mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2024-11-16 18:48:33 +05:00
185 lines
4.0 KiB
Plaintext
185 lines
4.0 KiB
Plaintext
|
/*!
|
||
|
|
||
|
\page tui_creating_meshes_page Creating Meshes
|
||
|
|
||
|
\n First of all see \ref introduction_to_mesh_python_page "Example of 3d mesh generation",
|
||
|
which is an example of good python script style for Mesh module.
|
||
|
|
||
|
<br>
|
||
|
<h2>Construction of a Mesh</h2>
|
||
|
|
||
|
\code
|
||
|
import geompy
|
||
|
import smesh
|
||
|
|
||
|
# create a box
|
||
|
box = geompy.MakeBox(0., 0., 0., 100., 200., 300.)
|
||
|
idbox = geompy.addToStudy(box, "box")
|
||
|
|
||
|
# create a mesh
|
||
|
tetra = smesh.Mesh(box, "MeshBox")
|
||
|
|
||
|
algo1D = tetra.Segment()
|
||
|
algo1D.NumberOfSegments(7)
|
||
|
|
||
|
algo2D = tetra.Triangle()
|
||
|
algo2D.MaxElementArea(800.)
|
||
|
|
||
|
algo3D = tetra.Tetrahedron(smesh.NETGEN)
|
||
|
algo3D.MaxElementVolume(900.)
|
||
|
|
||
|
# compute the mesh
|
||
|
ret = tetra.Compute()
|
||
|
if ret == 0:
|
||
|
print "problem when computing the mesh"
|
||
|
else:
|
||
|
print "mesh computed"
|
||
|
pass
|
||
|
\endcode
|
||
|
|
||
|
<br>
|
||
|
\anchor tui_construction_submesh
|
||
|
<h2>Construction of a Submesh</h2>
|
||
|
|
||
|
\code
|
||
|
from geompy import *
|
||
|
import smesh
|
||
|
|
||
|
# create a box
|
||
|
box = MakeBoxDXDYDZ(10., 10., 10.)
|
||
|
addToStudy(box, "Box")
|
||
|
|
||
|
# select one edge of the box for definition of a local hypothesis
|
||
|
p5 = MakeVertex(5., 0., 0.)
|
||
|
EdgeX = GetEdgeNearPoint(box, p5)
|
||
|
addToStudyInFather(box, EdgeX, "Edge [0,0,0 - 10,0,0]")
|
||
|
|
||
|
# create a hexahedral mesh on the box
|
||
|
quadra = smesh.Mesh(box, "Box : quadrangle 2D mesh")
|
||
|
|
||
|
# create a regular 1D algorithm for the faces
|
||
|
algo1D = quadra.Segment()
|
||
|
|
||
|
# define "NumberOfSegments" hypothesis to cut
|
||
|
# all the edges in a fixed number of segments
|
||
|
algo1D.NumberOfSegments(4)
|
||
|
|
||
|
# create a quadrangle 2D algorithm for the faces
|
||
|
quadra.Quadrangle()
|
||
|
|
||
|
# construct a submesh on the edge with a local hypothesis
|
||
|
algo_local = quadra.Segment(EdgeX)
|
||
|
|
||
|
# define "Arithmetic1D" hypothesis to cut the edge in several segments with increasing arithmetic length
|
||
|
algo_local.Arithmetic1D(1, 4)
|
||
|
|
||
|
# define "Propagation" hypothesis that propagates all other hypotheses
|
||
|
# on all edges of the opposite side in case of quadrangular faces
|
||
|
algo_local.Propagation()
|
||
|
|
||
|
# compute the mesh
|
||
|
quadra.Compute()
|
||
|
|
||
|
\endcode
|
||
|
|
||
|
<br>
|
||
|
\anchor tui_editing_mesh
|
||
|
<h2>Editing of a mesh</h2>
|
||
|
|
||
|
\code
|
||
|
import geompy
|
||
|
import smesh
|
||
|
|
||
|
def PrintMeshInfo(theMesh):
|
||
|
aMesh = theMesh.GetMesh()
|
||
|
print "Information about mesh:"
|
||
|
print "Number of nodes : ", aMesh.NbNodes()
|
||
|
print "Number of edges : ", aMesh.NbEdges()
|
||
|
print "Number of faces : ", aMesh.NbFaces()
|
||
|
print "Number of volumes : ", aMesh.NbVolumes()
|
||
|
pass
|
||
|
|
||
|
# create a box
|
||
|
box = geompy.MakeBox(0., 0., 0., 20., 20., 20.)
|
||
|
geompy.addToStudy(box, "box")
|
||
|
|
||
|
# select one edge of the box for definition of a local hypothesis
|
||
|
subShapeList = geompy.SubShapeAll(box, geompy.ShapeType["EDGE"])
|
||
|
edge = subShapeList[0]
|
||
|
name = geompy.SubShapeName(edge, box)
|
||
|
geompy.addToStudyInFather(box, edge, name)
|
||
|
|
||
|
# create a mesh
|
||
|
tria = smesh.Mesh(box, "Mesh 2D")
|
||
|
algo1D = tria.Segment()
|
||
|
hyp1 = algo1D.NumberOfSegments(3)
|
||
|
algo2D = tria.Triangle()
|
||
|
hyp2 = algo2D.MaxElementArea(10.)
|
||
|
|
||
|
# create a sub-mesh
|
||
|
algo_local = tria.Segment(edge)
|
||
|
hyp3 = algo_local.Arithmetic1D(1, 6)
|
||
|
hyp4 = algo_local.Propagation()
|
||
|
|
||
|
# compute the mesh
|
||
|
tria.Compute()
|
||
|
PrintMeshInfo(tria)
|
||
|
|
||
|
# remove a local hypothesis
|
||
|
mesh = tria.GetMesh()
|
||
|
mesh.RemoveHypothesis(edge, hyp4)
|
||
|
|
||
|
# compute the mesh
|
||
|
tria.Compute()
|
||
|
PrintMeshInfo(tria)
|
||
|
|
||
|
# change the value of the 2D hypothesis
|
||
|
hyp2.SetMaxElementArea(2.)
|
||
|
|
||
|
# compute the mesh
|
||
|
tria.Compute()
|
||
|
PrintMeshInfo(tria)
|
||
|
\endcode
|
||
|
|
||
|
<br>
|
||
|
\anchor tui_export_mesh
|
||
|
<h2>Export of a Mesh</h2>
|
||
|
|
||
|
\code
|
||
|
import geompy
|
||
|
import smesh
|
||
|
|
||
|
# create a box
|
||
|
box = geompy.MakeBox(0., 0., 0., 100., 200., 300.)
|
||
|
idbox = geompy.addToStudy(box, "box")
|
||
|
|
||
|
# create a mesh
|
||
|
tetra = smesh.Mesh(box, "MeshBox")
|
||
|
|
||
|
algo1D = tetra.Segment()
|
||
|
algo1D.NumberOfSegments(7)
|
||
|
|
||
|
algo2D = tetra.Triangle()
|
||
|
algo2D.MaxElementArea(800.)
|
||
|
|
||
|
algo3D = tetra.Tetrahedron(smesh.NETGEN)
|
||
|
algo3D.MaxElementVolume(900.)
|
||
|
|
||
|
# compute the mesh
|
||
|
tetra.Compute()
|
||
|
|
||
|
# export the mesh in a MED file
|
||
|
tetra.ExportMED("/tmp/meshMED.med", 0)
|
||
|
\endcode
|
||
|
|
||
|
<br>
|
||
|
<h2>How to mesh a cylinder with hexahedrons?</h2>
|
||
|
Here you can see an example of python script, creating a hexahedral
|
||
|
mesh on a cylinder. And a picture below the source code of the script,
|
||
|
demonstrating the resulting mesh.
|
||
|
\include ex24_cylinder.py
|
||
|
|
||
|
\image html mesh_cylinder_hexa.png
|
||
|
|
||
|
*/
|