrid
* @param volVtkIds vector of parent volume ids to fill (reserve enough space!)
* @param vtkId vtk id of the face or edge
*/
int SMDS_UnstructuredGrid::GetParentVolumes(int* volVtkIds, int vtkId)
{
int vtkType = this->GetCellType(vtkId);
int dim = SMDS_Downward::getCellDimension(vtkType);
int nbFaces = 0;
unsigned char cellTypes[1000];
int downCellId[1000];
if (dim == 1)
{
int downId = this->CellIdToDownId(vtkId);
if (downId < 0)
{
MESSAGE("Downward structure not up to date: new edge not taken into account");
return 0;
}
nbFaces = _downArray[vtkType]->getNumberOfUpCells(downId);
const int *upCells = _downArray[vtkType]->getUpCells(downId);
const unsigned char* upTypes = _downArray[vtkType]->getUpTypes(downId);
for (int i=0; i< nbFaces; i++)
{
cellTypes[i] = upTypes[i];
downCellId[i] = upCells[i];
}
}
else if (dim == 2)
{
nbFaces = 1;
cellTypes[0] = this->GetCellType(vtkId);
int downId = this->CellIdToDownId(vtkId);
if (downId < 0)
{
MESSAGE("Downward structure not up to date: new face not taken into account");
return 0;
}
downCellId[0] = downId;
}
int nbvol =0;
for (int i=0; i<nbFaces; i++)
{
int vtkTypeFace = cellTypes[i];
int downId = downCellId[i];
int nv = _downArray[vtkTypeFace]->getNumberOfUpCells(downId);
const int *upCells = _downArray[vtkTypeFace]->getUpCells(downId);
const unsigned char* upTypes = _downArray[vtkTypeFace]->getUpTypes(downId);
for (int j=0; j<nv; j++)
{
int vtkVolId = _downArray[upTypes[j]]->getVtkCellId(upCells[j]);
if (vtkVolId >= 0)
volVtkIds[nbvol++] = vtkVolId;
}
}
return nbvol;
}
/*! get the volumes containing a face or an edge of the downward structure
* The edge or face does not necessary belong to the vtkUnstructuredGrid
* @param volVtkIds vector of parent volume ids to fill (reserve enough space!)
* @param downId id in the downward structure
* @param downType type of cell
*/
int SMDS_UnstructuredGrid::GetParentVolumes(int* volVtkIds, int downId, unsigned char downType)
{
int vtkType = downType;
int dim = SMDS_Downward::getCellDimension(vtkType);
int nbFaces = 0;
unsigned char cellTypes[1000];
int downCellId[1000];
if (dim == 1)
{
nbFaces = _downArray[vtkType]->getNumberOfUpCells(downId);
const int *upCells = _downArray[vtkType]->getUpCells(downId);
const unsigned char* upTypes = _downArray[vtkType]->getUpTypes(downId);
for (int i=0; i< nbFaces; i++)
{
cellTypes[i] = upTypes[i];
downCellId[i] = upCells[i];
}
}
else if (dim == 2)
{
nbFaces = 1;
cellTypes[0] = vtkType;
downCellId[0] = downId;
}
int nbvol =0;
for (int i=0; i<nbFaces; i++)
{
int vtkTypeFace = cellTypes[i];
int downId = downCellId[i];
int nv = _downArray[vtkTypeFace]->getNumberOfUpCells(downId);
const int *upCells = _downArray[vtkTypeFace]->getUpCells(downId);
const unsigned char* upTypes = _downArray[vtkTypeFace]->getUpTypes(downId);
for (int j=0; j<nv; j++)
{
int vtkVolId = _downArray[upTypes[j]]->getVtkCellId(upCells[j]);
if (vtkVolId >= 0)
volVtkIds[nbvol++] = vtkVolId;
}
}
return nbvol;
}
/*! get the node id's of a cell.
* The cell is defined by it's downward connectivity id and type.
* @param nodeSet set of of vtk node id's to fill.
* @param downId downward connectivity id of the cell.
* @param downType type of cell.
*/
void SMDS_UnstructuredGrid::GetNodeIds(std::set<int>& nodeSet, int downId, unsigned char downType)
{
_downArray[downType]->getNodeIds(downId, nodeSet);
}
/*! change some nodes in cell without modifying type or internal connectivity.
* Nodes inverse connectivity is maintained up to date.
* @param vtkVolId vtk id of the cell
* @param localClonedNodeIds map old node id to new node id.
*/
void SMDS_UnstructuredGrid::ModifyCellNodes(int vtkVolId, std::map<int, int> localClonedNodeIds)
{
vtkIdType npts = 0;
vtkIdType *pts; // will refer to the point id's of the face
this->GetCellPoints(vtkVolId, npts, pts);
for (int i = 0; i < npts; i++)
{
if (localClonedNodeIds.count(pts[i]))
{
vtkIdType oldpt = pts[i];
pts[i] = localClonedNodeIds[oldpt];
//MESSAGE(oldpt << " --> " << pts[i]);
//this->RemoveReferenceToCell(oldpt, vtkVolId);
//this->AddReferenceToCell(pts[i], vtkVolId);
}
}
}
/*! reorder the nodes of a face
* @param vtkVolId vtk id of a volume containing the face, to get an orientation for the face.
* @param orderedNodes list of nodes to reorder (in out)
* @return size of the list
*/
int SMDS_UnstructuredGrid::getOrderedNodesOfFace(int vtkVolId, int& dim, std::vector<vtkIdType>& orderedNodes)
{
int vtkType = this->GetCellType(vtkVolId);
dim = SMDS_Downward::getCellDimension(vtkType);
if (dim == 3)
{
SMDS_Down3D *downvol = static_cast<SMDS_Down3D*> (_downArray[vtkType]);
int downVolId = this->_cellIdToDownId[vtkVolId];
downvol->getOrderedNodesOfFace(downVolId, orderedNodes);
}
// else nothing to do;
return orderedNodes.size();
}
void SMDS_UnstructuredGrid::BuildLinks()
{
// Remove the old links if they are already built
if (this->Links)
{
this->Links->UnRegister(this);
}
this->Links = SMDS_CellLinks::New();
this->Links->Allocate(this->GetNumberOfPoints());
this->Links->Register(this);
this->Links->BuildLinks(this, this->Connectivity);
this->Links->Delete();
}
/*! Create a volume (prism or hexahedron) by duplication of a face.
* Designed for use in creation of flat elements separating volume domains.
* A face separating two domains is shared by two volume cells.
* All the nodes are already created (for the two faces).
* Each original Node is associated to corresponding nodes in the domains.
* Some nodes may be duplicated for more than two domains, when domain separations intersect.
* In that case, even some of the nodes to use for the original face may be changed.
* @param vtkVolId: vtk id of a volume containing the face, to get an orientation for the face.
* @param domain1: domain of the original face
* @param domain2: domain of the duplicated face
* @param originalNodes: the vtk node ids of the original face
* @param nodeDomains: map(original id --> map(domain --> duplicated node id))
* @return ok if success.
*/
SMDS_MeshCell* SMDS_UnstructuredGrid::extrudeVolumeFromFace(int vtkVolId,
int domain1,
int domain2,
std::set<int>& originalNodes,
std::map<int, std::map<int, int> >& nodeDomains,
std::map<int, std::map<long, int> >& nodeQuadDomains)
{
//MESSAGE("extrudeVolumeFromFace " << vtkVolId);
vector<vtkIdType> orderedOriginals;
orderedOriginals.clear();
set<int>::const_iterator it = originalNodes.begin();
for (; it != originalNodes.end(); ++it)
orderedOriginals.push_back(*it);
int dim = 0;
int nbNodes = this->getOrderedNodesOfFace(vtkVolId, dim, orderedOriginals);
vector<vtkIdType> orderedNodes;
bool isQuadratic = false;
switch (orderedOriginals.size())
{
case 3:
if (dim == 2)
isQuadratic = true;
break;
case 6:
case 8:
isQuadratic = true;
break;
default:
isQuadratic = false;
break;
}
if (isQuadratic)
{
long dom1 = domain1;
long dom2 = domain2;
long dom1_2; // for nodeQuadDomains
if (domain1 < domain2)
dom1_2 = dom1 + INT_MAX * dom2;
else
dom1_2 = dom2 + INT_MAX * dom1;
//cerr << "dom1=" << dom1 << " dom2=" << dom2 << " dom1_2=" << dom1_2 << endl;
int ima = orderedOriginals.size();
int mid = orderedOriginals.size() / 2;
//cerr << "ima=" << ima << " mid=" << mid << endl;
for (int i = 0; i < mid; i++)
orderedNodes.push_back(nodeDomains[orderedOriginals[i]][domain1]);
for (int i = 0; i < mid; i++)
orderedNodes.push_back(nodeDomains[orderedOriginals[i]][domain2]);
for (int i = mid; i < ima; i++)
orderedNodes.push_back(nodeDomains[orderedOriginals[i]][domain1]);
for (int i = mid; i < ima; i++)
orderedNodes.push_back(nodeDomains[orderedOriginals[i]][domain2]);
for (int i = 0; i < mid; i++)
{
int oldId = orderedOriginals[i];
int newId;
if (nodeQuadDomains.count(oldId) && nodeQuadDomains[oldId].count(dom1_2))
newId = nodeQuadDomains[oldId][dom1_2];
else
{
double *coords = this->GetPoint(oldId);
SMDS_MeshNode *newNode = _mesh->AddNode(coords[0], coords[1], coords[2]);
newId = newNode->getVtkId();
std::map<long, int> emptyMap;
nodeQuadDomains[oldId] = emptyMap;
nodeQuadDomains[oldId][dom1_2] = newId;
}
orderedNodes.push_back(newId);
}
}
else
{
for (int i = 0; i < nbNodes; i++)
orderedNodes.push_back(nodeDomains[orderedOriginals[i]][domain1]);
if (dim == 3)
for (int i = 0; i < nbNodes; i++)
orderedNodes.push_back(nodeDomains[orderedOriginals[i]][domain2]);
else
for (int i = nbNodes-1; i >= 0; i--)
orderedNodes.push_back(nodeDomains[orderedOriginals[i]][domain2]);
}
if (dim == 3)
{
SMDS_MeshVolume *vol = _mesh->AddVolumeFromVtkIds(orderedNodes);
return vol;
}
else if (dim == 2)
{
SMDS_MeshFace *face = _mesh->AddFaceFromVtkIds(orderedNodes);
return face;
}
// TODO update sub-shape list of elements and nodes
return 0;
}
//================================================================================
/*!
* \brief Allocates data array for ball diameters
* \param MaxVtkID - max ID of a ball element
*/
//================================================================================
void SMDS_UnstructuredGrid::AllocateDiameters( vtkIdType MaxVtkID )
{
SetBallDiameter( MaxVtkID, 0 );
}
//================================================================================
/*!
* \brief Sets diameter of a ball element
* \param vtkID - vtk id of the ball element
* \param diameter - diameter of the ball element
*/
//================================================================================
void SMDS_UnstructuredGrid::SetBallDiameter( vtkIdType vtkID, double diameter )
{
vtkDoubleArray* array = vtkDoubleArray::SafeDownCast( vtkDataSet::CellData->GetScalars() );
if ( !array )
{
array = vtkDoubleArray::New();
array->SetNumberOfComponents(1);
vtkDataSet::CellData->SetScalars( array );
}
array->InsertValue( vtkID, diameter );
}
//================================================================================
/*!
* \brief Returns diameter of a ball element
* \param vtkID - vtk id of the ball element
*/
//================================================================================
double SMDS_UnstructuredGrid::GetBallDiameter( vtkIdType vtkID ) const
{
if ( vtkDataSet::CellData )
return vtkDoubleArray::SafeDownCast( vtkDataSet::CellData->GetScalars() )->GetValue( vtkID );
return 0;
}