smesh/src/StdMeshers/StdMeshers_Adaptive1D.cxx

1348 lines
46 KiB
C++
Raw Normal View History

// Copyright (C) 2007-2013 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : StdMeshers_Adaptive1D.cxx
// Module : SMESH
//
#include "StdMeshers_Adaptive1D.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_Octree.hxx"
#include "SMESH_subMesh.hxx"
#include "SMESH_HypoFilter.hxx"
#include <Utils_SALOME_Exception.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <BRepAdaptor_Surface.hxx>
#include <BRepMesh_IncrementalMesh.hxx>
#include <BRep_Tool.hxx>
#include <Bnd_B3d.hxx>
#include <GCPnts_AbscissaPoint.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <Geom_Curve.hxx>
#include <Poly_Array1OfTriangle.hxx>
#include <Poly_Triangulation.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopLoc_Location.hxx>
#include <TopTools_IndexedMapOfShape.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Vertex.hxx>
#include <gp_Lin.hxx>
#include <gp_Pnt.hxx>
#include <limits>
#include <vector>
#include <set>
using namespace std;
namespace // internal utils
{
//================================================================================
/*!
* \brief Bnd_B3d with access to its center and half-size
*/
struct BBox : public Bnd_B3d
{
gp_XYZ Center() const { return gp_XYZ( myCenter[0], myCenter[1], myCenter[2] ); }
gp_XYZ HSize() const { return gp_XYZ( myHSize[0], myHSize[1], myHSize[2] ); }
double Size() const { return 2 * myHSize[0]; }
};
//================================================================================
/*!
* \brief Working data of an EDGE
*/
struct EdgeData
{
struct ProbePnt
{
gp_Pnt myP;
double myU;
double mySegSize;
ProbePnt( gp_Pnt p, double u, double sz=1e100 ): myP( p ), myU( u ), mySegSize( sz ) {}
};
BRepAdaptor_Curve myC3d;
double myLength;
list< ProbePnt > myPoints;
BBox myBBox;
typedef list< ProbePnt >::iterator TPntIter;
void AddPoint( TPntIter where, double u )
{
TPntIter it = myPoints.insert( where, ProbePnt( myC3d.Value( u ), u ));
myBBox.Add( it->myP.XYZ() );
}
const ProbePnt& First() const { return myPoints.front(); }
const ProbePnt& Last() const { return myPoints.back(); }
const TopoDS_Edge& Edge() const { return myC3d.Edge(); }
bool IsTooDistant( const BBox& faceBox, double maxSegSize ) const
{
gp_XYZ hsize = myBBox.HSize() + gp_XYZ( maxSegSize, maxSegSize, maxSegSize );
return faceBox.IsOut ( Bnd_B3d( myBBox.Center(), hsize ));
}
};
//================================================================================
/*!
* \brief Octree of local segment size
*/
class SegSizeTree : public SMESH_Octree
{
double mySegSize; // segment size
// structure holding some common parameters of SegSizeTree
struct _CommonData : public SMESH_TreeLimit
{
double myGrading, myMinSize, myMaxSize;
};
_CommonData* getData() const { return (_CommonData*) myLimit; }
SegSizeTree(double size): SMESH_Octree(), mySegSize(size)
{
allocateChildren();
}
void allocateChildren()
{
myChildren = new SMESH_Octree::TBaseTree*[nbChildren()];
for ( int i = 0; i < nbChildren(); ++i )
myChildren[i] = NULL;
}
virtual box_type* buildRootBox() { return 0; }
virtual SegSizeTree* newChild() const { return 0; }
virtual void buildChildrenData() {}
public:
SegSizeTree( Bnd_B3d & bb, double grading, double mixSize, double maxSize);
void SetSize( const gp_Pnt& p, double size );
double SetSize( const gp_Pnt& p1, const gp_Pnt& p2 );
double GetSize( const gp_Pnt& p ) const;
const BBox* GetBox() const { return (BBox*) getBox(); }
double GetMinSize() { return getData()->myMinSize; }
};
//================================================================================
/*!
* \brief Adaptive wire discertizator.
*/
class AdaptiveAlgo : public StdMeshers_Regular_1D
{
public:
AdaptiveAlgo(int hypId, int studyId, SMESH_Gen* gen);
virtual bool Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape );
virtual bool Evaluate(SMESH_Mesh & theMesh,
const TopoDS_Shape & theShape,
MapShapeNbElems& theResMap);
void SetHypothesis( const StdMeshers_Adaptive1D* hyp );
private:
bool makeSegments();
const StdMeshers_Adaptive1D* myHyp;
SMESH_Mesh* myMesh;
vector< EdgeData > myEdges;
SegSizeTree* mySizeTree;
};
//================================================================================
/*!
* \brief Data of triangle used to locate it in an octree and to find distance
* to a point
*/
struct Triangle
{
Bnd_B3d myBox;
bool myIsChecked; // to mark treated trias instead of using std::set
// data for DistToProjection()
gp_XYZ myN0, myEdge1, myEdge2, myNorm, myPVec;
double myInvDet, myMaxSize2;
void Init( const gp_Pnt& n1, const gp_Pnt& n2, const gp_Pnt& n3 );
bool DistToProjection( const gp_Pnt& p, double& dist ) const;
};
//================================================================================
/*!
* \brief Element data held by ElementBndBoxTree + algorithm computing a distance
* from a point to element
*/
class ElementBndBoxTree;
struct ElemTreeData : public SMESH_TreeLimit
{
vector< int > myWorkIDs[8];// to speed up filling ElementBndBoxTree::_elementIDs
virtual const Bnd_B3d* GetBox(int elemID) const = 0;
};
struct TriaTreeData : public ElemTreeData
{
vector< Triangle > myTrias;
double myFaceTol;
double myTriasDeflection;
BBox myBBox;
BRepAdaptor_Surface mySurface;
ElementBndBoxTree* myTree;
const Poly_Array1OfTriangle* myPolyTrias;
const TColgp_Array1OfPnt* myNodes;
bool myOwnNodes;
typedef vector<int> IntVec;
IntVec myFoundTriaIDs;
TriaTreeData( const TopoDS_Face& face, ElementBndBoxTree* triaTree );
~TriaTreeData() { if ( myOwnNodes ) delete myNodes; myNodes = NULL; }
virtual const Bnd_B3d* GetBox(int elemID) const { return &myTrias[elemID].myBox; }
void PrepareToTriaSearch();
void SetSizeByTrias( SegSizeTree& sizeTree, double deflection ) const;
double GetMinDistInSphere(const gp_Pnt& p,
const double radius,
const bool projectedOnly,
const gp_Pnt* avoidP=0) const;
};
//================================================================================
/*!
* \brief Octree of triangles or segments
*/
class ElementBndBoxTree : public SMESH_Octree
{
public:
ElementBndBoxTree(const TopoDS_Face& face);
void GetElementsInSphere( const gp_XYZ& center,
const double radius, vector<int> & foundElemIDs) const;
void FillIn();
ElemTreeData* GetElemData() const { return (ElemTreeData*) myLimit; }
TriaTreeData* GetTriaData() const { return (TriaTreeData*) myLimit; }
protected:
ElementBndBoxTree() {}
SMESH_Octree* newChild() const { return new ElementBndBoxTree; }
void buildChildrenData();
Bnd_B3d* buildRootBox();
private:
vector< int > _elementIDs;
};
//================================================================================
/*!
* \brief BRepMesh_IncrementalMesh with access to its protected Bnd_Box
*/
struct IncrementalMesh : public BRepMesh_IncrementalMesh
{
IncrementalMesh(const TopoDS_Shape& shape,
const Standard_Real deflection,
const bool relative):
BRepMesh_IncrementalMesh( shape, deflection, relative )
{
}
Bnd_B3d GetBox() const
{
Standard_Real TXmin, TYmin, TZmin, TXmax, TYmax, TZmax;
myBox.Get(TXmin, TYmin, TZmin, TXmax, TYmax, TZmax);
Bnd_B3d bb;
bb.Add( gp_XYZ( TXmin, TYmin, TZmin ));
bb.Add( gp_XYZ( TXmax, TYmax, TZmax ));
return bb;
}
};
//================================================================================
/*!
* \brief Initialize TriaTreeData
*/
//================================================================================
TriaTreeData::TriaTreeData( const TopoDS_Face& face, ElementBndBoxTree* triaTree )
: myTriasDeflection(0), mySurface( face ),
myTree(NULL), myPolyTrias(NULL), myNodes(NULL), myOwnNodes(false)
{
TopLoc_Location loc;
Handle(Poly_Triangulation) tr = BRep_Tool::Triangulation( face, loc );
if ( !tr.IsNull() )
{
myFaceTol = SMESH_MesherHelper::MaxTolerance( face );
myTree = triaTree;
myNodes = & tr->Nodes();
myPolyTrias = & tr->Triangles();
myTriasDeflection = tr->Deflection();
if ( !loc.IsIdentity() ) // transform nodes if necessary
{
TColgp_Array1OfPnt* trsfNodes = new TColgp_Array1OfPnt( myNodes->Lower(), myNodes->Upper() );
trsfNodes->Assign( *myNodes );
myNodes = trsfNodes;
myOwnNodes = true;
const gp_Trsf& trsf = loc;
for ( int i = trsfNodes->Lower(); i <= trsfNodes->Upper(); ++i )
trsfNodes->ChangeValue(i).Transform( trsf );
}
for ( int i = myNodes->Lower(); i <= myNodes->Upper(); ++i )
myBBox.Add( myNodes->Value(i).XYZ() );
}
}
void TriaTreeData::PrepareToTriaSearch()
{
if ( !myTrias.empty() ) return; // already done
if ( !myPolyTrias ) return;
myTrias.resize( myPolyTrias->Length() );
Standard_Integer n1,n2,n3;
for ( int i = 1; i <= myPolyTrias->Upper(); ++i )
{
myPolyTrias->Value( i ).Get( n1,n2,n3 );
myTrias[ i-1 ].Init( myNodes->Value( n1 ),
myNodes->Value( n2 ),
myNodes->Value( n3 ));
}
myTree->FillIn();
// TODO: mark triangles with nodes on VERTEXes to
// less frequently compare with avoidPnt in GetMinDistInSphere()
//
// Handle(Poly_PolygonOnTriangulation) polygon =
// BRep_Tool::PolygonOnTriangulation( edge, tr, loc );
// if ( polygon.IsNull() || !pologon.HasParameters() )
// continue;
// Handle(TColStd_Array1OfInteger) nodeIDs = polygon->Nodes();
}
//================================================================================
/*!
* \brief Set size of segments by size of triangles
*/
//================================================================================
void TriaTreeData::SetSizeByTrias( SegSizeTree& sizeTree, double hypDeflection ) const
{
if ( mySurface.GetType() == GeomAbs_Plane ||
myTriasDeflection <= 1e-100 )
return;
const double factor = hypDeflection / myTriasDeflection;
bool isConstSize;
switch( mySurface.GetType() ) {
case GeomAbs_Cylinder:
case GeomAbs_Sphere:
case GeomAbs_Torus:
isConstSize = true; break;
default:
isConstSize = false;
}
typedef std::pair<int,int> TLink;
TLink link;
map< TLink, double > lenOfDoneLink;
map< TLink, double >::iterator link2len;
Standard_Integer n[4];
gp_Pnt p[4];
double a[3];
bool isDone[3];
double size = -1., maxLinkLen;
int jLongest;
//int nbLinks = 0;
for ( int i = 1; i <= myPolyTrias->Upper(); ++i )
{
// get corners of a triangle
myPolyTrias->Value( i ).Get( n[0],n[1],n[2] );
n[3] = n[0];
p[0] = myNodes->Value( n[0] );
p[1] = myNodes->Value( n[1] );
p[2] = myNodes->Value( n[2] );
p[3] = p[0];
// get length of links and find the longest one
maxLinkLen = 0;
for ( int j = 0; j < 3; ++j )
{
if ( n[j] < n[j+1] )
link = TLink( n[j], n[j+1] );
else
link = TLink( n[j+1], n[j] );
link2len = lenOfDoneLink.insert( make_pair( link, -1. )).first;
isDone[j] = !((*link2len).second < 0 );
a[j] = isDone[j] ? (*link2len).second : (*link2len).second = p[j].Distance( p[j+1] );
if ( isDone[j] )
lenOfDoneLink.erase( link2len );
if ( a[j] > maxLinkLen )
{
maxLinkLen = a[j];
jLongest = j;
}
}
// compute minimal altitude of a triangle
if ( !isConstSize || size < 0. )
{
double s = 0.5 * ( a[0] + a[1] + a[2] );
double area = sqrt( s * (s - a[0]) * (s - a[1]) * (s - a[2]));
size = 2 * area / maxLinkLen; // minimal altitude
}
// set size to the size tree
if ( !isDone[ jLongest ] || !isConstSize )
{
//++nbLinks;
int nb = Max( 1, int( maxLinkLen / size / 2 ));
for ( int k = 0; k <= nb; ++k )
{
double r = double( k ) / nb;
sizeTree.SetSize( r * p[ jLongest ].XYZ() + ( 1-r ) * p[ jLongest+1 ].XYZ(),
size * factor );
}
}
//cout << "SetSizeByTrias, i="<< i << " " << sz * factor << endl;
}
// cout << "SetSizeByTrias, nn tria="<< myPolyTrias->Upper()
// << " nb links" << nbLinks << " isConstSize="<<isConstSize
// << " " << size * factor << endl;
}
//================================================================================
/*!
* \brief Return minimal distance from a given point to a trinangle but not more
* distant than a given radius. Triangles with a node at avoidPnt are ignored.
* If projectedOnly,
*/
//================================================================================
double TriaTreeData::GetMinDistInSphere(const gp_Pnt& p,
const double radius,
const bool projectedOnly,
const gp_Pnt* avoidPnt) const
{
double minDist2 = 1e100;
const double tol2 = myFaceTol * myFaceTol;
TriaTreeData* me = const_cast<TriaTreeData*>( this );
me->myFoundTriaIDs.clear();
myTree->GetElementsInSphere( p.XYZ(), radius, me->myFoundTriaIDs );
Standard_Integer n[ 3 ];
for ( size_t i = 0; i < myFoundTriaIDs.size(); ++i )
{
Triangle& t = me->myTrias[ myFoundTriaIDs[i] ];
if ( t.myIsChecked )
continue;
t.myIsChecked = true;
double d, minD2 = minDist2;
bool avoidTria = false;
myPolyTrias->Value( myFoundTriaIDs[i]+1 ).Get( n[0],n[1],n[2] );
for ( int i = 0; i < 3; ++i )
{
const gp_Pnt& pn = myNodes->Value(n[i]);
if ( avoidTria = ( avoidPnt && pn.SquareDistance(*avoidPnt) <= tol2 ))
break;
if ( !projectedOnly )
minD2 = Min( minD2, pn.SquareDistance( p ));
}
if ( !avoidTria )
{
if ( minD2 < t.myMaxSize2 && t.DistToProjection( p, d ))
minD2 = Min( minD2, d*d );
minDist2 = Min( minDist2, minD2 );
}
}
for ( size_t i = 0; i < myFoundTriaIDs.size(); ++i )
me->myTrias[ myFoundTriaIDs[i] ].myIsChecked = false;
return sqrt( minDist2 );
}
//================================================================================
/*!
* \brief Prepare Triangle data
*/
//================================================================================
void Triangle::Init( const gp_Pnt& p1, const gp_Pnt& p2, const gp_Pnt& p3 )
{
myBox.Add( p1 );
myBox.Add( p2 );
myBox.Add( p3 );
myN0 = p1.XYZ();
myEdge1 = p2.XYZ() - myN0;
myEdge2 = p3.XYZ() - myN0;
myNorm = myEdge1 ^ myEdge2;
double normSize = myNorm.Modulus();
if ( normSize > std::numeric_limits<double>::min() )
{
myNorm /= normSize;
myPVec = myNorm ^ myEdge2;
myInvDet = 1. / ( myEdge1 * myPVec );
}
else
{
myInvDet = 0.;
}
myMaxSize2 = Max( p2.SquareDistance( p3 ),
Max( myEdge2.SquareModulus(), myEdge1.SquareModulus() ));
}
//================================================================================
/*!
* \brief Compute distance from a point to the triangle. Return false if the point
* is not projected inside the triangle
*/
//================================================================================
bool Triangle::DistToProjection( const gp_Pnt& p, double& dist ) const
{
if ( myInvDet == 0 )
return false; // degenerated triangle
/* distance from n0 to the point */
gp_XYZ tvec = p.XYZ() - myN0;
/* calculate U parameter and test bounds */
double u = ( tvec * myPVec ) * myInvDet;
if (u < 0.0 || u > 1.0)
return false; // projected outside the triangle
/* calculate V parameter and test bounds */
gp_XYZ qvec = tvec ^ myEdge1;
double v = ( myNorm * qvec) * myInvDet;
if ( v < 0.0 || u + v > 1.0 )
return false; // projected outside the triangle
dist = ( myEdge2 * qvec ) * myInvDet;
return true;
}
//================================================================================
/*!
* \brief Consturct ElementBndBoxTree of Poly_Triangulation of a FACE
*/
//================================================================================
ElementBndBoxTree::ElementBndBoxTree(const TopoDS_Face& face)
:SMESH_Octree()
{
TriaTreeData* data = new TriaTreeData( face, this );
data->myMaxLevel = 5;
myLimit = data;
}
//================================================================================
/*!
* \brief Fill all levels of octree of Poly_Triangulation of a FACE
*/
//================================================================================
void ElementBndBoxTree::FillIn()
{
if ( myChildren ) return;
TriaTreeData* data = GetTriaData();
if ( !data->myTrias.empty() )
{
for ( size_t i = 0; i < data->myTrias.size(); ++i )
_elementIDs.push_back( i );
compute();
}
}
//================================================================================
/*!
* \brief Return the maximal box
*/
//================================================================================
Bnd_B3d* ElementBndBoxTree::buildRootBox()
{
TriaTreeData* data = GetTriaData();
Bnd_B3d* box = new Bnd_B3d( data->myBBox );
return box;
}
//================================================================================
/*!
* \brief Redistrubute element boxes among children
*/
//================================================================================
void ElementBndBoxTree::buildChildrenData()
{
ElemTreeData* data = GetElemData();
for ( int i = 0; i < _elementIDs.size(); ++i )
{
const Bnd_B3d* elemBox = data->GetBox( _elementIDs[i] );
for (int j = 0; j < 8; j++)
if ( !elemBox->IsOut( *myChildren[ j ]->getBox() ))
data->myWorkIDs[ j ].push_back( _elementIDs[i] );
}
SMESHUtils::FreeVector( _elementIDs ); // = _elements.clear() + free memory
const int theMaxNbElemsInLeaf = 7;
for (int j = 0; j < 8; j++)
{
ElementBndBoxTree* child = static_cast<ElementBndBoxTree*>( myChildren[j] );
child->_elementIDs = data->myWorkIDs[ j ];
if ( child->_elementIDs.size() <= theMaxNbElemsInLeaf )
child->myIsLeaf = true;
data->myWorkIDs[ j ].clear();
}
}
//================================================================================
/*!
* \brief Return elements from leaves intersecting the sphere
*/
//================================================================================
void ElementBndBoxTree::GetElementsInSphere( const gp_XYZ& center,
const double radius,
vector<int> & foundElemIDs) const
{
if ( const box_type* box = getBox() )
{
if ( box->IsOut( center, radius ))
return;
if ( isLeaf() )
{
ElemTreeData* data = GetElemData();
for ( int i = 0; i < _elementIDs.size(); ++i )
if ( !data->GetBox( _elementIDs[i] )->IsOut( center, radius ))
foundElemIDs.push_back( _elementIDs[i] );
}
else
{
for (int i = 0; i < 8; i++)
((ElementBndBoxTree*) myChildren[i])->GetElementsInSphere( center, radius, foundElemIDs );
}
}
}
//================================================================================
/*!
* \brief Constructor of SegSizeTree
* \param [in,out] bb - bounding box enclosing all EDGEs to discretize
* \param [in] grading - factor to get max size of the neighbour segment by
* size of a current one.
*/
//================================================================================
SegSizeTree::SegSizeTree( Bnd_B3d & bb, double grading, double minSize, double maxSize )
: SMESH_Octree( new _CommonData() )
{
// make cube myBox from the box bb
gp_XYZ pmin = bb.CornerMin(), pmax = bb.CornerMax();
double maxBoxHSize = 0.5 * Max( pmax.X()-pmin.X(), Max( pmax.Y()-pmin.Y(), pmax.Z()-pmin.Z() ));
maxBoxHSize *= 1.01;
bb.SetHSize( gp_XYZ( maxBoxHSize, maxBoxHSize, maxBoxHSize ));
myBox = new box_type( bb );
mySegSize = Min( 2 * maxBoxHSize, maxSize );
getData()->myGrading = grading;
getData()->myMinSize = Max( minSize, 2*maxBoxHSize / 1.e6 );
getData()->myMaxSize = maxSize;
allocateChildren();
}
//================================================================================
/*!
* \brief Set segment size at a given point
*/
//================================================================================
void SegSizeTree::SetSize( const gp_Pnt& p, double size )
{
// check if the point is out of the largest cube
SegSizeTree* root = this;
while ( root->myFather )
root = (SegSizeTree*) root->myFather;
if ( root->getBox()->IsOut( p.XYZ() ))
return;
// keep size whthin the valid range
size = Max( size, getData()->myMinSize );
//size = Min( size, getData()->myMaxSize );
// find an existing leaf at the point
SegSizeTree* leaf = (SegSizeTree*) root;
int iChild;
while ( true )
{
iChild = SMESH_Octree::getChildIndex( p.X(), p.Y(), p.Z(), leaf->GetBox()->Center() );
if ( leaf->myChildren[ iChild ] )
leaf = (SegSizeTree*) leaf->myChildren[ iChild ];
else
break;
}
// don't increase the current size
if ( leaf->mySegSize <= 1.1 * size )
return;
// split the found leaf until its box size is less than the given size
const double rootSize = root->GetBox()->Size();
while ( leaf->GetBox()->Size() > size )
{
const BBox* bb = leaf->GetBox();
iChild = SMESH_Octree::getChildIndex( p.X(), p.Y(), p.Z(), bb->Center() );
SegSizeTree* newLeaf = new SegSizeTree( bb->Size() / 2 );
leaf->myChildren[iChild] = newLeaf;
newLeaf->myFather = leaf;
newLeaf->myLimit = leaf->myLimit;
newLeaf->myLevel = leaf->myLevel + 1;
newLeaf->myBox = leaf->newChildBox( iChild );
newLeaf->myBox->Enlarge( rootSize * 1e-10 );
//newLeaf->myIsLeaf = ( newLeaf->mySegSize <= size );
leaf = newLeaf;
}
leaf->mySegSize = size;
// propagate increased size out from the leaf
double boxSize = leaf->GetBox()->Size();
double sizeInc = size + boxSize * getData()->myGrading;
for ( int iDir = 1; iDir <= 3; ++iDir )
{
gp_Pnt outPnt = p;
outPnt.SetCoord( iDir, p.Coord( iDir ) + boxSize );
SetSize( outPnt, sizeInc );
outPnt.SetCoord( iDir, p.Coord( iDir ) - boxSize );
SetSize( outPnt, sizeInc );
}
}
//================================================================================
/*!
* \brief Set size of a segment given by two end points
*/
//================================================================================
double SegSizeTree::SetSize( const gp_Pnt& p1, const gp_Pnt& p2 )
{
const double size = p1.Distance( p2 );
gp_XYZ p = 0.5 * ( p1.XYZ() + p2.XYZ() );
SetSize( p, size );
SetSize( p1, size );
SetSize( p2, size );
//cout << "SetSize " << p1.Distance( p2 ) << " at " << p.X() <<", "<< p.Y()<<", "<<p.Z()<< endl;
return GetSize( p );
}
//================================================================================
/*!
* \brief Return segment size at a point
*/
//================================================================================
double SegSizeTree::GetSize( const gp_Pnt& p ) const
{
const SegSizeTree* leaf = this;
while ( true )
{
int iChild = SMESH_Octree::getChildIndex( p.X(), p.Y(), p.Z(), leaf->GetBox()->Center() );
if ( leaf->myChildren[ iChild ] )
leaf = (SegSizeTree*) leaf->myChildren[ iChild ];
else
return leaf->mySegSize;
}
return mySegSize; // just to return anything
}
//================================================================================
/*!
* \brief Evaluate curve deflection between two points
* \param theCurve - the curve
* \param theU1 - the parameter of the first point
* \param theU2 - the parameter of the second point
* \retval double - square deflection value
*/
//================================================================================
double deflection2(const BRepAdaptor_Curve & theCurve,
double theU1,
double theU2)
{
// line between theU1 and theU2
gp_Pnt p1 = theCurve.Value( theU1 ), p2 = theCurve.Value( theU2 );
gp_Lin segment( p1, gp_Vec( p1, p2 ));
// evaluate square distance of theCurve from the segment
Standard_Real dist2 = 0;
const int nbPnt = 5;
const double step = ( theU2 - theU1 ) / nbPnt;
while (( theU1 += step ) < theU2 )
dist2 = Max( dist2, segment.SquareDistance( theCurve.Value( theU1 )));
return dist2;
}
} // namespace
//=======================================================================
//function : StdMeshers_Adaptive1D
//purpose : Constructor
StdMeshers_Adaptive1D::StdMeshers_Adaptive1D(int hypId,
int studyId,
SMESH_Gen * gen)
:SMESH_Hypothesis(hypId, studyId, gen)
{
myMinSize = 1e-10;
myMaxSize = 1e+10;
myDeflection = 1e-2;
myAlgo = NULL;
_name = "Adaptive1D";
_param_algo_dim = 1; // is used by SMESH_Regular_1D
}
//=======================================================================
//function : ~StdMeshers_Adaptive1D
//purpose : Destructor
StdMeshers_Adaptive1D::~StdMeshers_Adaptive1D()
{
delete myAlgo; myAlgo = NULL;
}
//=======================================================================
//function : SetDeflection
//purpose :
void StdMeshers_Adaptive1D::SetDeflection(double value)
throw(SALOME_Exception)
{
if (value <= std::numeric_limits<double>::min() )
throw SALOME_Exception("Deflection must be greater that zero");
if (myDeflection != value)
{
myDeflection = value;
NotifySubMeshesHypothesisModification();
}
}
//=======================================================================
//function : SetMinSize
//purpose : Sets minimal allowed segment length
void StdMeshers_Adaptive1D::SetMinSize(double minSize)
throw(SALOME_Exception)
{
if (minSize <= std::numeric_limits<double>::min() )
throw SALOME_Exception("Min size must be greater that zero");
if (myMinSize != minSize )
{
myMinSize = minSize;
NotifySubMeshesHypothesisModification();
}
}
//=======================================================================
//function : SetMaxSize
//purpose : Sets maximal allowed segment length
void StdMeshers_Adaptive1D::SetMaxSize(double maxSize)
throw(SALOME_Exception)
{
if (maxSize <= std::numeric_limits<double>::min() )
throw SALOME_Exception("Max size must be greater that zero");
if (myMaxSize != maxSize )
{
myMaxSize = maxSize;
NotifySubMeshesHypothesisModification();
}
}
//=======================================================================
//function : SaveTo
//purpose : Persistence
ostream & StdMeshers_Adaptive1D::SaveTo(ostream & save)
{
save << myMinSize << " " << myMaxSize << " " << myDeflection;
save << " " << -1 << " " << -1; // preview addition of parameters
return save;
}
//=======================================================================
//function : LoadFrom
//purpose : Persistence
istream & StdMeshers_Adaptive1D::LoadFrom(istream & load)
{
int dummyParam;
bool isOK = (load >> myMinSize >> myMaxSize >> myDeflection >> dummyParam >> dummyParam);
if (!isOK)
load.clear(ios::badbit | load.rdstate());
return load;
}
//=======================================================================
//function : SetParametersByMesh
//purpose : Initialize parameters by the mesh built on the geometry
//param theMesh - the built mesh
//param theShape - the geometry of interest
//retval bool - true if parameter values have been successfully defined
bool StdMeshers_Adaptive1D::SetParametersByMesh(const SMESH_Mesh* theMesh,
const TopoDS_Shape& theShape)
{
if ( !theMesh || theShape.IsNull() )
return false;
int nbEdges = 0;
TopTools_IndexedMapOfShape edgeMap;
TopExp::MapShapes( theShape, TopAbs_EDGE, edgeMap );
SMESH_MesherHelper helper( (SMESH_Mesh&) *theMesh );
double minSz2 = 1e100, maxSz2 = 0, sz2, maxDefl2 = 0;
for ( int iE = 1; iE <= edgeMap.Extent(); ++iE )
{
const TopoDS_Edge& edge = TopoDS::Edge( edgeMap( iE ));
SMESHDS_SubMesh* smDS = theMesh->GetMeshDS()->MeshElements( edge );
if ( !smDS ) continue;
++nbEdges;
helper.SetSubShape( edge );
BRepAdaptor_Curve curve( edge );
SMDS_ElemIteratorPtr segIt = smDS->GetElements();
while ( segIt->more() )
{
const SMDS_MeshElement* seg = segIt->next();
const SMDS_MeshNode* n1 = seg->GetNode(0);
const SMDS_MeshNode* n2 = seg->GetNode(1);
sz2 = SMESH_TNodeXYZ( n1 ).SquareDistance( n2 );
minSz2 = Min( minSz2, sz2 );
maxSz2 = Max( maxSz2, sz2 );
if ( curve.GetType() != GeomAbs_Line )
{
double u1 = helper.GetNodeU( edge, n1, n2 );
double u2 = helper.GetNodeU( edge, n2, n1 );
maxDefl2 = Max( maxDefl2, deflection2( curve, u1, u2 ));
}
}
}
if ( nbEdges )
{
myMinSize = sqrt( minSz2 );
myMaxSize = sqrt( maxSz2 );
if ( maxDefl2 > 0 )
myDeflection = maxDefl2;
}
return nbEdges;
}
//=======================================================================
//function : SetParametersByDefaults
//purpose : Initialize my parameter values by default parameters.
//retval : bool - true if parameter values have been successfully defined
bool StdMeshers_Adaptive1D::SetParametersByDefaults(const TDefaults& dflts,
const SMESH_Mesh* /*theMesh*/)
{
myMinSize = dflts._elemLength / 10;
myMaxSize = dflts._elemLength * 2;
myDeflection = myMinSize / 7;
return true;
}
//=======================================================================
//function : GetAlgo
//purpose : Returns an algorithm that works using this hypothesis
//=======================================================================
SMESH_Algo* StdMeshers_Adaptive1D::GetAlgo() const
{
if ( !myAlgo )
{
AdaptiveAlgo* newAlgo =
new AdaptiveAlgo( _gen->GetANewId(), _studyId, _gen );
newAlgo->SetHypothesis( this );
((StdMeshers_Adaptive1D*) this)->myAlgo = newAlgo;
}
return myAlgo;
}
//================================================================================
/*!
* \brief Constructor
*/
//================================================================================
AdaptiveAlgo::AdaptiveAlgo(int hypId,
int studyId,
SMESH_Gen* gen)
: StdMeshers_Regular_1D( hypId, studyId, gen ),
myHyp(NULL)
{
_name = "AdaptiveAlgo_1D";
}
//================================================================================
/*!
* \brief Sets the hypothesis
*/
//================================================================================
void AdaptiveAlgo::SetHypothesis( const StdMeshers_Adaptive1D* hyp )
{
myHyp = hyp;
}
//================================================================================
/*!
* \brief Creates segments on all given EDGEs
*/
//================================================================================
bool AdaptiveAlgo::Compute(SMESH_Mesh & theMesh,
const TopoDS_Shape & theShape)
{
//*theProgress = 0.01;
if ( myHyp->GetMinSize() > myHyp->GetMaxSize() )
return error( "Bad parameters: min size > max size" );
myMesh = &theMesh;
SMESH_MesherHelper helper( theMesh );
const double grading = 0.7;
TopTools_IndexedMapOfShape edgeMap, faceMap;
TopExp::MapShapes( theShape, TopAbs_EDGE, edgeMap );
TopExp::MapShapes( theMesh.GetShapeToMesh(), TopAbs_FACE, faceMap );
// Triangulate the shape with the given deflection ?????????
Bnd_B3d box;
{
IncrementalMesh im( theMesh.GetShapeToMesh(), myHyp->GetDeflection(), /*Relatif=*/false);
box = im.GetBox();
}
//*theProgress = 0.3;
// holder of segment size at each point
SegSizeTree sizeTree( box, grading, myHyp->GetMinSize(), myHyp->GetMaxSize() );
mySizeTree = & sizeTree;
// minimal segment size that sizeTree can store with reasonable tree height
const double minSize = Max( myHyp->GetMinSize(), 1.1 * sizeTree.GetMinSize() );
// fill myEdges - working data of EDGEs
{
// sort EDGEs by length
multimap< double, TopoDS_Edge > edgeOfLength;
for ( int iE = 1; iE <= edgeMap.Extent(); ++iE )
{
const TopoDS_Edge & edge = TopoDS::Edge( edgeMap( iE ));
if ( !SMESH_Algo::isDegenerated( edge) )
edgeOfLength.insert( make_pair( EdgeLength( edge ), edge ));
}
myEdges.clear();
myEdges.resize( edgeOfLength.size() );
multimap< double, TopoDS_Edge >::const_iterator len2edge = edgeOfLength.begin();
for ( int iE = 0; len2edge != edgeOfLength.end(); ++len2edge, ++iE )
{
const TopoDS_Edge & edge = len2edge->second;
EdgeData& eData = myEdges[ iE ];
eData.myC3d.Initialize( edge );
eData.myLength = EdgeLength( edge );
eData.AddPoint( eData.myPoints.end(), eData.myC3d.FirstParameter() );
eData.AddPoint( eData.myPoints.end(), eData.myC3d.LastParameter() );
}
}
if ( _computeCanceled ) return false;
// Take into account size of already existing segments
SMDS_EdgeIteratorPtr segIterator = theMesh.GetMeshDS()->edgesIterator();
while ( segIterator->more() )
{
const SMDS_MeshElement* seg = segIterator->next();
sizeTree.SetSize( SMESH_TNodeXYZ( seg->GetNode( 0 )), SMESH_TNodeXYZ( seg->GetNode( 1 )));
}
if ( _computeCanceled ) return false;
// Set size of segments according to the deflection
StdMeshers_Regular_1D::_hypType = DEFLECTION;
StdMeshers_Regular_1D::_value[ DEFLECTION_IND ] = myHyp->GetDeflection();
list< double > params;
for ( int iE = 0; iE < myEdges.size(); ++iE )
{
EdgeData& eData = myEdges[ iE ];
//cout << "E " << theMesh.GetMeshDS()->ShapeToIndex( eData.Edge() ) << endl;
double f = eData.First().myU, l = eData.Last().myU;
if ( !computeInternalParameters( theMesh, eData.myC3d, eData.myLength, f,l, params, false, false ))
continue;
if ( params.size() <= 1 && helper.IsClosedEdge( eData.Edge() ) ) // 2 segments on a circle
{
params.clear();
for ( int i = 1; i < 6; ++i )
params.push_back(( l - f ) * i/6. );
}
EdgeData::TPntIter where = --eData.myPoints.end();
list< double >::const_iterator param = params.begin();
for ( ; param != params.end(); ++param )
eData.AddPoint( where, *param );
EdgeData::TPntIter pIt2 = eData.myPoints.begin(), pIt1 = pIt2++;
for ( ; pIt2 != eData.myPoints.end(); ++pIt1, ++pIt2 )
{
double sz = sizeTree.SetSize( (*pIt1).myP, (*pIt2).myP );
sz = Min( sz, myHyp->GetMaxSize() );
pIt1->mySegSize = Min( sz, pIt1->mySegSize );
pIt2->mySegSize = Min( sz, pIt2->mySegSize );
}
if ( _computeCanceled ) return false;
}
// Limit size of segments according to distance to closest FACE
for ( int iF = 1; iF <= faceMap.Extent(); ++iF )
{
if ( _computeCanceled ) return false;
const TopoDS_Face & face = TopoDS::Face( faceMap( iF ));
// cout << "FACE " << iF << "/" << faceMap.Extent()
// << " id-" << theMesh.GetMeshDS()->ShapeToIndex( face ) << endl;
ElementBndBoxTree triaTree( face ); // tree of FACE triangulation
TriaTreeData* triaSearcher = triaTree.GetTriaData();
triaSearcher->SetSizeByTrias( sizeTree, myHyp->GetDeflection() );
for ( int iE = 0; iE < myEdges.size(); ++iE )
{
EdgeData& eData = myEdges[ iE ];
// check if the face is in topological contact with the edge
bool isAdjFace = ( helper.IsSubShape( helper.IthVertex( 0, eData.Edge()), face ) ||
helper.IsSubShape( helper.IthVertex( 1, eData.Edge()), face ));
if ( isAdjFace && triaSearcher->mySurface.GetType() == GeomAbs_Plane )
continue;
bool sizeDecreased = true;
for (int iLoop = 0; sizeDecreased; ++iLoop ) //repeat until segment size along the edge becomes stable
{
double maxSegSize = 0;
// get points to check distance to the face
EdgeData::TPntIter pIt2 = eData.myPoints.begin(), pIt1 = pIt2++;
maxSegSize = pIt1->mySegSize = Min( pIt1->mySegSize, sizeTree.GetSize( pIt1->myP ));
for ( ; pIt2 != eData.myPoints.end(); )
{
pIt2->mySegSize = Min( pIt2->mySegSize, sizeTree.GetSize( pIt2->myP ));
double curSize = Min( pIt1->mySegSize, pIt2->mySegSize );
maxSegSize = Max( pIt2->mySegSize, maxSegSize );
if ( pIt1->myP.Distance( pIt2->myP ) > curSize )
{
double midU = 0.5*( pIt1->myU + pIt2->myU );
gp_Pnt midP = eData.myC3d.Value( midU );
double midSz = sizeTree.GetSize( midP );
pIt2 = eData.myPoints.insert( pIt2, EdgeData::ProbePnt( midP, midU, midSz ));
eData.myBBox.Add( midP.XYZ() );
}
else
{
++pIt1, ++pIt2;
}
}
// check if the face is more distant than a half of the current segment size,
// if not, segment size is decreased
if ( iLoop == 0 && eData.IsTooDistant( triaSearcher->myBBox, maxSegSize ))
break;
triaSearcher->PrepareToTriaSearch();
//cout << "E " << theMesh.GetMeshDS()->ShapeToIndex( eData.Edge() ) << endl;
sizeDecreased = false;
const gp_Pnt* avoidPnt = & eData.First().myP;
for ( pIt1 = eData.myPoints.begin(); pIt1 != eData.myPoints.end(); )
{
double distToFace =
triaSearcher->GetMinDistInSphere( pIt1->myP, pIt1->mySegSize, isAdjFace, avoidPnt );
double allowedSize = Max( minSize, distToFace*( 1. + grading ));
if ( 1.1 * allowedSize < pIt1->mySegSize )
{
sizeDecreased = true;
sizeTree.SetSize( pIt1->myP, allowedSize );
// cout << "E " << theMesh.GetMeshDS()->ShapeToIndex( eData.Edge() )
// << "\t SetSize " << allowedSize << " at "
// << pIt1->myP.X() <<", "<< pIt1->myP.Y()<<", "<<pIt1->myP.Z() << endl;
pIt2 = pIt1;
if ( --pIt2 != eData.myPoints.end() && pIt2->mySegSize > allowedSize )
sizeTree.SetSize( eData.myC3d.Value( 0.6*pIt2->myU + 0.4*pIt1->myU ), allowedSize );
pIt2 = pIt1;
if ( ++pIt2 != eData.myPoints.end() && pIt2->mySegSize > allowedSize )
sizeTree.SetSize( eData.myC3d.Value( 0.6*pIt2->myU + 0.4*pIt1->myU ), allowedSize );
pIt1->mySegSize = allowedSize;
}
++pIt1;
if ( & (*pIt1) == & eData.Last() )
avoidPnt = & eData.Last().myP;
else
avoidPnt = NULL;
if ( iLoop > 20 )
{
#ifdef _DEBUG_
cout << "Infinite loop in AdaptiveAlgo::Compute()" << endl;
#endif
sizeDecreased = false;
break;
}
}
} // while ( sizeDecreased )
} // loop on myEdges
//*theProgress = 0.3 + 0.3 * iF / double( faceMap.Extent() );
} // loop on faceMap
return makeSegments();
}
//================================================================================
/*!
* \brief Create segments
*/
//================================================================================
bool AdaptiveAlgo::makeSegments()
{
SMESH_HypoFilter quadHyp( SMESH_HypoFilter::HasName( "QuadraticMesh" ));
_quadraticMesh = myMesh->GetHypothesis( myEdges[0].Edge(), quadHyp, /*andAncestors=*/true );
SMESH_MesherHelper helper( *myMesh );
helper.SetIsQuadratic( _quadraticMesh );
vector< double > nbSegs, params;
for ( int iE = 0; iE < myEdges.size(); ++iE )
{
EdgeData& eData = myEdges[ iE ];
// estimate roughly min segement size on the EDGE
double edgeMinSize = myHyp->GetMaxSize();
EdgeData::TPntIter pIt1 = eData.myPoints.begin();
for ( ; pIt1 != eData.myPoints.end(); ++pIt1 )
edgeMinSize = Min( edgeMinSize, mySizeTree->GetSize( pIt1->myP ));
const double f = eData.myC3d.FirstParameter(), l = eData.myC3d.LastParameter();
const double parLen = l - f;
const int nbDivSeg = 5;
2013-11-18 18:35:16 +06:00
int nbDiv = Max( 1, int ( eData.myLength / edgeMinSize * nbDivSeg ));
// compute nb of segments
bool toRecompute = true;
double maxSegSize = 0;
//cout << "E " << theMesh.GetMeshDS()->ShapeToIndex( eData.Edge() ) << endl;
while ( toRecompute ) // recompute if segment size at some point is less than edgeMinSize/nbDivSeg
{
nbSegs.resize( nbDiv + 1 );
nbSegs[0] = 0;
toRecompute = false;
gp_Pnt p1 = eData.First().myP, p2, pDiv = p1;
for ( size_t i = 1, segCount = 1; i < nbSegs.size(); ++i )
{
p2 = eData.myC3d.Value( f + parLen * i / nbDiv );
double locSize = Min( mySizeTree->GetSize( p2 ), myHyp->GetMaxSize() );
double nb = p1.Distance( p2 ) / locSize;
// if ( nbSegs.size() < 30 )
// cout << "locSize " << locSize << " nb " << nb << endl;
if ( nb > 1. )
{
toRecompute = true;
edgeMinSize = locSize;
nbDiv = int ( eData.myLength / edgeMinSize * nbDivSeg );
break;
}
nbSegs[i] = nbSegs[i-1] + nb;
p1 = p2;
if ( nbSegs[i] >= segCount )
{
maxSegSize = Max( maxSegSize, pDiv.Distance( p2 ));
pDiv = p2;
++segCount;
}
}
}
// compute parameters of nodes
2013-11-18 19:21:17 +06:00
int nbSegFinal = Max( 1, int(floor( nbSegs.back() + 0.5 )));
double fact = nbSegFinal / nbSegs.back();
if ( maxSegSize / fact > myHyp->GetMaxSize() )
fact = ++nbSegFinal / nbSegs.back();
//cout << "nbSegs.back() " << nbSegs.back() << " nbSegFinal " << nbSegFinal << endl;
params.clear();
for ( int i = 0, segCount = 1; segCount < nbSegFinal; ++segCount )
{
while ( nbSegs[i] * fact < segCount )
++i;
if ( i < nbDiv )
{
double d = i - ( nbSegs[i] - segCount/fact ) / ( nbSegs[i] - nbSegs[i-1] );
params.push_back( f + parLen * d / nbDiv );
//params.push_back( f + parLen * i / nbDiv );
}
else
break;
}
// get nodes on VERTEXes
TopoDS_Vertex vf = helper.IthVertex( 0, eData.Edge(), false );
TopoDS_Vertex vl = helper.IthVertex( 1, eData.Edge(), false );
myMesh->GetSubMesh( vf )->ComputeStateEngine( SMESH_subMesh::COMPUTE );
myMesh->GetSubMesh( vl )->ComputeStateEngine( SMESH_subMesh::COMPUTE );
const SMDS_MeshNode * nf = VertexNode( vf, myMesh->GetMeshDS() );
const SMDS_MeshNode * nl = VertexNode( vl, myMesh->GetMeshDS() );
if ( !nf || !nl )
return error("No node on vertex");
// create segments
helper.SetSubShape( eData.Edge() );
helper.SetElementsOnShape( true );
const int ID = 0;
const SMDS_MeshNode *n1 = nf, *n2;
for ( size_t i = 0; i < params.size(); ++i, n1 = n2 )
{
gp_Pnt p2 = eData.myC3d.Value( params[i] );
n2 = helper.AddNode( p2.X(), p2.Y(), p2.Z(), ID, params[i] );
helper.AddEdge( n1, n2, ID, /*force3d=*/false );
}
helper.AddEdge( n1, nl, ID, /*force3d=*/false );
eData.myPoints.clear();
//*theProgress = 0.6 + 0.4 * iE / double( myEdges.size() );
if ( _computeCanceled )
return false;
} // loop on EDGEs
SMESHUtils::FreeVector( myEdges );
return true;
}
//================================================================================
/*!
* \brief Predict number of segments on all given EDGEs
*/
//================================================================================
bool AdaptiveAlgo::Evaluate(SMESH_Mesh & theMesh,
const TopoDS_Shape & theShape,
MapShapeNbElems& theResMap)
{
// initialize fields of inherited StdMeshers_Regular_1D
StdMeshers_Regular_1D::_hypType = DEFLECTION;
StdMeshers_Regular_1D::_value[ DEFLECTION_IND ] = myHyp->GetDeflection();
TopExp_Explorer edExp( theShape, TopAbs_EDGE );
for ( ; edExp.More(); edExp.Next() )
{
const TopoDS_Edge & edge = TopoDS::Edge( edExp.Current() );
StdMeshers_Regular_1D::Evaluate( theMesh, theShape, theResMap );
}
return true;
}