smesh/src/StdMeshers/StdMeshers_Quadrangle_2D.cxx

3687 lines
126 KiB
C++
Raw Normal View History

2013-04-01 19:05:47 +06:00
// Copyright (C) 2007-2013 CEA/DEN, EDF R&D, OPEN CASCADE
2009-02-17 10:27:49 +05:00
//
2012-08-09 16:03:55 +06:00
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
2009-02-17 10:27:49 +05:00
//
2012-08-09 16:03:55 +06:00
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
2004-06-18 14:34:31 +06:00
//
2012-08-09 16:03:55 +06:00
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
2004-06-18 14:34:31 +06:00
//
2012-08-09 16:03:55 +06:00
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
2004-06-18 14:34:31 +06:00
//
2012-08-09 16:03:55 +06:00
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
2004-06-18 14:34:31 +06:00
//
2012-08-09 16:03:55 +06:00
2004-06-18 14:34:31 +06:00
// File : StdMeshers_Quadrangle_2D.cxx
// Author : Paul RASCLE, EDF
// Module : SMESH
2012-08-09 16:03:55 +06:00
2004-06-18 14:34:31 +06:00
#include "StdMeshers_Quadrangle_2D.hxx"
2012-12-13 17:41:29 +06:00
#include "SMDS_EdgePosition.hxx"
#include "SMDS_FacePosition.hxx"
#include "SMDS_MeshElement.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMESH_Block.hxx"
#include "SMESH_Comment.hxx"
2004-06-18 14:34:31 +06:00
#include "SMESH_Gen.hxx"
#include "SMESH_Mesh.hxx"
#include "SMESH_MesherHelper.hxx"
2012-12-13 17:41:29 +06:00
#include "SMESH_subMesh.hxx"
#include "StdMeshers_FaceSide.hxx"
#include "StdMeshers_QuadrangleParams.hxx"
#include "StdMeshers_ViscousLayers2D.hxx"
2004-06-18 14:34:31 +06:00
#include <BRep_Tool.hxx>
#include <GeomAPI_ProjectPointOnSurf.hxx>
2004-06-18 14:34:31 +06:00
#include <Geom_Surface.hxx>
#include <NCollection_DefineArray2.hxx>
2004-12-01 15:48:31 +05:00
#include <Precision.hxx>
#include <Quantity_Parameter.hxx>
2012-08-09 16:03:55 +06:00
#include <TColStd_SequenceOfInteger.hxx>
#include <TColStd_SequenceOfReal.hxx>
#include <TColgp_SequenceOfXY.hxx>
#include <TopExp.hxx>
2012-08-09 16:03:55 +06:00
#include <TopExp_Explorer.hxx>
#include <TopTools_DataMapOfShapeReal.hxx>
2012-08-09 16:03:55 +06:00
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopoDS.hxx>
2004-06-18 14:34:31 +06:00
#include "utilities.h"
#include "Utils_ExceptHandlers.hxx"
#ifndef StdMeshers_Array2OfNode_HeaderFile
#define StdMeshers_Array2OfNode_HeaderFile
typedef const SMDS_MeshNode* SMDS_MeshNodePtr;
DEFINE_BASECOLLECTION (StdMeshers_BaseCollectionNodePtr, SMDS_MeshNodePtr)
DEFINE_ARRAY2(StdMeshers_Array2OfNode,
StdMeshers_BaseCollectionNodePtr, SMDS_MeshNodePtr)
#endif
using namespace std;
typedef gp_XY gp_UV;
typedef SMESH_Comment TComm;
2004-06-18 14:34:31 +06:00
//=============================================================================
/*!
*
2004-06-18 14:34:31 +06:00
*/
//=============================================================================
2012-08-09 16:03:55 +06:00
StdMeshers_Quadrangle_2D::StdMeshers_Quadrangle_2D (int hypId, int studyId,
SMESH_Gen* gen)
2012-12-13 17:41:29 +06:00
: SMESH_2D_Algo(hypId, studyId, gen),
2013-02-12 20:37:44 +06:00
myQuadranglePreference(false),
myTrianglePreference(false),
myTriaVertexID(-1),
myNeedSmooth(false),
myQuadType(QUAD_STANDARD),
2012-12-13 17:41:29 +06:00
myHelper( 0 )
2004-06-18 14:34:31 +06:00
{
2004-12-01 15:48:31 +05:00
MESSAGE("StdMeshers_Quadrangle_2D::StdMeshers_Quadrangle_2D");
_name = "Quadrangle_2D";
_shapeType = (1 << TopAbs_FACE);
2012-08-09 16:03:55 +06:00
_compatibleHypothesis.push_back("QuadrangleParams");
_compatibleHypothesis.push_back("QuadranglePreference");
2009-02-17 10:27:49 +05:00
_compatibleHypothesis.push_back("TrianglePreference");
2012-12-13 17:41:29 +06:00
_compatibleHypothesis.push_back("ViscousLayers2D");
2004-06-18 14:34:31 +06:00
}
//=============================================================================
/*!
*
2004-06-18 14:34:31 +06:00
*/
//=============================================================================
StdMeshers_Quadrangle_2D::~StdMeshers_Quadrangle_2D()
{
2004-12-01 15:48:31 +05:00
MESSAGE("StdMeshers_Quadrangle_2D::~StdMeshers_Quadrangle_2D");
2004-06-18 14:34:31 +06:00
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Quadrangle_2D::CheckHypothesis
(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
2004-06-18 14:34:31 +06:00
SMESH_Hypothesis::Hypothesis_Status& aStatus)
{
myTriaVertexID = -1;
myQuadType = QUAD_STANDARD;
myQuadranglePreference = false;
myTrianglePreference = false;
myQuadStruct.reset();
myHelper = NULL;
2004-12-01 15:48:31 +05:00
bool isOk = true;
aStatus = SMESH_Hypothesis::HYP_OK;
2004-06-18 14:34:31 +06:00
2012-08-09 16:03:55 +06:00
const list <const SMESHDS_Hypothesis * >& hyps =
GetUsedHypothesis(aMesh, aShape, false);
const SMESHDS_Hypothesis * aHyp = 0;
bool isFirstParams = true;
// First assigned hypothesis (if any) is processed now
if (hyps.size() > 0) {
aHyp = hyps.front();
if (strcmp("QuadrangleParams", aHyp->GetName()) == 0) {
const StdMeshers_QuadrangleParams* aHyp1 =
(const StdMeshers_QuadrangleParams*)aHyp;
myTriaVertexID = aHyp1->GetTriaVertex();
myQuadType = aHyp1->GetQuadType();
if (myQuadType == QUAD_QUADRANGLE_PREF ||
myQuadType == QUAD_QUADRANGLE_PREF_REVERSED)
myQuadranglePreference = true;
else if (myQuadType == QUAD_TRIANGLE_PREF)
myTrianglePreference = true;
}
else if (strcmp("QuadranglePreference", aHyp->GetName()) == 0) {
isFirstParams = false;
myQuadranglePreference = true;
}
else if (strcmp("TrianglePreference", aHyp->GetName()) == 0){
isFirstParams = false;
myTrianglePreference = true;
2009-02-17 10:27:49 +05:00
}
2012-08-09 16:03:55 +06:00
else {
isFirstParams = false;
2009-02-17 10:27:49 +05:00
}
}
2012-08-09 16:03:55 +06:00
// Second(last) assigned hypothesis (if any) is processed now
if (hyps.size() > 1) {
aHyp = hyps.back();
if (isFirstParams) {
if (strcmp("QuadranglePreference", aHyp->GetName()) == 0) {
myQuadranglePreference = true;
myTrianglePreference = false;
myQuadType = QUAD_STANDARD;
}
else if (strcmp("TrianglePreference", aHyp->GetName()) == 0){
myQuadranglePreference = false;
myTrianglePreference = true;
myQuadType = QUAD_STANDARD;
}
}
else {
const StdMeshers_QuadrangleParams* aHyp2 =
(const StdMeshers_QuadrangleParams*)aHyp;
myTriaVertexID = aHyp2->GetTriaVertex();
if (!myQuadranglePreference && !myTrianglePreference) { // priority of hypos
myQuadType = aHyp2->GetQuadType();
if (myQuadType == QUAD_QUADRANGLE_PREF ||
myQuadType == QUAD_QUADRANGLE_PREF_REVERSED)
myQuadranglePreference = true;
else if (myQuadType == QUAD_TRIANGLE_PREF)
myTrianglePreference = true;
}
}
2009-02-17 10:27:49 +05:00
}
2012-08-09 16:03:55 +06:00
2004-12-01 15:48:31 +05:00
return isOk;
2004-06-18 14:34:31 +06:00
}
//=============================================================================
/*!
*
*/
//=============================================================================
2012-12-13 17:41:29 +06:00
bool StdMeshers_Quadrangle_2D::Compute (SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape)
2004-06-18 14:34:31 +06:00
{
2012-12-13 17:41:29 +06:00
const TopoDS_Face& F = TopoDS::Face(aShape);
aMesh.GetSubMesh( F );
2004-12-01 15:48:31 +05:00
2012-08-09 16:03:55 +06:00
SMESH_MesherHelper helper (aMesh);
myHelper = &helper;
2012-12-13 17:41:29 +06:00
myProxyMesh = StdMeshers_ViscousLayers2D::Compute( aMesh, F );
if ( !myProxyMesh )
return false;
2012-08-09 16:03:55 +06:00
_quadraticMesh = myHelper->IsQuadraticSubMesh(aShape);
myNeedSmooth = false;
FaceQuadStruct::Ptr quad = CheckNbEdges( aMesh, F );
if (!quad)
return false;
2013-02-12 20:37:44 +06:00
myQuadStruct = quad;
bool ok = false;
if (myQuadranglePreference)
{
int n1 = quad->side[0]->NbPoints();
int n2 = quad->side[1]->NbPoints();
int n3 = quad->side[2]->NbPoints();
int n4 = quad->side[3]->NbPoints();
int nfull = n1+n2+n3+n4;
int ntmp = nfull/2;
ntmp = ntmp*2;
if (nfull == ntmp && ((n1 != n3) || (n2 != n4)))
{
// special path genarating only quandrangle faces
ok = computeQuadPref( aMesh, F, quad );
2012-08-09 16:03:55 +06:00
}
}
else if (myQuadType == QUAD_REDUCED)
{
int n1 = quad->side[0]->NbPoints();
int n2 = quad->side[1]->NbPoints();
int n3 = quad->side[2]->NbPoints();
int n4 = quad->side[3]->NbPoints();
int n13 = n1 - n3;
int n24 = n2 - n4;
2012-08-09 16:03:55 +06:00
int n13tmp = n13/2; n13tmp = n13tmp*2;
int n24tmp = n24/2; n24tmp = n24tmp*2;
if ((n1 == n3 && n2 != n4 && n24tmp == n24) ||
(n2 == n4 && n1 != n3 && n13tmp == n13))
{
ok = computeReduced( aMesh, F, quad );
}
else
{
if ( n1 != n3 && n2 != n4 )
error( COMPERR_WARNING,
"To use 'Reduced' transition, "
"two opposite sides should have same number of segments, "
"but actual number of segments is different on all sides. "
"'Standard' transion has been used.");
else
error( COMPERR_WARNING,
"To use 'Reduced' transition, "
"two opposite sides should have an even difference in number of segments. "
"'Standard' transion has been used.");
}
}
ok = computeQuadDominant( aMesh, F, quad );
if ( ok && myNeedSmooth )
smooth( quad );
return ok;
}
//================================================================================
/*!
* \brief Compute quadrangles and possibly triangles
*/
//================================================================================
bool StdMeshers_Quadrangle_2D::computeQuadDominant(SMESH_Mesh& aMesh,
const TopoDS_Face& aFace,
FaceQuadStruct::Ptr quad)
{
// set normalized grid on unit square in parametric domain
if (!setNormalizedGrid(aMesh, aFace, quad))
2004-12-01 15:48:31 +05:00
return false;
// --- compute 3D values on points, store points & quadrangles
int nbdown = quad->side[0]->NbPoints();
int nbup = quad->side[2]->NbPoints();
2004-12-01 15:48:31 +05:00
int nbright = quad->side[1]->NbPoints();
int nbleft = quad->side[3]->NbPoints();
2004-12-01 15:48:31 +05:00
int nbhoriz = Min(nbdown, nbup);
int nbvertic = Min(nbright, nbleft);
// internal mesh nodes
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
Handle(Geom_Surface) S = BRep_Tool::Surface(aFace);
int i, j, geomFaceID = meshDS->ShapeToIndex(aFace);
2004-12-01 15:48:31 +05:00
for (i = 1; i < nbhoriz - 1; i++) {
for (j = 1; j < nbvertic - 1; j++) {
int ij = j * nbhoriz + i;
double u = quad->uv_grid[ij].u;
double v = quad->uv_grid[ij].v;
gp_Pnt P = S->Value(u, v);
SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(node, geomFaceID, u, v);
2004-12-01 15:48:31 +05:00
quad->uv_grid[ij].node = node;
}
}
2004-12-01 15:48:31 +05:00
// mesh faces
// [2]
// --.--.--.--.--.-- nbvertic
// | | ^
// | | ^
// [3] | | ^ j [1]
// | | ^
// | | ^
// ---.----.----.--- 0
// 0 > > > > > > > > nbhoriz
// i
// [0]
2004-12-01 15:48:31 +05:00
i = 0;
int ilow = 0;
int iup = nbhoriz - 1;
if (quad->isEdgeOut[3]) { ilow++; } else { if (quad->isEdgeOut[1]) iup--; }
2004-12-01 15:48:31 +05:00
int jlow = 0;
int jup = nbvertic - 1;
if (quad->isEdgeOut[0]) { jlow++; } else { if (quad->isEdgeOut[2]) jup--; }
2004-12-01 15:48:31 +05:00
// regular quadrangles
for (i = ilow; i < iup; i++) {
for (j = jlow; j < jup; j++) {
const SMDS_MeshNode *a, *b, *c, *d;
2012-12-13 17:41:29 +06:00
a = quad->uv_grid[j * nbhoriz + i ].node;
b = quad->uv_grid[j * nbhoriz + i + 1].node;
2004-12-01 15:48:31 +05:00
c = quad->uv_grid[(j + 1) * nbhoriz + i + 1].node;
2012-12-13 17:41:29 +06:00
d = quad->uv_grid[(j + 1) * nbhoriz + i ].node;
2012-08-09 16:03:55 +06:00
SMDS_MeshFace* face = myHelper->AddFace(a, b, c, d);
if (face) {
meshDS->SetMeshElementOnShape(face, geomFaceID);
}
2004-12-01 15:48:31 +05:00
}
}
2012-08-09 16:03:55 +06:00
const vector<UVPtStruct>& uv_e0 = quad->side[0]->GetUVPtStruct(true,0);
const vector<UVPtStruct>& uv_e1 = quad->side[1]->GetUVPtStruct(false,1);
2012-08-09 16:03:55 +06:00
const vector<UVPtStruct>& uv_e2 = quad->side[2]->GetUVPtStruct(true,1);
const vector<UVPtStruct>& uv_e3 = quad->side[3]->GetUVPtStruct(false,0);
2012-08-09 16:03:55 +06:00
if (uv_e0.empty() || uv_e1.empty() || uv_e2.empty() || uv_e3.empty())
return error(COMPERR_BAD_INPUT_MESH);
2004-12-01 15:48:31 +05:00
double eps = Precision::Confusion();
// Boundary quadrangles
2004-12-01 15:48:31 +05:00
if (quad->isEdgeOut[0]) {
// Down edge is out
//
// |___|___|___|___|___|___|
// | | | | | | |
// |___|___|___|___|___|___|
// | | | | | | |
// |___|___|___|___|___|___| __ first row of the regular grid
// . . . . . . . . . __ down edge nodes
//
// >->->->->->->->->->->->-> -- direction of processing
2004-12-01 15:48:31 +05:00
int g = 0; // number of last processed node in the regular grid
2004-12-01 15:48:31 +05:00
// number of last node of the down edge to be processed
int stop = nbdown - 1;
// if right edge is out, we will stop at a node, previous to the last one
if (quad->isEdgeOut[1]) stop--;
2004-12-01 15:48:31 +05:00
// for each node of the down edge find nearest node
// in the first row of the regular grid and link them
for (i = 0; i < stop; i++) {
const SMDS_MeshNode *a, *b, *c, *d;
a = uv_e0[i].node;
b = uv_e0[i + 1].node;
gp_Pnt pb (b->X(), b->Y(), b->Z());
2004-12-01 15:48:31 +05:00
// find node c in the regular grid, which will be linked with node b
int near = g;
if (i == stop - 1) {
// right bound reached, link with the rightmost node
near = iup;
c = quad->uv_grid[nbhoriz + iup].node;
}
else {
2004-12-01 15:48:31 +05:00
// find in the grid node c, nearest to the b
double mind = RealLast();
for (int k = g; k <= iup; k++) {
2004-12-01 15:48:31 +05:00
const SMDS_MeshNode *nk;
if (k < ilow) // this can be, if left edge is out
nk = uv_e3[1].node; // get node from the left edge
else
nk = quad->uv_grid[nbhoriz + k].node; // get one of middle nodes
gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
double dist = pb.Distance(pnk);
if (dist < mind - eps) {
c = nk;
near = k;
mind = dist;
} else {
break;
}
}
}
if (near == g) { // make triangle
2012-08-09 16:03:55 +06:00
SMDS_MeshFace* face = myHelper->AddFace(a, b, c);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
}
else { // make quadrangle
2004-12-01 15:48:31 +05:00
if (near - 1 < ilow)
d = uv_e3[1].node;
else
d = quad->uv_grid[nbhoriz + near - 1].node;
//SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
2009-02-17 10:27:49 +05:00
2012-08-09 16:03:55 +06:00
if (!myTrianglePreference){
SMDS_MeshFace* face = myHelper->AddFace(a, b, c, d);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
2009-02-17 10:27:49 +05:00
}
else {
splitQuad(meshDS, geomFaceID, a, b, c, d);
2009-02-17 10:27:49 +05:00
}
2004-12-01 15:48:31 +05:00
// if node d is not at position g - make additional triangles
if (near - 1 > g) {
for (int k = near - 1; k > g; k--) {
c = quad->uv_grid[nbhoriz + k].node;
if (k - 1 < ilow)
d = uv_e3[1].node;
else
d = quad->uv_grid[nbhoriz + k - 1].node;
2012-08-09 16:03:55 +06:00
SMDS_MeshFace* face = myHelper->AddFace(a, c, d);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
2004-12-01 15:48:31 +05:00
}
}
g = near;
}
}
} else {
if (quad->isEdgeOut[2]) {
// Up edge is out
//
// <-<-<-<-<-<-<-<-<-<-<-<-< -- direction of processing
//
// . . . . . . . . . __ up edge nodes
// ___ ___ ___ ___ ___ ___ __ first row of the regular grid
// | | | | | | |
// |___|___|___|___|___|___|
// | | | | | | |
// |___|___|___|___|___|___|
// | | | | | | |
int g = nbhoriz - 1; // last processed node in the regular grid
int stop = 0;
// if left edge is out, we will stop at a second node
if (quad->isEdgeOut[3]) stop++;
// for each node of the up edge find nearest node
// in the first row of the regular grid and link them
for (i = nbup - 1; i > stop; i--) {
const SMDS_MeshNode *a, *b, *c, *d;
a = uv_e2[i].node;
b = uv_e2[i - 1].node;
gp_Pnt pb (b->X(), b->Y(), b->Z());
// find node c in the grid, which will be linked with node b
int near = g;
if (i == stop + 1) { // left bound reached, link with the leftmost node
c = quad->uv_grid[nbhoriz*(nbvertic - 2) + ilow].node;
near = ilow;
} else {
// find node c in the grid, nearest to the b
double mind = RealLast();
for (int k = g; k >= ilow; k--) {
const SMDS_MeshNode *nk;
if (k > iup)
nk = uv_e1[nbright - 2].node;
else
nk = quad->uv_grid[nbhoriz*(nbvertic - 2) + k].node;
gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
double dist = pb.Distance(pnk);
if (dist < mind - eps) {
c = nk;
near = k;
mind = dist;
} else {
break;
}
}
}
if (near == g) { // make triangle
2012-08-09 16:03:55 +06:00
SMDS_MeshFace* face = myHelper->AddFace(a, b, c);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
}
else { // make quadrangle
2004-12-01 15:48:31 +05:00
if (near + 1 > iup)
d = uv_e1[nbright - 2].node;
else
d = quad->uv_grid[nbhoriz*(nbvertic - 2) + near + 1].node;
//SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
2012-08-09 16:03:55 +06:00
if (!myTrianglePreference){
SMDS_MeshFace* face = myHelper->AddFace(a, b, c, d);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
2009-02-17 10:27:49 +05:00
}
else {
splitQuad(meshDS, geomFaceID, a, b, c, d);
2009-02-17 10:27:49 +05:00
}
2004-12-01 15:48:31 +05:00
if (near + 1 < g) { // if d not is at g - make additional triangles
for (int k = near + 1; k < g; k++) {
c = quad->uv_grid[nbhoriz*(nbvertic - 2) + k].node;
if (k + 1 > iup)
d = uv_e1[nbright - 2].node;
else
d = quad->uv_grid[nbhoriz*(nbvertic - 2) + k + 1].node;
2012-08-09 16:03:55 +06:00
SMDS_MeshFace* face = myHelper->AddFace(a, c, d);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
2004-12-01 15:48:31 +05:00
}
}
g = near;
}
}
}
}
// right or left boundary quadrangles
if (quad->isEdgeOut[1]) {
// MESSAGE("right edge is out");
int g = 0; // last processed node in the grid
int stop = nbright - 1;
if (quad->isEdgeOut[2]) stop--;
for (i = 0; i < stop; i++) {
const SMDS_MeshNode *a, *b, *c, *d;
a = uv_e1[i].node;
b = uv_e1[i + 1].node;
gp_Pnt pb (b->X(), b->Y(), b->Z());
// find node c in the grid, nearest to the b
int near = g;
if (i == stop - 1) { // up bondary reached
c = quad->uv_grid[nbhoriz*(jup + 1) - 2].node;
near = jup;
} else {
double mind = RealLast();
for (int k = g; k <= jup; k++) {
const SMDS_MeshNode *nk;
if (k < jlow)
nk = uv_e0[nbdown - 2].node;
else
nk = quad->uv_grid[nbhoriz*(k + 1) - 2].node;
gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
double dist = pb.Distance(pnk);
if (dist < mind - eps) {
c = nk;
near = k;
mind = dist;
} else {
break;
}
}
}
if (near == g) { // make triangle
2012-08-09 16:03:55 +06:00
SMDS_MeshFace* face = myHelper->AddFace(a, b, c);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
}
else { // make quadrangle
2004-12-01 15:48:31 +05:00
if (near - 1 < jlow)
d = uv_e0[nbdown - 2].node;
else
d = quad->uv_grid[nbhoriz*near - 2].node;
//SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
2009-02-17 10:27:49 +05:00
2012-08-09 16:03:55 +06:00
if (!myTrianglePreference){
SMDS_MeshFace* face = myHelper->AddFace(a, b, c, d);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
2009-02-17 10:27:49 +05:00
}
else {
splitQuad(meshDS, geomFaceID, a, b, c, d);
2009-02-17 10:27:49 +05:00
}
2004-12-01 15:48:31 +05:00
if (near - 1 > g) { // if d not is at g - make additional triangles
for (int k = near - 1; k > g; k--) {
c = quad->uv_grid[nbhoriz*(k + 1) - 2].node;
if (k - 1 < jlow)
d = uv_e0[nbdown - 2].node;
else
d = quad->uv_grid[nbhoriz*k - 2].node;
2012-08-09 16:03:55 +06:00
SMDS_MeshFace* face = myHelper->AddFace(a, c, d);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
2004-12-01 15:48:31 +05:00
}
}
g = near;
}
}
} else {
if (quad->isEdgeOut[3]) {
// MESSAGE("left edge is out");
int g = nbvertic - 1; // last processed node in the grid
int stop = 0;
if (quad->isEdgeOut[0]) stop++;
for (i = nbleft - 1; i > stop; i--) {
const SMDS_MeshNode *a, *b, *c, *d;
a = uv_e3[i].node;
b = uv_e3[i - 1].node;
gp_Pnt pb (b->X(), b->Y(), b->Z());
// find node c in the grid, nearest to the b
int near = g;
if (i == stop + 1) { // down bondary reached
c = quad->uv_grid[nbhoriz*jlow + 1].node;
near = jlow;
} else {
double mind = RealLast();
for (int k = g; k >= jlow; k--) {
const SMDS_MeshNode *nk;
if (k > jup)
nk = uv_e2[1].node;
else
nk = quad->uv_grid[nbhoriz*k + 1].node;
gp_Pnt pnk (nk->X(), nk->Y(), nk->Z());
double dist = pb.Distance(pnk);
if (dist < mind - eps) {
c = nk;
near = k;
mind = dist;
} else {
break;
}
}
}
if (near == g) { // make triangle
2012-08-09 16:03:55 +06:00
SMDS_MeshFace* face = myHelper->AddFace(a, b, c);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
}
else { // make quadrangle
2004-12-01 15:48:31 +05:00
if (near + 1 > jup)
d = uv_e2[1].node;
else
d = quad->uv_grid[nbhoriz*(near + 1) + 1].node;
//SMDS_MeshFace* face = meshDS->AddFace(a, b, c, d);
2012-08-09 16:03:55 +06:00
if (!myTrianglePreference){
SMDS_MeshFace* face = myHelper->AddFace(a, b, c, d);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
2009-02-17 10:27:49 +05:00
}
else {
splitQuad(meshDS, geomFaceID, a, b, c, d);
2009-02-17 10:27:49 +05:00
}
2004-12-01 15:48:31 +05:00
if (near + 1 < g) { // if d not is at g - make additional triangles
for (int k = near + 1; k < g; k++) {
c = quad->uv_grid[nbhoriz*k + 1].node;
if (k + 1 > jup)
d = uv_e2[1].node;
else
d = quad->uv_grid[nbhoriz*(k + 1) + 1].node;
2012-08-09 16:03:55 +06:00
SMDS_MeshFace* face = myHelper->AddFace(a, c, d);
if (face) meshDS->SetMeshElementOnShape(face, geomFaceID);
2004-12-01 15:48:31 +05:00
}
}
g = near;
}
}
}
}
bool isOk = true;
return isOk;
2004-06-18 14:34:31 +06:00
}
2012-08-09 16:03:55 +06:00
//=============================================================================
/*!
* Evaluate
*/
//=============================================================================
bool StdMeshers_Quadrangle_2D::Evaluate(SMESH_Mesh& aMesh,
const TopoDS_Shape& aFace,
MapShapeNbElems& aResMap)
2012-08-09 16:03:55 +06:00
{
aMesh.GetSubMesh(aFace);
2012-08-09 16:03:55 +06:00
std::vector<int> aNbNodes(4);
bool IsQuadratic = false;
if (!checkNbEdgesForEvaluate(aMesh, aFace, aResMap, aNbNodes, IsQuadratic)) {
2012-08-09 16:03:55 +06:00
std::vector<int> aResVec(SMDSEntity_Last);
for (int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
SMESH_subMesh * sm = aMesh.GetSubMesh(aFace);
2012-08-09 16:03:55 +06:00
aResMap.insert(std::make_pair(sm,aResVec));
SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
smError.reset(new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this));
return false;
}
if (myQuadranglePreference) {
int n1 = aNbNodes[0];
int n2 = aNbNodes[1];
int n3 = aNbNodes[2];
int n4 = aNbNodes[3];
int nfull = n1+n2+n3+n4;
int ntmp = nfull/2;
ntmp = ntmp*2;
if (nfull==ntmp && ((n1!=n3) || (n2!=n4))) {
// special path for using only quandrangle faces
return evaluateQuadPref(aMesh, aFace, aNbNodes, aResMap, IsQuadratic);
2012-08-09 16:03:55 +06:00
//return true;
}
}
int nbdown = aNbNodes[0];
int nbup = aNbNodes[2];
int nbright = aNbNodes[1];
int nbleft = aNbNodes[3];
int nbhoriz = Min(nbdown, nbup);
int nbvertic = Min(nbright, nbleft);
int dh = Max(nbdown, nbup) - nbhoriz;
int dv = Max(nbright, nbleft) - nbvertic;
//int kdh = 0;
//if (dh>0) kdh = 1;
//int kdv = 0;
//if (dv>0) kdv = 1;
int nbNodes = (nbhoriz-2)*(nbvertic-2);
//int nbFaces3 = dh + dv + kdh*(nbvertic-1)*2 + kdv*(nbhoriz-1)*2;
int nbFaces3 = dh + dv;
//if (kdh==1 && kdv==1) nbFaces3 -= 2;
//if (dh>0 && dv>0) nbFaces3 -= 2;
//int nbFaces4 = (nbhoriz-1-kdh)*(nbvertic-1-kdv);
int nbFaces4 = (nbhoriz-1)*(nbvertic-1);
std::vector<int> aVec(SMDSEntity_Last);
for (int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aVec[i] = 0;
if (IsQuadratic) {
aVec[SMDSEntity_Quad_Triangle] = nbFaces3;
aVec[SMDSEntity_Quad_Quadrangle] = nbFaces4;
int nbbndedges = nbdown + nbup + nbright + nbleft -4;
int nbintedges = (nbFaces4*4 + nbFaces3*3 - nbbndedges) / 2;
aVec[SMDSEntity_Node] = nbNodes + nbintedges;
if (aNbNodes.size()==5) {
aVec[SMDSEntity_Quad_Triangle] = nbFaces3 + aNbNodes[3] -1;
aVec[SMDSEntity_Quad_Quadrangle] = nbFaces4 - aNbNodes[3] +1;
}
}
else {
aVec[SMDSEntity_Node] = nbNodes;
aVec[SMDSEntity_Triangle] = nbFaces3;
aVec[SMDSEntity_Quadrangle] = nbFaces4;
if (aNbNodes.size()==5) {
aVec[SMDSEntity_Triangle] = nbFaces3 + aNbNodes[3] - 1;
aVec[SMDSEntity_Quadrangle] = nbFaces4 - aNbNodes[3] + 1;
}
}
SMESH_subMesh * sm = aMesh.GetSubMesh(aFace);
2012-08-09 16:03:55 +06:00
aResMap.insert(std::make_pair(sm,aVec));
return true;
}
//================================================================================
/*!
* \brief Return true if only two given edges meat at their common vertex
*/
//================================================================================
static bool twoEdgesMeatAtVertex(const TopoDS_Edge& e1,
const TopoDS_Edge& e2,
SMESH_Mesh & mesh)
{
TopoDS_Vertex v;
if (!TopExp::CommonVertex(e1, e2, v))
return false;
TopTools_ListIteratorOfListOfShape ancestIt(mesh.GetAncestors(v));
for (; ancestIt.More() ; ancestIt.Next())
if (ancestIt.Value().ShapeType() == TopAbs_EDGE)
if (!e1.IsSame(ancestIt.Value()) && !e2.IsSame(ancestIt.Value()))
return false;
return true;
}
2004-06-18 14:34:31 +06:00
//=============================================================================
/*!
*
*/
//=============================================================================
2013-02-12 20:37:44 +06:00
FaceQuadStruct::Ptr StdMeshers_Quadrangle_2D::CheckNbEdges(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape)
2004-06-18 14:34:31 +06:00
{
2013-02-12 20:37:44 +06:00
if ( myQuadStruct && myQuadStruct->face.IsSame( aShape ))
return myQuadStruct;
2012-08-09 16:03:55 +06:00
TopoDS_Face F = TopoDS::Face(aShape);
if ( F.Orientation() >= TopAbs_INTERNAL ) F.Orientation( TopAbs_FORWARD );
const bool ignoreMediumNodes = _quadraticMesh;
2004-12-01 15:48:31 +05:00
// verify 1 wire only, with 4 edges
list< TopoDS_Edge > edges;
list< int > nbEdgesInWire;
2013-02-12 20:37:44 +06:00
int nbWire = SMESH_Block::GetOrderedEdges (F, edges, nbEdgesInWire);
if (nbWire != 1) {
error(COMPERR_BAD_SHAPE, TComm("Wrong number of wires: ") << nbWire);
2013-02-12 20:37:44 +06:00
return FaceQuadStruct::Ptr();
2004-12-01 15:48:31 +05:00
}
// find corner vertices of the quad
vector<TopoDS_Vertex> corners;
int nbDegenEdges, nbSides = getCorners( F, aMesh, edges, corners, nbDegenEdges );
if ( nbSides == 0 )
{
return FaceQuadStruct::Ptr();
}
2013-02-12 20:37:44 +06:00
FaceQuadStruct::Ptr quad( new FaceQuadStruct );
2004-12-01 15:48:31 +05:00
quad->uv_grid = 0;
quad->side.reserve(nbEdgesInWire.front());
2012-08-09 16:03:55 +06:00
quad->face = F;
list< TopoDS_Edge >::iterator edgeIt = edges.begin();
if ( nbSides == 3 ) // 3 sides and corners[0] is a vertex with myTriaVertexID
2012-08-09 16:03:55 +06:00
{
for ( int iSide = 0; iSide < 3; ++iSide )
2012-08-09 16:03:55 +06:00
{
list< TopoDS_Edge > sideEdges;
TopoDS_Vertex nextSideV = corners[( iSide + 1 ) % 3 ];
while ( edgeIt != edges.end() &&
!nextSideV.IsSame( SMESH_MesherHelper::IthVertex( 0, *edgeIt )))
if ( SMESH_Algo::isDegenerated( *edgeIt ))
++edgeIt;
else
sideEdges.push_back( *edgeIt++ );
if ( !sideEdges.empty() )
quad->side.push_back(new StdMeshers_FaceSide(F, sideEdges, &aMesh, iSide < QUAD_TOP_SIDE,
ignoreMediumNodes, myProxyMesh));
else
--iSide;
}
const vector<UVPtStruct>& UVPSleft = quad->side[0]->GetUVPtStruct(true,0);
/* vector<UVPtStruct>& UVPStop = */quad->side[1]->GetUVPtStruct(false,1);
/* vector<UVPtStruct>& UVPSright = */quad->side[2]->GetUVPtStruct(true,1);
const SMDS_MeshNode* aNode = UVPSleft[0].node;
gp_Pnt2d aPnt2d(UVPSleft[0].u, UVPSleft[0].v);
quad->side.push_back(new StdMeshers_FaceSide(quad->side[1], aNode, &aPnt2d));
myNeedSmooth = ( nbDegenEdges > 0 );
2013-02-12 20:37:44 +06:00
return quad;
2012-08-09 16:03:55 +06:00
}
else // 4 sides
2012-08-09 16:03:55 +06:00
{
myNeedSmooth = ( corners.size() == 4 && nbDegenEdges > 0 );
int iSide = 0, nbUsedDegen = 0, nbLoops = 0;
for ( ; edgeIt != edges.end(); ++nbLoops )
2012-08-09 16:03:55 +06:00
{
list< TopoDS_Edge > sideEdges;
TopoDS_Vertex nextSideV = corners[( iSide + 1 - nbUsedDegen ) % corners.size() ];
while ( edgeIt != edges.end() &&
!nextSideV.IsSame( myHelper->IthVertex( 0, *edgeIt )))
2012-08-09 16:03:55 +06:00
{
if ( SMESH_Algo::isDegenerated( *edgeIt ) )
{
if ( myNeedSmooth )
{
++edgeIt; // no side on the degenerated EDGE
2012-08-09 16:03:55 +06:00
}
else
{
if ( sideEdges.empty() )
{
++nbUsedDegen;
sideEdges.push_back( *edgeIt++ ); // a degenerated side
break;
}
else
{
break; // do not append a degenerated EDGE to a regular side
}
}
}
else
{
sideEdges.push_back( *edgeIt++ );
2012-08-09 16:03:55 +06:00
}
}
if ( !sideEdges.empty() )
{
quad->side.push_back(new StdMeshers_FaceSide(F, sideEdges, &aMesh, iSide < QUAD_TOP_SIDE,
2012-12-13 17:41:29 +06:00
ignoreMediumNodes, myProxyMesh));
++iSide;
}
else if ( !SMESH_Algo::isDegenerated( *edgeIt ) && // closed EDGE
myHelper->IthVertex( 0, *edgeIt ).IsSame( myHelper->IthVertex( 1, *edgeIt )))
{
quad->side.push_back(new StdMeshers_FaceSide(F, *edgeIt++, &aMesh, iSide < QUAD_TOP_SIDE,
ignoreMediumNodes, myProxyMesh));
++iSide;
}
if ( nbLoops > 8 )
{
error(TComm("Bug: infinite loop in StdMeshers_Quadrangle_2D::CheckNbEdges()"));
quad.reset();
break;
2012-08-09 16:03:55 +06:00
}
}
2013-11-26 18:26:45 +06:00
if ( quad && quad->side.size() != 4 )
{
error(TComm("Bug: ") << quad->side.size() << " sides found instead of 4");
quad.reset();
}
2004-12-01 15:48:31 +05:00
}
return quad;
}
2004-12-01 15:48:31 +05:00
2012-08-09 16:03:55 +06:00
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Quadrangle_2D::checkNbEdgesForEvaluate(SMESH_Mesh& aMesh,
2012-08-09 16:03:55 +06:00
const TopoDS_Shape & aShape,
MapShapeNbElems& aResMap,
std::vector<int>& aNbNodes,
bool& IsQuadratic)
2012-08-09 16:03:55 +06:00
{
const TopoDS_Face & F = TopoDS::Face(aShape);
// verify 1 wire only, with 4 edges
list< TopoDS_Edge > edges;
list< int > nbEdgesInWire;
2013-02-12 20:37:44 +06:00
int nbWire = SMESH_Block::GetOrderedEdges (F, edges, nbEdgesInWire);
2012-08-09 16:03:55 +06:00
if (nbWire != 1) {
return false;
}
aNbNodes.resize(4);
int nbSides = 0;
list< TopoDS_Edge >::iterator edgeIt = edges.begin();
SMESH_subMesh * sm = aMesh.GetSubMesh(*edgeIt);
MapShapeNbElemsItr anIt = aResMap.find(sm);
if (anIt==aResMap.end()) {
return false;
}
std::vector<int> aVec = (*anIt).second;
IsQuadratic = (aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge]);
if (nbEdgesInWire.front() == 3) { // exactly 3 edges
if (myTriaVertexID>0) {
SMESHDS_Mesh* meshDS = aMesh.GetMeshDS();
TopoDS_Vertex V = TopoDS::Vertex(meshDS->IndexToShape(myTriaVertexID));
if (!V.IsNull()) {
TopoDS_Edge E1,E2,E3;
for (; edgeIt != edges.end(); ++edgeIt) {
TopoDS_Edge E = TopoDS::Edge(*edgeIt);
TopoDS_Vertex VF, VL;
TopExp::Vertices(E, VF, VL, true);
if (VF.IsSame(V))
E1 = E;
else if (VL.IsSame(V))
E3 = E;
else
E2 = E;
}
SMESH_subMesh * sm = aMesh.GetSubMesh(E1);
MapShapeNbElemsItr anIt = aResMap.find(sm);
if (anIt==aResMap.end()) return false;
std::vector<int> aVec = (*anIt).second;
if (IsQuadratic)
aNbNodes[0] = (aVec[SMDSEntity_Node]-1)/2 + 2;
else
aNbNodes[0] = aVec[SMDSEntity_Node] + 2;
sm = aMesh.GetSubMesh(E2);
anIt = aResMap.find(sm);
if (anIt==aResMap.end()) return false;
aVec = (*anIt).second;
if (IsQuadratic)
aNbNodes[1] = (aVec[SMDSEntity_Node]-1)/2 + 2;
else
aNbNodes[1] = aVec[SMDSEntity_Node] + 2;
sm = aMesh.GetSubMesh(E3);
anIt = aResMap.find(sm);
if (anIt==aResMap.end()) return false;
aVec = (*anIt).second;
if (IsQuadratic)
aNbNodes[2] = (aVec[SMDSEntity_Node]-1)/2 + 2;
else
aNbNodes[2] = aVec[SMDSEntity_Node] + 2;
aNbNodes[3] = aNbNodes[1];
aNbNodes.resize(5);
nbSides = 4;
}
}
}
if (nbEdgesInWire.front() == 4) { // exactly 4 edges
for (; edgeIt != edges.end(); edgeIt++) {
SMESH_subMesh * sm = aMesh.GetSubMesh(*edgeIt);
MapShapeNbElemsItr anIt = aResMap.find(sm);
if (anIt==aResMap.end()) {
return false;
}
std::vector<int> aVec = (*anIt).second;
if (IsQuadratic)
aNbNodes[nbSides] = (aVec[SMDSEntity_Node]-1)/2 + 2;
else
aNbNodes[nbSides] = aVec[SMDSEntity_Node] + 2;
nbSides++;
}
}
else if (nbEdgesInWire.front() > 4) { // more than 4 edges - try to unite some
list< TopoDS_Edge > sideEdges;
while (!edges.empty()) {
sideEdges.clear();
sideEdges.splice(sideEdges.end(), edges, edges.begin()); // edges.front() -> sideEdges.end()
bool sameSide = true;
while (!edges.empty() && sameSide) {
sameSide = SMESH_Algo::IsContinuous(sideEdges.back(), edges.front());
if (sameSide)
sideEdges.splice(sideEdges.end(), edges, edges.begin());
}
if (nbSides == 0) { // go backward from the first edge
sameSide = true;
while (!edges.empty() && sameSide) {
sameSide = SMESH_Algo::IsContinuous(sideEdges.front(), edges.back());
if (sameSide)
sideEdges.splice(sideEdges.begin(), edges, --edges.end());
}
}
list<TopoDS_Edge>::iterator ite = sideEdges.begin();
aNbNodes[nbSides] = 1;
for (; ite!=sideEdges.end(); ite++) {
SMESH_subMesh * sm = aMesh.GetSubMesh(*ite);
MapShapeNbElemsItr anIt = aResMap.find(sm);
if (anIt==aResMap.end()) {
return false;
}
std::vector<int> aVec = (*anIt).second;
if (IsQuadratic)
aNbNodes[nbSides] += (aVec[SMDSEntity_Node]-1)/2 + 1;
else
aNbNodes[nbSides] += aVec[SMDSEntity_Node] + 1;
}
++nbSides;
}
// issue 20222. Try to unite only edges shared by two same faces
if (nbSides < 4) {
nbSides = 0;
2013-02-12 20:37:44 +06:00
SMESH_Block::GetOrderedEdges (F, edges, nbEdgesInWire);
2012-08-09 16:03:55 +06:00
while (!edges.empty()) {
sideEdges.clear();
sideEdges.splice(sideEdges.end(), edges, edges.begin());
bool sameSide = true;
while (!edges.empty() && sameSide) {
sameSide =
SMESH_Algo::IsContinuous(sideEdges.back(), edges.front()) &&
twoEdgesMeatAtVertex(sideEdges.back(), edges.front(), aMesh);
if (sameSide)
sideEdges.splice(sideEdges.end(), edges, edges.begin());
}
if (nbSides == 0) { // go backward from the first edge
sameSide = true;
while (!edges.empty() && sameSide) {
sameSide =
SMESH_Algo::IsContinuous(sideEdges.front(), edges.back()) &&
twoEdgesMeatAtVertex(sideEdges.front(), edges.back(), aMesh);
if (sameSide)
sideEdges.splice(sideEdges.begin(), edges, --edges.end());
}
}
list<TopoDS_Edge>::iterator ite = sideEdges.begin();
aNbNodes[nbSides] = 1;
for (; ite!=sideEdges.end(); ite++) {
SMESH_subMesh * sm = aMesh.GetSubMesh(*ite);
MapShapeNbElemsItr anIt = aResMap.find(sm);
if (anIt==aResMap.end()) {
return false;
}
std::vector<int> aVec = (*anIt).second;
if (IsQuadratic)
aNbNodes[nbSides] += (aVec[SMDSEntity_Node]-1)/2 + 1;
else
aNbNodes[nbSides] += aVec[SMDSEntity_Node] + 1;
}
++nbSides;
}
}
}
if (nbSides != 4) {
if (!nbSides)
nbSides = nbEdgesInWire.front();
error(COMPERR_BAD_SHAPE, TComm("Face must have 4 sides but not ") << nbSides);
return false;
}
return true;
}
//=============================================================================
/*!
* CheckAnd2Dcompute
*/
//=============================================================================
2013-02-12 20:37:44 +06:00
FaceQuadStruct::Ptr
StdMeshers_Quadrangle_2D::CheckAnd2Dcompute (SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const bool CreateQuadratic)
{
_quadraticMesh = CreateQuadratic;
2013-02-12 20:37:44 +06:00
FaceQuadStruct::Ptr quad = CheckNbEdges(aMesh, aShape);
if ( quad )
{
// set normalized grid on unit square in parametric domain
if ( ! setNormalizedGrid( aMesh, TopoDS::Face( aShape ), quad))
2013-02-12 20:37:44 +06:00
quad.reset();
}
2004-12-01 15:48:31 +05:00
return quad;
2004-06-18 14:34:31 +06:00
}
//=============================================================================
/*!
2013-02-12 20:37:44 +06:00
*
2004-06-18 14:34:31 +06:00
*/
//=============================================================================
faceQuadStruct::~faceQuadStruct()
2004-06-18 14:34:31 +06:00
{
2013-02-12 20:37:44 +06:00
for (size_t i = 0; i < side.size(); i++) {
if (side[i]) {
delete side[i];
for (size_t j = i+1; j < side.size(); j++)
if ( side[i] == side[j] )
side[j] = 0;
}
}
side.clear();
if (uv_grid) {
delete [] uv_grid;
uv_grid = 0;
}
}
2013-02-12 20:37:44 +06:00
namespace
{
inline const vector<UVPtStruct>& getUVPtStructIn(FaceQuadStruct::Ptr& quad, int i, int nbSeg)
2004-12-01 15:48:31 +05:00
{
2013-02-12 20:37:44 +06:00
bool isXConst = (i == QUAD_BOTTOM_SIDE || i == QUAD_TOP_SIDE);
double constValue = (i == QUAD_BOTTOM_SIDE || i == QUAD_LEFT_SIDE) ? 0 : 1;
return
quad->isEdgeOut[i] ?
quad->side[i]->SimulateUVPtStruct(nbSeg,isXConst,constValue) :
quad->side[i]->GetUVPtStruct(isXConst,constValue);
2004-12-01 15:48:31 +05:00
}
2013-02-12 20:37:44 +06:00
inline gp_UV calcUV(double x, double y,
2012-08-09 16:03:55 +06:00
const gp_UV& a0,const gp_UV& a1,const gp_UV& a2,const gp_UV& a3,
const gp_UV& p0,const gp_UV& p1,const gp_UV& p2,const gp_UV& p3)
{
return
((1 - y) * p0 + x * p1 + y * p2 + (1 - x) * p3 ) -
((1 - x) * (1 - y) * a0 + x * (1 - y) * a1 + x * y * a2 + (1 - x) * y * a3);
}
2004-06-18 14:34:31 +06:00
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Quadrangle_2D::setNormalizedGrid (SMESH_Mesh & aMesh,
const TopoDS_Face& aFace,
2013-02-12 20:37:44 +06:00
FaceQuadStruct::Ptr & quad)
2004-06-18 14:34:31 +06:00
{
2012-08-09 16:03:55 +06:00
// Algorithme décrit dans "Génération automatique de maillages"
// P.L. GEORGE, MASSON, § 6.4.1 p. 84-85
// traitement dans le domaine paramétrique 2d u,v
// transport - projection sur le carré unité
2004-12-01 15:48:31 +05:00
// max min 0 x1 1
// |<----north-2-------^ a3 -------------> a2
// | | ^1 1^
// west-3 east-1 =right | |
// | | ==> | |
// y0 | | y1 | |
// | | |0 0|
// v----south-0--------> a0 -------------> a1
// min max 0 x0 1
// =down
//
updateDegenUV( quad );
int nbhoriz = Min(quad->side[0]->NbPoints(), quad->side[2]->NbPoints());
int nbvertic = Min(quad->side[1]->NbPoints(), quad->side[3]->NbPoints());
2004-12-01 15:48:31 +05:00
quad->isEdgeOut[0] = (quad->side[0]->NbPoints() > quad->side[2]->NbPoints());
quad->isEdgeOut[1] = (quad->side[1]->NbPoints() > quad->side[3]->NbPoints());
quad->isEdgeOut[2] = (quad->side[2]->NbPoints() > quad->side[0]->NbPoints());
quad->isEdgeOut[3] = (quad->side[3]->NbPoints() > quad->side[1]->NbPoints());
2004-12-01 15:48:31 +05:00
UVPtStruct *uv_grid = quad->uv_grid = new UVPtStruct[nbvertic * nbhoriz];
2004-12-01 15:48:31 +05:00
2013-02-12 20:37:44 +06:00
const vector<UVPtStruct>& uv_e0 = getUVPtStructIn(quad, 0, nbhoriz - 1);
const vector<UVPtStruct>& uv_e1 = getUVPtStructIn(quad, 1, nbvertic - 1);
const vector<UVPtStruct>& uv_e2 = getUVPtStructIn(quad, 2, nbhoriz - 1);
const vector<UVPtStruct>& uv_e3 = getUVPtStructIn(quad, 3, nbvertic - 1);
2012-08-09 16:03:55 +06:00
if (uv_e0.empty() || uv_e1.empty() || uv_e2.empty() || uv_e3.empty())
//return error("Can't find nodes on sides");
return error(COMPERR_BAD_INPUT_MESH);
2012-12-13 17:41:29 +06:00
// copy data of face boundary
{
2012-12-13 17:41:29 +06:00
const int j = 0;
for (int i = 0; i < nbhoriz; i++) // down
uv_grid[ j * nbhoriz + i ] = uv_e0[i];
2004-12-01 15:48:31 +05:00
}
{
2012-12-13 17:41:29 +06:00
const int i = nbhoriz - 1;
for (int j = 0; j < nbvertic; j++) // right
uv_grid[ j * nbhoriz + i ] = uv_e1[j];
2004-12-01 15:48:31 +05:00
}
{
2012-12-13 17:41:29 +06:00
const int j = nbvertic - 1;
for (int i = 0; i < nbhoriz; i++) // up
uv_grid[ j * nbhoriz + i ] = uv_e2[i];
2004-12-01 15:48:31 +05:00
}
{
const int i = 0;
2012-12-13 17:41:29 +06:00
for (int j = 0; j < nbvertic; j++) // left
uv_grid[ j * nbhoriz + i ] = uv_e3[j];
2004-12-01 15:48:31 +05:00
}
2012-12-13 17:41:29 +06:00
// normalized 2d parameters on grid
2012-08-09 16:03:55 +06:00
for (int i = 0; i < nbhoriz; i++) {
for (int j = 0; j < nbvertic; j++) {
2004-12-01 15:48:31 +05:00
int ij = j * nbhoriz + i;
// --- droite i cste : x = x0 + y(x1-x0)
double x0 = uv_e0[i].normParam; // bas - sud
2012-08-09 16:03:55 +06:00
double x1 = uv_e2[i].normParam; // haut - nord
2004-12-01 15:48:31 +05:00
// --- droite j cste : y = y0 + x(y1-y0)
double y0 = uv_e3[j].normParam; // gauche - ouest
2012-08-09 16:03:55 +06:00
double y1 = uv_e1[j].normParam; // droite - est
2004-12-01 15:48:31 +05:00
// --- intersection : x=x0+(y0+x(y1-y0))(x1-x0)
double x = (x0 + y0 * (x1 - x0)) / (1 - (y1 - y0) * (x1 - x0));
double y = y0 + x * (y1 - y0);
uv_grid[ij].x = x;
uv_grid[ij].y = y;
}
}
// projection on 2d domain (u,v)
2012-12-13 17:41:29 +06:00
gp_UV a0 (uv_e0.front().u, uv_e0.front().v);
gp_UV a1 (uv_e0.back().u, uv_e0.back().v );
gp_UV a2 (uv_e2.back().u, uv_e2.back().v );
gp_UV a3 (uv_e2.front().u, uv_e2.front().v);
for (int i = 0; i < nbhoriz; i++)
{
gp_UV p0( uv_e0[i].u, uv_e0[i].v );
gp_UV p2( uv_e2[i].u, uv_e2[i].v );
for (int j = 0; j < nbvertic; j++)
{
gp_UV p1( uv_e1[j].u, uv_e1[j].v );
gp_UV p3( uv_e3[j].u, uv_e3[j].v );
2004-12-01 15:48:31 +05:00
int ij = j * nbhoriz + i;
double x = uv_grid[ij].x;
double y = uv_grid[ij].y;
2013-02-12 20:37:44 +06:00
gp_UV uv = calcUV(x,y, a0,a1,a2,a3, p0,p1,p2,p3);
2004-12-01 15:48:31 +05:00
uv_grid[ij].u = uv.X();
uv_grid[ij].v = uv.Y();
2004-12-01 15:48:31 +05:00
}
}
return true;
2004-06-18 14:34:31 +06:00
}
//=======================================================================
//function : ShiftQuad
//purpose : auxilary function for computeQuadPref
//=======================================================================
static void shiftQuad(FaceQuadStruct::Ptr& quad, const int num)
2013-02-12 20:37:44 +06:00
{
quad->shift( num, /*ori=*/true );
}
//================================================================================
/*!
* \brief Rotate sides of a quad by nb
* \param nb - number of rotation quartes
2013-02-12 20:37:44 +06:00
* \param ori - to keep orientation of sides as in an unit quad or not
*/
//================================================================================
void FaceQuadStruct::shift( size_t nb, bool ori )
{
2013-02-12 20:37:44 +06:00
if ( nb == 0 ) return;
StdMeshers_FaceSide* sideArr[4] = { side[0], side[1], side[2], side[3] };
for (int i = QUAD_BOTTOM_SIDE; i < NB_QUAD_SIDES; ++i) {
int id = (i + nb) % NB_QUAD_SIDES;
bool wasForward = (i < QUAD_TOP_SIDE);
bool newForward = (id < QUAD_TOP_SIDE);
if (ori && wasForward != newForward)
sideArr[ i ]->Reverse();
side[ id ] = sideArr[ i ];
}
}
//=======================================================================
2013-02-12 20:37:44 +06:00
//function : calcUV
//purpose : auxilary function for computeQuadPref
//=======================================================================
2013-02-12 20:37:44 +06:00
static gp_UV calcUV(double x0, double x1, double y0, double y1,
FaceQuadStruct::Ptr& quad,
const gp_UV& a0, const gp_UV& a1,
const gp_UV& a2, const gp_UV& a3)
{
double x = (x0 + y0 * (x1 - x0)) / (1 - (y1 - y0) * (x1 - x0));
double y = y0 + x * (y1 - y0);
2013-02-12 20:37:44 +06:00
gp_UV p0 = quad->side[QUAD_BOTTOM_SIDE]->Value2d(x).XY();
gp_UV p1 = quad->side[QUAD_RIGHT_SIDE ]->Value2d(y).XY();
gp_UV p2 = quad->side[QUAD_TOP_SIDE ]->Value2d(x).XY();
gp_UV p3 = quad->side[QUAD_LEFT_SIDE ]->Value2d(y).XY();
2013-02-12 20:37:44 +06:00
gp_UV uv = calcUV(x,y, a0,a1,a2,a3, p0,p1,p2,p3);
return uv;
}
2009-02-17 10:27:49 +05:00
//=======================================================================
2013-02-12 20:37:44 +06:00
//function : calcUV2
//purpose : auxilary function for computeQuadPref
2009-02-17 10:27:49 +05:00
//=======================================================================
2013-02-12 20:37:44 +06:00
static gp_UV calcUV2(double x, double y,
FaceQuadStruct::Ptr& quad,
2009-02-17 10:27:49 +05:00
const gp_UV& a0, const gp_UV& a1,
const gp_UV& a2, const gp_UV& a3)
{
2013-02-12 20:37:44 +06:00
gp_UV p0 = quad->side[QUAD_BOTTOM_SIDE]->Value2d(x).XY();
gp_UV p1 = quad->side[QUAD_RIGHT_SIDE ]->Value2d(y).XY();
gp_UV p2 = quad->side[QUAD_TOP_SIDE ]->Value2d(x).XY();
gp_UV p3 = quad->side[QUAD_LEFT_SIDE ]->Value2d(y).XY();
2009-02-17 10:27:49 +05:00
2013-02-12 20:37:44 +06:00
gp_UV uv = calcUV(x,y, a0,a1,a2,a3, p0,p1,p2,p3);
2009-02-17 10:27:49 +05:00
return uv;
}
//=======================================================================
/*!
* Create only quandrangle faces
*/
//=======================================================================
bool StdMeshers_Quadrangle_2D::computeQuadPref (SMESH_Mesh & aMesh,
const TopoDS_Face& aFace,
2013-02-12 20:37:44 +06:00
FaceQuadStruct::Ptr quad)
{
2009-02-17 10:27:49 +05:00
// Auxilary key in order to keep old variant
// of meshing after implementation new variant
// for bug 0016220 from Mantis.
bool OldVersion = (myQuadType == QUAD_QUADRANGLE_PREF_REVERSED);
2009-02-17 10:27:49 +05:00
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
Handle(Geom_Surface) S = BRep_Tool::Surface(aFace);
bool WisF = true;
int i,j,geomFaceID = meshDS->ShapeToIndex(aFace);
updateDegenUV( quad );
int nb = quad->side[0]->NbPoints();
int nr = quad->side[1]->NbPoints();
int nt = quad->side[2]->NbPoints();
int nl = quad->side[3]->NbPoints();
int dh = abs(nb-nt);
int dv = abs(nr-nl);
// rotate sides to be as in the picture below and to have
// dh >= dv and nt > nb
if ( dh >= dv )
shiftQuad( quad, ( nt > nb ) ? 0 : 2 );
else
shiftQuad( quad, ( nr > nl ) ? 1 : 3 );
nb = quad->side[0]->NbPoints();
nr = quad->side[1]->NbPoints();
nt = quad->side[2]->NbPoints();
nl = quad->side[3]->NbPoints();
dh = abs(nb-nt);
dv = abs(nr-nl);
int nbh = Max(nb,nt);
int nbv = Max(nr,nl);
int addh = 0;
int addv = 0;
// Orientation of face and 3 main domain for future faces
2009-02-17 10:27:49 +05:00
// ----------- Old version ---------------
// 0 top 1
// 1------------1
// | | | |
// | |C | |
// | L | | R |
// left | |__| | rigth
// | / \ |
// | / C \ |
// |/ \|
// 0------------0
// 0 bottom 1
2009-02-17 10:27:49 +05:00
// ----------- New version ---------------
// 0 top 1
// 1------------1
// | |__| |
2009-02-17 10:27:49 +05:00
// | / \ |
// | / C \ |
// left |/________\| rigth
// | |
// | C |
2009-02-17 10:27:49 +05:00
// | |
// 0------------0
// 0 bottom 1
if ( dh > dv ) {
addv = (dh-dv)/2;
nbv = nbv + addv;
}
else { // dv >= dh
addh = (dv-dh)/2;
nbh = nbh + addh;
}
2012-08-09 16:03:55 +06:00
const vector<UVPtStruct>& uv_eb = quad->side[0]->GetUVPtStruct(true,0);
const vector<UVPtStruct>& uv_er = quad->side[1]->GetUVPtStruct(false,1);
2012-08-09 16:03:55 +06:00
const vector<UVPtStruct>& uv_et = quad->side[2]->GetUVPtStruct(true,1);
const vector<UVPtStruct>& uv_el = quad->side[3]->GetUVPtStruct(false,0);
2012-08-09 16:03:55 +06:00
if (uv_eb.size() != nb || uv_er.size() != nr || uv_et.size() != nt || uv_el.size() != nl)
return error(COMPERR_BAD_INPUT_MESH);
if ( !OldVersion )
{
// dh/2, Min(nb,nt), dh - dh/2, dv
}
// arrays for normalized params
TColStd_SequenceOfReal npb, npr, npt, npl;
2012-08-09 16:03:55 +06:00
for (i=0; i<nb; i++) {
npb.Append(uv_eb[i].normParam);
}
2012-08-09 16:03:55 +06:00
for (i=0; i<nr; i++) {
npr.Append(uv_er[i].normParam);
}
2012-08-09 16:03:55 +06:00
for (i=0; i<nt; i++) {
npt.Append(uv_et[i].normParam);
}
2012-08-09 16:03:55 +06:00
for (i=0; i<nl; i++) {
npl.Append(uv_el[i].normParam);
}
2009-02-17 10:27:49 +05:00
int dl,dr;
2012-08-09 16:03:55 +06:00
if (OldVersion) {
2009-02-17 10:27:49 +05:00
// add some params to right and left after the first param
// insert to right
dr = nbv - nr;
double dpr = (npr.Value(2) - npr.Value(1))/(dr+1);
2012-08-09 16:03:55 +06:00
for (i=1; i<=dr; i++) {
2009-02-17 10:27:49 +05:00
npr.InsertAfter(1,npr.Value(2)-dpr);
}
// insert to left
dl = nbv - nl;
dpr = (npl.Value(2) - npl.Value(1))/(dl+1);
2012-08-09 16:03:55 +06:00
for (i=1; i<=dl; i++) {
2009-02-17 10:27:49 +05:00
npl.InsertAfter(1,npl.Value(2)-dpr);
}
}
2012-08-09 16:03:55 +06:00
gp_XY a0(uv_eb.front().u, uv_eb.front().v);
gp_XY a1(uv_eb.back().u, uv_eb.back().v);
gp_XY a2(uv_et.back().u, uv_et.back().v);
gp_XY a3(uv_et.front().u, uv_et.front().v);
int nnn = Min(nr,nl);
// auxilary sequence of XY for creation nodes
// in the bottom part of central domain
2012-08-09 16:03:55 +06:00
// Length of UVL and UVR must be == nbv-nnn
TColgp_SequenceOfXY UVL, UVR, UVT;
2012-08-09 16:03:55 +06:00
if (OldVersion) {
2009-02-17 10:27:49 +05:00
// step1: create faces for left domain
StdMeshers_Array2OfNode NodesL(1,dl+1,1,nl);
// add left nodes
2012-08-09 16:03:55 +06:00
for (j=1; j<=nl; j++)
2009-02-17 10:27:49 +05:00
NodesL.SetValue(1,j,uv_el[j-1].node);
2012-08-09 16:03:55 +06:00
if (dl>0) {
2009-02-17 10:27:49 +05:00
// add top nodes
2012-08-09 16:03:55 +06:00
for (i=1; i<=dl; i++)
2009-02-17 10:27:49 +05:00
NodesL.SetValue(i+1,nl,uv_et[i].node);
// create and add needed nodes
TColgp_SequenceOfXY UVtmp;
2012-08-09 16:03:55 +06:00
for (i=1; i<=dl; i++) {
2009-02-17 10:27:49 +05:00
double x0 = npt.Value(i+1);
double x1 = x0;
// diagonal node
double y0 = npl.Value(i+1);
double y1 = npr.Value(i+1);
2013-02-12 20:37:44 +06:00
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2009-02-17 10:27:49 +05:00
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesL.SetValue(i+1,1,N);
2012-08-09 16:03:55 +06:00
if (UVL.Length()<nbv-nnn) UVL.Append(UV);
2009-02-17 10:27:49 +05:00
// internal nodes
2012-08-09 16:03:55 +06:00
for (j=2; j<nl; j++) {
2009-02-17 10:27:49 +05:00
double y0 = npl.Value(dl+j);
double y1 = npr.Value(dl+j);
2013-02-12 20:37:44 +06:00
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2009-02-17 10:27:49 +05:00
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesL.SetValue(i+1,j,N);
2012-08-09 16:03:55 +06:00
if (i==dl) UVtmp.Append(UV);
2009-02-17 10:27:49 +05:00
}
}
2012-08-09 16:03:55 +06:00
for (i=1; i<=UVtmp.Length() && UVL.Length()<nbv-nnn; i++) {
2009-02-17 10:27:49 +05:00
UVL.Append(UVtmp.Value(i));
}
// create faces
2012-08-09 16:03:55 +06:00
for (i=1; i<=dl; i++) {
for (j=1; j<nl; j++) {
if (WisF) {
2009-02-17 10:27:49 +05:00
SMDS_MeshFace* F =
2012-08-09 16:03:55 +06:00
myHelper->AddFace(NodesL.Value(i,j), NodesL.Value(i+1,j),
2009-02-17 10:27:49 +05:00
NodesL.Value(i+1,j+1), NodesL.Value(i,j+1));
2012-08-09 16:03:55 +06:00
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
2009-02-17 10:27:49 +05:00
}
else {
SMDS_MeshFace* F =
2012-08-09 16:03:55 +06:00
myHelper->AddFace(NodesL.Value(i,j), NodesL.Value(i,j+1),
2009-02-17 10:27:49 +05:00
NodesL.Value(i+1,j+1), NodesL.Value(i+1,j));
2012-08-09 16:03:55 +06:00
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
2009-02-17 10:27:49 +05:00
}
}
}
}
else {
// fill UVL using c2d
2012-08-09 16:03:55 +06:00
for (i=1; i<npl.Length() && UVL.Length()<nbv-nnn; i++) {
UVL.Append(gp_UV (uv_el[i].u, uv_el[i].v));
2009-02-17 10:27:49 +05:00
}
}
// step2: create faces for right domain
StdMeshers_Array2OfNode NodesR(1,dr+1,1,nr);
// add right nodes
2012-08-09 16:03:55 +06:00
for (j=1; j<=nr; j++)
2009-02-17 10:27:49 +05:00
NodesR.SetValue(1,j,uv_er[nr-j].node);
2012-08-09 16:03:55 +06:00
if (dr>0) {
2009-02-17 10:27:49 +05:00
// add top nodes
2012-08-09 16:03:55 +06:00
for (i=1; i<=dr; i++)
2009-02-17 10:27:49 +05:00
NodesR.SetValue(i+1,1,uv_et[nt-1-i].node);
// create and add needed nodes
TColgp_SequenceOfXY UVtmp;
2012-08-09 16:03:55 +06:00
for (i=1; i<=dr; i++) {
2009-02-17 10:27:49 +05:00
double x0 = npt.Value(nt-i);
double x1 = x0;
// diagonal node
double y0 = npl.Value(i+1);
double y1 = npr.Value(i+1);
2013-02-12 20:37:44 +06:00
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2009-02-17 10:27:49 +05:00
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesR.SetValue(i+1,nr,N);
2012-08-09 16:03:55 +06:00
if (UVR.Length()<nbv-nnn) UVR.Append(UV);
2009-02-17 10:27:49 +05:00
// internal nodes
2012-08-09 16:03:55 +06:00
for (j=2; j<nr; j++) {
2009-02-17 10:27:49 +05:00
double y0 = npl.Value(nbv-j+1);
double y1 = npr.Value(nbv-j+1);
2013-02-12 20:37:44 +06:00
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2009-02-17 10:27:49 +05:00
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesR.SetValue(i+1,j,N);
2012-08-09 16:03:55 +06:00
if (i==dr) UVtmp.Prepend(UV);
2009-02-17 10:27:49 +05:00
}
}
2012-08-09 16:03:55 +06:00
for (i=1; i<=UVtmp.Length() && UVR.Length()<nbv-nnn; i++) {
2009-02-17 10:27:49 +05:00
UVR.Append(UVtmp.Value(i));
}
// create faces
2012-08-09 16:03:55 +06:00
for (i=1; i<=dr; i++) {
for (j=1; j<nr; j++) {
if (WisF) {
2009-02-17 10:27:49 +05:00
SMDS_MeshFace* F =
2012-08-09 16:03:55 +06:00
myHelper->AddFace(NodesR.Value(i,j), NodesR.Value(i+1,j),
2009-02-17 10:27:49 +05:00
NodesR.Value(i+1,j+1), NodesR.Value(i,j+1));
2012-08-09 16:03:55 +06:00
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
2009-02-17 10:27:49 +05:00
}
else {
SMDS_MeshFace* F =
2012-08-09 16:03:55 +06:00
myHelper->AddFace(NodesR.Value(i,j), NodesR.Value(i,j+1),
2009-02-17 10:27:49 +05:00
NodesR.Value(i+1,j+1), NodesR.Value(i+1,j));
2012-08-09 16:03:55 +06:00
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
2009-02-17 10:27:49 +05:00
}
}
}
}
else {
// fill UVR using c2d
2012-08-09 16:03:55 +06:00
for (i=1; i<npr.Length() && UVR.Length()<nbv-nnn; i++) {
UVR.Append(gp_UV(uv_er[i].u, uv_er[i].v));
2009-02-17 10:27:49 +05:00
}
}
// step3: create faces for central domain
StdMeshers_Array2OfNode NodesC(1,nb,1,nbv);
2012-08-09 16:03:55 +06:00
// add first line using NodesL
for (i=1; i<=dl+1; i++)
2009-02-17 10:27:49 +05:00
NodesC.SetValue(1,i,NodesL(i,1));
2012-08-09 16:03:55 +06:00
for (i=2; i<=nl; i++)
2009-02-17 10:27:49 +05:00
NodesC.SetValue(1,dl+i,NodesL(dl+1,i));
2012-08-09 16:03:55 +06:00
// add last line using NodesR
for (i=1; i<=dr+1; i++)
2009-02-17 10:27:49 +05:00
NodesC.SetValue(nb,i,NodesR(i,nr));
2012-08-09 16:03:55 +06:00
for (i=1; i<nr; i++)
2009-02-17 10:27:49 +05:00
NodesC.SetValue(nb,dr+i+1,NodesR(dr+1,nr-i));
// add top nodes (last columns)
2012-08-09 16:03:55 +06:00
for (i=dl+2; i<nbh-dr; i++)
2009-02-17 10:27:49 +05:00
NodesC.SetValue(i-dl,nbv,uv_et[i-1].node);
// add bottom nodes (first columns)
2012-08-09 16:03:55 +06:00
for (i=2; i<nb; i++)
2009-02-17 10:27:49 +05:00
NodesC.SetValue(i,1,uv_eb[i-1].node);
// create and add needed nodes
2009-02-17 10:27:49 +05:00
// add linear layers
2012-08-09 16:03:55 +06:00
for (i=2; i<nb; i++) {
2009-02-17 10:27:49 +05:00
double x0 = npt.Value(dl+i);
double x1 = x0;
2012-08-09 16:03:55 +06:00
for (j=1; j<nnn; j++) {
2009-02-17 10:27:49 +05:00
double y0 = npl.Value(nbv-nnn+j);
double y1 = npr.Value(nbv-nnn+j);
2013-02-12 20:37:44 +06:00
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
2009-02-17 10:27:49 +05:00
NodesC.SetValue(i,nbv-nnn+j,N);
2012-08-09 16:03:55 +06:00
if ( j==1 )
UVT.Append( UV );
}
}
2009-02-17 10:27:49 +05:00
// add diagonal layers
2012-08-09 16:03:55 +06:00
gp_UV A2 = UVR.Value(nbv-nnn);
gp_UV A3 = UVL.Value(nbv-nnn);
for (i=1; i<nbv-nnn; i++) {
gp_UV p1 = UVR.Value(i);
gp_UV p3 = UVL.Value(i);
double y = i / double(nbv-nnn);
for (j=2; j<nb; j++) {
double x = npb.Value(j);
gp_UV p0( uv_eb[j-1].u, uv_eb[j-1].v );
gp_UV p2 = UVT.Value( j-1 );
2013-02-12 20:37:44 +06:00
gp_UV UV = calcUV(x, y, a0, a1, A2, A3, p0,p1,p2,p3 );
2012-08-09 16:03:55 +06:00
gp_Pnt P = S->Value(UV.X(),UV.Y());
2009-02-17 10:27:49 +05:00
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2012-08-09 16:03:55 +06:00
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(),UV.Y());
2009-02-17 10:27:49 +05:00
NodesC.SetValue(j,i+1,N);
}
}
// create faces
2012-08-09 16:03:55 +06:00
for (i=1; i<nb; i++) {
for (j=1; j<nbv; j++) {
if (WisF) {
SMDS_MeshFace* F =
2012-08-09 16:03:55 +06:00
myHelper->AddFace(NodesC.Value(i,j), NodesC.Value(i+1,j),
2009-02-17 10:27:49 +05:00
NodesC.Value(i+1,j+1), NodesC.Value(i,j+1));
2012-08-09 16:03:55 +06:00
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
else {
SMDS_MeshFace* F =
2012-08-09 16:03:55 +06:00
myHelper->AddFace(NodesC.Value(i,j), NodesC.Value(i,j+1),
2009-02-17 10:27:49 +05:00
NodesC.Value(i+1,j+1), NodesC.Value(i+1,j));
2012-08-09 16:03:55 +06:00
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
}
}
}
2009-02-17 10:27:49 +05:00
else { // New version (!OldVersion)
// step1: create faces for bottom rectangle domain
StdMeshers_Array2OfNode NodesBRD(1,nb,1,nnn-1);
// fill UVL and UVR using c2d
2012-08-09 16:03:55 +06:00
for (j=0; j<nb; j++) {
2009-02-17 10:27:49 +05:00
NodesBRD.SetValue(j+1,1,uv_eb[j].node);
}
2012-08-09 16:03:55 +06:00
for (i=1; i<nnn-1; i++) {
2009-02-17 10:27:49 +05:00
NodesBRD.SetValue(1,i+1,uv_el[i].node);
NodesBRD.SetValue(nb,i+1,uv_er[i].node);
2012-08-09 16:03:55 +06:00
for (j=2; j<nb; j++) {
double x = npb.Value(j);
double y = (1-x) * npl.Value(i+1) + x * npr.Value(i+1);
2013-02-12 20:37:44 +06:00
gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
2012-08-09 16:03:55 +06:00
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
2012-08-09 16:03:55 +06:00
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(),UV.Y());
2009-02-17 10:27:49 +05:00
NodesBRD.SetValue(j,i+1,N);
}
}
2012-08-09 16:03:55 +06:00
for (j=1; j<nnn-1; j++) {
for (i=1; i<nb; i++) {
if (WisF) {
SMDS_MeshFace* F =
2012-08-09 16:03:55 +06:00
myHelper->AddFace(NodesBRD.Value(i,j), NodesBRD.Value(i+1,j),
2009-02-17 10:27:49 +05:00
NodesBRD.Value(i+1,j+1), NodesBRD.Value(i,j+1));
2012-08-09 16:03:55 +06:00
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
else {
SMDS_MeshFace* F =
2012-08-09 16:03:55 +06:00
myHelper->AddFace(NodesBRD.Value(i,j), NodesBRD.Value(i,j+1),
2009-02-17 10:27:49 +05:00
NodesBRD.Value(i+1,j+1), NodesBRD.Value(i+1,j));
2012-08-09 16:03:55 +06:00
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
}
}
2009-02-17 10:27:49 +05:00
int drl = abs(nr-nl);
// create faces for region C
StdMeshers_Array2OfNode NodesC(1,nb,1,drl+1+addv);
// add nodes from previous region
2012-08-09 16:03:55 +06:00
for (j=1; j<=nb; j++) {
2009-02-17 10:27:49 +05:00
NodesC.SetValue(j,1,NodesBRD.Value(j,nnn-1));
}
2012-08-09 16:03:55 +06:00
if ((drl+addv) > 0) {
2009-02-17 10:27:49 +05:00
int n1,n2;
2012-08-09 16:03:55 +06:00
if (nr>nl) {
2009-02-17 10:27:49 +05:00
n1 = 1;
n2 = drl + 1;
TColgp_SequenceOfXY UVtmp;
double drparam = npr.Value(nr) - npr.Value(nnn-1);
double dlparam = npl.Value(nnn) - npl.Value(nnn-1);
double y0,y1;
2012-08-09 16:03:55 +06:00
for (i=1; i<=drl; i++) {
2009-02-17 10:27:49 +05:00
// add existed nodes from right edge
NodesC.SetValue(nb,i+1,uv_er[nnn+i-2].node);
//double dtparam = npt.Value(i+1);
y1 = npr.Value(nnn+i-1); // param on right edge
double dpar = (y1 - npr.Value(nnn-1))/drparam;
y0 = npl.Value(nnn-1) + dpar*dlparam; // param on left edge
double dy = y1 - y0;
2012-08-09 16:03:55 +06:00
for (j=1; j<nb; j++) {
2009-02-17 10:27:49 +05:00
double x = npt.Value(i+1) + npb.Value(j)*(1-npt.Value(i+1));
double y = y0 + dy*x;
2013-02-12 20:37:44 +06:00
gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
2009-02-17 10:27:49 +05:00
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesC.SetValue(j,i+1,N);
}
}
double dy0 = (1-y0)/(addv+1);
double dy1 = (1-y1)/(addv+1);
2012-08-09 16:03:55 +06:00
for (i=1; i<=addv; i++) {
2009-02-17 10:27:49 +05:00
double yy0 = y0 + dy0*i;
double yy1 = y1 + dy1*i;
double dyy = yy1 - yy0;
2012-08-09 16:03:55 +06:00
for (j=1; j<=nb; j++) {
2009-02-17 10:27:49 +05:00
double x = npt.Value(i+1+drl) +
2012-08-09 16:03:55 +06:00
npb.Value(j) * (npt.Value(nt-i) - npt.Value(i+1+drl));
2009-02-17 10:27:49 +05:00
double y = yy0 + dyy*x;
2013-02-12 20:37:44 +06:00
gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
2009-02-17 10:27:49 +05:00
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesC.SetValue(j,i+drl+1,N);
}
}
}
2009-02-17 10:27:49 +05:00
else { // nr<nl
n2 = 1;
n1 = drl + 1;
TColgp_SequenceOfXY UVtmp;
double dlparam = npl.Value(nl) - npl.Value(nnn-1);
double drparam = npr.Value(nnn) - npr.Value(nnn-1);
double y0 = npl.Value(nnn-1);
double y1 = npr.Value(nnn-1);
2012-08-09 16:03:55 +06:00
for (i=1; i<=drl; i++) {
2009-02-17 10:27:49 +05:00
// add existed nodes from right edge
NodesC.SetValue(1,i+1,uv_el[nnn+i-2].node);
y0 = npl.Value(nnn+i-1); // param on left edge
double dpar = (y0 - npl.Value(nnn-1))/dlparam;
y1 = npr.Value(nnn-1) + dpar*drparam; // param on right edge
double dy = y1 - y0;
2012-08-09 16:03:55 +06:00
for (j=2; j<=nb; j++) {
2009-02-17 10:27:49 +05:00
double x = npb.Value(j)*npt.Value(nt-i);
double y = y0 + dy*x;
2013-02-12 20:37:44 +06:00
gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
2009-02-17 10:27:49 +05:00
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesC.SetValue(j,i+1,N);
}
}
double dy0 = (1-y0)/(addv+1);
double dy1 = (1-y1)/(addv+1);
2012-08-09 16:03:55 +06:00
for (i=1; i<=addv; i++) {
2009-02-17 10:27:49 +05:00
double yy0 = y0 + dy0*i;
double yy1 = y1 + dy1*i;
double dyy = yy1 - yy0;
2012-08-09 16:03:55 +06:00
for (j=1; j<=nb; j++) {
2009-02-17 10:27:49 +05:00
double x = npt.Value(i+1) +
2012-08-09 16:03:55 +06:00
npb.Value(j) * (npt.Value(nt-i-drl) - npt.Value(i+1));
2009-02-17 10:27:49 +05:00
double y = yy0 + dyy*x;
2013-02-12 20:37:44 +06:00
gp_UV UV = calcUV2(x, y, quad, a0, a1, a2, a3);
2009-02-17 10:27:49 +05:00
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesC.SetValue(j,i+drl+1,N);
}
}
}
2009-02-17 10:27:49 +05:00
// create faces
2012-08-09 16:03:55 +06:00
for (j=1; j<=drl+addv; j++) {
for (i=1; i<nb; i++) {
if (WisF) {
2009-02-17 10:27:49 +05:00
SMDS_MeshFace* F =
2012-08-09 16:03:55 +06:00
myHelper->AddFace(NodesC.Value(i,j), NodesC.Value(i+1,j),
2009-02-17 10:27:49 +05:00
NodesC.Value(i+1,j+1), NodesC.Value(i,j+1));
2012-08-09 16:03:55 +06:00
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
2009-02-17 10:27:49 +05:00
}
else {
SMDS_MeshFace* F =
2012-08-09 16:03:55 +06:00
myHelper->AddFace(NodesC.Value(i,j), NodesC.Value(i,j+1),
2009-02-17 10:27:49 +05:00
NodesC.Value(i+1,j+1), NodesC.Value(i+1,j));
2012-08-09 16:03:55 +06:00
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
2009-02-17 10:27:49 +05:00
}
}
} // end nr<nl
StdMeshers_Array2OfNode NodesLast(1,nt,1,2);
2012-08-09 16:03:55 +06:00
for (i=1; i<=nt; i++) {
2009-02-17 10:27:49 +05:00
NodesLast.SetValue(i,2,uv_et[i-1].node);
}
int nnn=0;
2012-08-09 16:03:55 +06:00
for (i=n1; i<drl+addv+1; i++) {
2009-02-17 10:27:49 +05:00
nnn++;
NodesLast.SetValue(nnn,1,NodesC.Value(1,i));
}
2012-08-09 16:03:55 +06:00
for (i=1; i<=nb; i++) {
2009-02-17 10:27:49 +05:00
nnn++;
NodesLast.SetValue(nnn,1,NodesC.Value(i,drl+addv+1));
}
2012-08-09 16:03:55 +06:00
for (i=drl+addv; i>=n2; i--) {
2009-02-17 10:27:49 +05:00
nnn++;
NodesLast.SetValue(nnn,1,NodesC.Value(nb,i));
}
2012-08-09 16:03:55 +06:00
for (i=1; i<nt; i++) {
if (WisF) {
2009-02-17 10:27:49 +05:00
SMDS_MeshFace* F =
2012-08-09 16:03:55 +06:00
myHelper->AddFace(NodesLast.Value(i,1), NodesLast.Value(i+1,1),
2009-02-17 10:27:49 +05:00
NodesLast.Value(i+1,2), NodesLast.Value(i,2));
2012-08-09 16:03:55 +06:00
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
2009-02-17 10:27:49 +05:00
}
else {
SMDS_MeshFace* F =
2012-08-09 16:03:55 +06:00
myHelper->AddFace(NodesLast.Value(i,1), NodesLast.Value(i,2),
2009-02-17 10:27:49 +05:00
NodesLast.Value(i+1,2), NodesLast.Value(i+1,2));
2012-08-09 16:03:55 +06:00
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
2009-02-17 10:27:49 +05:00
}
}
2012-08-09 16:03:55 +06:00
} // if ((drl+addv) > 0)
2009-02-17 10:27:49 +05:00
} // end new version implementation
bool isOk = true;
return isOk;
}
2012-08-09 16:03:55 +06:00
//=======================================================================
/*!
* Evaluate only quandrangle faces
2009-02-17 10:27:49 +05:00
*/
2012-08-09 16:03:55 +06:00
//=======================================================================
bool StdMeshers_Quadrangle_2D::evaluateQuadPref(SMESH_Mesh & aMesh,
2012-08-09 16:03:55 +06:00
const TopoDS_Shape& aShape,
std::vector<int>& aNbNodes,
MapShapeNbElems& aResMap,
bool IsQuadratic)
2009-02-17 10:27:49 +05:00
{
2012-08-09 16:03:55 +06:00
// Auxilary key in order to keep old variant
// of meshing after implementation new variant
// for bug 0016220 from Mantis.
bool OldVersion = false;
if (myQuadType == QUAD_QUADRANGLE_PREF_REVERSED)
OldVersion = true;
const TopoDS_Face& F = TopoDS::Face(aShape);
Handle(Geom_Surface) S = BRep_Tool::Surface(F);
int nb = aNbNodes[0];
int nr = aNbNodes[1];
int nt = aNbNodes[2];
int nl = aNbNodes[3];
int dh = abs(nb-nt);
int dv = abs(nr-nl);
2009-02-17 10:27:49 +05:00
2012-08-09 16:03:55 +06:00
if (dh>=dv) {
if (nt>nb) {
// it is a base case => not shift
}
else {
// we have to shift on 2
nb = aNbNodes[2];
nr = aNbNodes[3];
nt = aNbNodes[0];
nl = aNbNodes[1];
}
2009-02-17 10:27:49 +05:00
}
2012-08-09 16:03:55 +06:00
else {
if (nr>nl) {
// we have to shift quad on 1
nb = aNbNodes[3];
nr = aNbNodes[0];
nt = aNbNodes[1];
nl = aNbNodes[2];
}
else {
// we have to shift quad on 3
nb = aNbNodes[1];
nr = aNbNodes[2];
nt = aNbNodes[3];
nl = aNbNodes[0];
}
}
dh = abs(nb-nt);
dv = abs(nr-nl);
int nbh = Max(nb,nt);
int nbv = Max(nr,nl);
int addh = 0;
int addv = 0;
if (dh>dv) {
addv = (dh-dv)/2;
nbv = nbv + addv;
}
else { // dv>=dh
addh = (dv-dh)/2;
nbh = nbh + addh;
}
int dl,dr;
if (OldVersion) {
// add some params to right and left after the first param
// insert to right
dr = nbv - nr;
// insert to left
dl = nbv - nl;
}
int nnn = Min(nr,nl);
int nbNodes = 0;
int nbFaces = 0;
if (OldVersion) {
// step1: create faces for left domain
if (dl>0) {
nbNodes += dl*(nl-1);
nbFaces += dl*(nl-1);
}
// step2: create faces for right domain
if (dr>0) {
nbNodes += dr*(nr-1);
nbFaces += dr*(nr-1);
}
// step3: create faces for central domain
nbNodes += (nb-2)*(nnn-1) + (nbv-nnn-1)*(nb-2);
nbFaces += (nb-1)*(nbv-1);
}
else { // New version (!OldVersion)
nbNodes += (nnn-2)*(nb-2);
nbFaces += (nnn-2)*(nb-1);
int drl = abs(nr-nl);
nbNodes += drl*(nb-1) + addv*nb;
nbFaces += (drl+addv)*(nb-1) + (nt-1);
} // end new version implementation
std::vector<int> aVec(SMDSEntity_Last);
for (int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aVec[i] = 0;
if (IsQuadratic) {
aVec[SMDSEntity_Quad_Quadrangle] = nbFaces;
aVec[SMDSEntity_Node] = nbNodes + nbFaces*4;
if (aNbNodes.size()==5) {
aVec[SMDSEntity_Quad_Triangle] = aNbNodes[3] - 1;
aVec[SMDSEntity_Quad_Quadrangle] = nbFaces - aNbNodes[3] + 1;
}
}
else {
aVec[SMDSEntity_Node] = nbNodes;
aVec[SMDSEntity_Quadrangle] = nbFaces;
if (aNbNodes.size()==5) {
aVec[SMDSEntity_Triangle] = aNbNodes[3] - 1;
aVec[SMDSEntity_Quadrangle] = nbFaces - aNbNodes[3] + 1;
}
}
SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
aResMap.insert(std::make_pair(sm,aVec));
return true;
}
//=============================================================================
/*! Split quadrangle in to 2 triangles by smallest diagonal
*
*/
//=============================================================================
void StdMeshers_Quadrangle_2D::splitQuad(SMESHDS_Mesh * theMeshDS,
int theFaceID,
2012-08-09 16:03:55 +06:00
const SMDS_MeshNode* theNode1,
const SMDS_MeshNode* theNode2,
const SMDS_MeshNode* theNode3,
const SMDS_MeshNode* theNode4)
{
SMDS_MeshFace* face;
if ( SMESH_TNodeXYZ( theNode1 ).SquareDistance( theNode3 ) >
SMESH_TNodeXYZ( theNode2 ).SquareDistance( theNode4 ) )
{
2012-08-09 16:03:55 +06:00
face = myHelper->AddFace(theNode2, theNode4 , theNode1);
if (face) theMeshDS->SetMeshElementOnShape(face, theFaceID);
face = myHelper->AddFace(theNode2, theNode3, theNode4);
if (face) theMeshDS->SetMeshElementOnShape(face, theFaceID);
}
else
{
2012-08-09 16:03:55 +06:00
face = myHelper->AddFace(theNode1, theNode2 ,theNode3);
if (face) theMeshDS->SetMeshElementOnShape(face, theFaceID);
face = myHelper->AddFace(theNode1, theNode3, theNode4);
if (face) theMeshDS->SetMeshElementOnShape(face, theFaceID);
}
}
namespace
{
enum uvPos { UV_A0, UV_A1, UV_A2, UV_A3, UV_B, UV_R, UV_T, UV_L, UV_SIZE };
inline SMDS_MeshNode* makeNode( UVPtStruct & uvPt,
const double y,
2013-02-12 20:37:44 +06:00
FaceQuadStruct::Ptr& quad,
2012-08-09 16:03:55 +06:00
const gp_UV* UVs,
SMESH_MesherHelper* helper,
Handle(Geom_Surface) S)
{
2013-02-12 20:37:44 +06:00
const vector<UVPtStruct>& uv_eb = quad->side[QUAD_BOTTOM_SIDE]->GetUVPtStruct();
const vector<UVPtStruct>& uv_et = quad->side[QUAD_TOP_SIDE ]->GetUVPtStruct();
2012-08-09 16:03:55 +06:00
double rBot = ( uv_eb.size() - 1 ) * uvPt.normParam;
double rTop = ( uv_et.size() - 1 ) * uvPt.normParam;
int iBot = int( rBot );
int iTop = int( rTop );
double xBot = uv_eb[ iBot ].normParam + ( rBot - iBot ) * ( uv_eb[ iBot+1 ].normParam - uv_eb[ iBot ].normParam );
double xTop = uv_et[ iTop ].normParam + ( rTop - iTop ) * ( uv_et[ iTop+1 ].normParam - uv_et[ iTop ].normParam );
double x = xBot + y * ( xTop - xBot );
2013-02-12 20:37:44 +06:00
gp_UV uv = calcUV(/*x,y=*/x, y,
2012-08-09 16:03:55 +06:00
/*a0,...=*/UVs[UV_A0], UVs[UV_A1], UVs[UV_A2], UVs[UV_A3],
2013-02-12 20:37:44 +06:00
/*p0=*/quad->side[QUAD_BOTTOM_SIDE]->Value2d( x ).XY(),
2012-08-09 16:03:55 +06:00
/*p1=*/UVs[ UV_R ],
2013-02-12 20:37:44 +06:00
/*p2=*/quad->side[QUAD_TOP_SIDE ]->Value2d( x ).XY(),
2012-08-09 16:03:55 +06:00
/*p3=*/UVs[ UV_L ]);
gp_Pnt P = S->Value( uv.X(), uv.Y() );
uvPt.u = uv.X();
uvPt.v = uv.Y();
return helper->AddNode(P.X(), P.Y(), P.Z(), 0, uv.X(), uv.Y() );
}
void reduce42( const vector<UVPtStruct>& curr_base,
vector<UVPtStruct>& next_base,
const int j,
int & next_base_len,
2013-02-12 20:37:44 +06:00
FaceQuadStruct::Ptr& quad,
2012-08-09 16:03:55 +06:00
gp_UV* UVs,
const double y,
SMESH_MesherHelper* helper,
Handle(Geom_Surface)& S)
{
// add one "HH": nodes a,b,c,d,e and faces 1,2,3,4,5,6
//
// .-----a-----b i + 1
// |\ 5 | 6 /|
// | \ | / |
// | c--d--e |
// |1 |2 |3 |4 |
// | | | | |
// .--.--.--.--. i
//
// j j+2 j+4
// a (i + 1, j + 2)
const SMDS_MeshNode*& Na = next_base[ ++next_base_len ].node;
if ( !Na )
Na = makeNode( next_base[ next_base_len ], y, quad, UVs, helper, S );
// b (i + 1, j + 4)
const SMDS_MeshNode*& Nb = next_base[ ++next_base_len ].node;
if ( !Nb )
Nb = makeNode( next_base[ next_base_len ], y, quad, UVs, helper, S );
// c
double u = (curr_base[j + 2].u + next_base[next_base_len - 2].u) / 2.0;
double v = (curr_base[j + 2].v + next_base[next_base_len - 2].v) / 2.0;
gp_Pnt P = S->Value(u,v);
SMDS_MeshNode* Nc = helper->AddNode(P.X(), P.Y(), P.Z(), 0, u, v);
// d
u = (curr_base[j + 2].u + next_base[next_base_len - 1].u) / 2.0;
v = (curr_base[j + 2].v + next_base[next_base_len - 1].v) / 2.0;
P = S->Value(u,v);
SMDS_MeshNode* Nd = helper->AddNode(P.X(), P.Y(), P.Z(), 0, u, v);
// e
u = (curr_base[j + 2].u + next_base[next_base_len].u) / 2.0;
v = (curr_base[j + 2].v + next_base[next_base_len].v) / 2.0;
P = S->Value(u,v);
SMDS_MeshNode* Ne = helper->AddNode(P.X(), P.Y(), P.Z(), 0, u, v);
// Faces
helper->AddFace(curr_base[j + 0].node,
curr_base[j + 1].node, Nc,
next_base[next_base_len - 2].node);
helper->AddFace(curr_base[j + 1].node,
curr_base[j + 2].node, Nd, Nc);
helper->AddFace(curr_base[j + 2].node,
curr_base[j + 3].node, Ne, Nd);
helper->AddFace(curr_base[j + 3].node,
curr_base[j + 4].node, Nb, Ne);
helper->AddFace(Nc, Nd, Na, next_base[next_base_len - 2].node);
helper->AddFace(Nd, Ne, Nb, Na);
}
void reduce31( const vector<UVPtStruct>& curr_base,
vector<UVPtStruct>& next_base,
const int j,
int & next_base_len,
2013-02-12 20:37:44 +06:00
FaceQuadStruct::Ptr& quad,
2012-08-09 16:03:55 +06:00
gp_UV* UVs,
const double y,
SMESH_MesherHelper* helper,
Handle(Geom_Surface)& S)
{
// add one "H": nodes b,c,e and faces 1,2,4,5
//
// .---------b i + 1
// |\ 5 /|
// | \ / |
// | c---e |
// |1 |2 |4 |
// | | | |
// .--.---.--. i
//
// j j+1 j+2 j+3
// b (i + 1, j + 3)
const SMDS_MeshNode*& Nb = next_base[ ++next_base_len ].node;
if ( !Nb )
Nb = makeNode( next_base[ next_base_len ], y, quad, UVs, helper, S );
// c and e
double u1 = (curr_base[ j ].u + next_base[ next_base_len-1 ].u ) / 2.0;
double u2 = (curr_base[ j+3 ].u + next_base[ next_base_len ].u ) / 2.0;
double u3 = (u2 - u1) / 3.0;
//
double v1 = (curr_base[ j ].v + next_base[ next_base_len-1 ].v ) / 2.0;
double v2 = (curr_base[ j+3 ].v + next_base[ next_base_len ].v ) / 2.0;
double v3 = (v2 - v1) / 3.0;
// c
double u = u1 + u3;
double v = v1 + v3;
gp_Pnt P = S->Value(u,v);
SMDS_MeshNode* Nc = helper->AddNode( P.X(), P.Y(), P.Z(), 0, u, v );
// e
u = u1 + u3 + u3;
v = v1 + v3 + v3;
P = S->Value(u,v);
SMDS_MeshNode* Ne = helper->AddNode( P.X(), P.Y(), P.Z(), 0, u, v );
// Faces
// 1
helper->AddFace( curr_base[ j + 0 ].node,
curr_base[ j + 1 ].node,
Nc,
next_base[ next_base_len - 1 ].node);
// 2
helper->AddFace( curr_base[ j + 1 ].node,
curr_base[ j + 2 ].node, Ne, Nc);
// 4
helper->AddFace( curr_base[ j + 2 ].node,
curr_base[ j + 3 ].node, Nb, Ne);
// 5
helper->AddFace(Nc, Ne, Nb,
next_base[ next_base_len - 1 ].node);
}
typedef void (* PReduceFunction) ( const vector<UVPtStruct>& curr_base,
vector<UVPtStruct>& next_base,
const int j,
int & next_base_len,
2013-02-12 20:37:44 +06:00
FaceQuadStruct::Ptr & quad,
2012-08-09 16:03:55 +06:00
gp_UV* UVs,
const double y,
SMESH_MesherHelper* helper,
Handle(Geom_Surface)& S);
} // namespace
//=======================================================================
/*!
* Implementation of Reduced algorithm (meshing with quadrangles only)
*/
//=======================================================================
bool StdMeshers_Quadrangle_2D::computeReduced (SMESH_Mesh & aMesh,
const TopoDS_Face& aFace,
2013-02-12 20:37:44 +06:00
FaceQuadStruct::Ptr quad)
2012-08-09 16:03:55 +06:00
{
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
Handle(Geom_Surface) S = BRep_Tool::Surface(aFace);
int i,j,geomFaceID = meshDS->ShapeToIndex(aFace);
2012-08-09 16:03:55 +06:00
int nb = quad->side[0]->NbPoints(); // bottom
int nr = quad->side[1]->NbPoints(); // right
int nt = quad->side[2]->NbPoints(); // top
int nl = quad->side[3]->NbPoints(); // left
2012-08-09 16:03:55 +06:00
// Simple Reduce 10->8->6->4 (3 steps) Multiple Reduce 10->4 (1 step)
//
// .-----.-----.-----.-----. .-----.-----.-----.-----.
// | / \ | / \ | | / \ | / \ |
// | / .--.--. \ | | / \ | / \ |
// | / / | \ \ | | / .----.----. \ |
// .---.---.---.---.---.---. | / / \ | / \ \ |
// | / / \ | / \ \ | | / / \ | / \ \ |
// | / / .-.-. \ \ | | / / .---.---. \ \ |
// | / / / | \ \ \ | | / / / \ | / \ \ \ |
// .--.--.--.--.--.--.--.--. | / / / \ | / \ \ \ |
// | / / / \ | / \ \ \ | | / / / .-.-. \ \ \ |
// | / / / .-.-. \ \ \ | | / / / / | \ \ \ \ |
// | / / / / | \ \ \ \ | | / / / / | \ \ \ \ |
// .-.-.-.--.--.--.--.-.-.-. .-.-.-.--.--.--.--.-.-.-.
bool MultipleReduce = false;
{
int nb1 = nb;
int nr1 = nr;
int nt1 = nt;
if (nr == nl) {
if (nb < nt) {
nt1 = nb;
nb1 = nt;
}
}
else if (nb == nt) {
nr1 = nb; // and == nt
if (nl < nr) {
nt1 = nl;
nb1 = nr;
}
else {
nt1 = nr;
nb1 = nl;
}
}
else {
return false;
}
// number of rows and columns
int nrows = nr1 - 1;
2012-08-09 16:03:55 +06:00
int ncol_top = nt1 - 1;
int ncol_bot = nb1 - 1;
// number of rows needed to reduce ncol_bot to ncol_top using simple 3->1 "tree" (see below)
int nrows_tree31 =
int( ceil( log( double(ncol_bot) / ncol_top) / log( 3.))); // = log x base 3
2012-08-09 16:03:55 +06:00
if ( nrows < nrows_tree31 )
{
2012-08-09 16:03:55 +06:00
MultipleReduce = true;
error( COMPERR_WARNING,
SMESH_Comment("To use 'Reduced' transition, "
"number of face rows should be at least ")
<< nrows_tree31 << ". Actual number of face rows is " << nrows << ". "
"'Quadrangle preference (reversed)' transion has been used.");
}
2012-08-09 16:03:55 +06:00
}
if (MultipleReduce) { // == computeQuadPref QUAD_QUADRANGLE_PREF_REVERSED
2012-08-09 16:03:55 +06:00
//==================================================
int dh = abs(nb-nt);
int dv = abs(nr-nl);
if (dh >= dv) {
if (nt > nb) {
// it is a base case => not shift quad but may be replacement is need
shiftQuad(quad,0);
2012-08-09 16:03:55 +06:00
}
else {
// we have to shift quad on 2
shiftQuad(quad,2);
2012-08-09 16:03:55 +06:00
}
}
else {
if (nr > nl) {
// we have to shift quad on 1
shiftQuad(quad,1);
2012-08-09 16:03:55 +06:00
}
else {
// we have to shift quad on 3
shiftQuad(quad,3);
2012-08-09 16:03:55 +06:00
}
}
nb = quad->side[0]->NbPoints();
nr = quad->side[1]->NbPoints();
nt = quad->side[2]->NbPoints();
nl = quad->side[3]->NbPoints();
dh = abs(nb-nt);
dv = abs(nr-nl);
int nbh = Max(nb,nt);
int nbv = Max(nr,nl);
int addh = 0;
int addv = 0;
if (dh>dv) {
addv = (dh-dv)/2;
nbv = nbv + addv;
}
else { // dv>=dh
addh = (dv-dh)/2;
nbh = nbh + addh;
}
const vector<UVPtStruct>& uv_eb = quad->side[0]->GetUVPtStruct(true,0);
const vector<UVPtStruct>& uv_er = quad->side[1]->GetUVPtStruct(false,1);
const vector<UVPtStruct>& uv_et = quad->side[2]->GetUVPtStruct(true,1);
const vector<UVPtStruct>& uv_el = quad->side[3]->GetUVPtStruct(false,0);
if (uv_eb.size() != nb || uv_er.size() != nr || uv_et.size() != nt || uv_el.size() != nl)
return error(COMPERR_BAD_INPUT_MESH);
updateDegenUV( quad );
2012-08-09 16:03:55 +06:00
// arrays for normalized params
TColStd_SequenceOfReal npb, npr, npt, npl;
for (j = 0; j < nb; j++) {
npb.Append(uv_eb[j].normParam);
}
for (i = 0; i < nr; i++) {
npr.Append(uv_er[i].normParam);
}
for (j = 0; j < nt; j++) {
npt.Append(uv_et[j].normParam);
}
for (i = 0; i < nl; i++) {
npl.Append(uv_el[i].normParam);
}
int dl,dr;
// orientation of face and 3 main domain for future faces
// 0 top 1
// 1------------1
// | | | |
// | | | |
// | L | | R |
// left | | | | rigth
// | / \ |
// | / C \ |
// |/ \|
// 0------------0
// 0 bottom 1
// add some params to right and left after the first param
// insert to right
dr = nbv - nr;
double dpr = (npr.Value(2) - npr.Value(1))/(dr+1);
for (i=1; i<=dr; i++) {
npr.InsertAfter(1,npr.Value(2)-dpr);
}
// insert to left
dl = nbv - nl;
dpr = (npl.Value(2) - npl.Value(1))/(dl+1);
for (i=1; i<=dl; i++) {
npl.InsertAfter(1,npl.Value(2)-dpr);
}
gp_XY a0 (uv_eb.front().u, uv_eb.front().v);
gp_XY a1 (uv_eb.back().u, uv_eb.back().v);
gp_XY a2 (uv_et.back().u, uv_et.back().v);
gp_XY a3 (uv_et.front().u, uv_et.front().v);
int nnn = Min(nr,nl);
// auxilary sequence of XY for creation of nodes
// in the bottom part of central domain
// it's length must be == nbv-nnn-1
TColgp_SequenceOfXY UVL;
TColgp_SequenceOfXY UVR;
//==================================================
// step1: create faces for left domain
StdMeshers_Array2OfNode NodesL(1,dl+1,1,nl);
// add left nodes
for (j=1; j<=nl; j++)
NodesL.SetValue(1,j,uv_el[j-1].node);
if (dl>0) {
// add top nodes
for (i=1; i<=dl; i++)
NodesL.SetValue(i+1,nl,uv_et[i].node);
// create and add needed nodes
TColgp_SequenceOfXY UVtmp;
for (i=1; i<=dl; i++) {
double x0 = npt.Value(i+1);
double x1 = x0;
// diagonal node
double y0 = npl.Value(i+1);
double y1 = npr.Value(i+1);
2013-02-12 20:37:44 +06:00
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2012-08-09 16:03:55 +06:00
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesL.SetValue(i+1,1,N);
if (UVL.Length()<nbv-nnn-1) UVL.Append(UV);
// internal nodes
for (j=2; j<nl; j++) {
double y0 = npl.Value(dl+j);
double y1 = npr.Value(dl+j);
2013-02-12 20:37:44 +06:00
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2012-08-09 16:03:55 +06:00
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesL.SetValue(i+1,j,N);
if (i==dl) UVtmp.Append(UV);
}
}
for (i=1; i<=UVtmp.Length() && UVL.Length()<nbv-nnn-1; i++) {
UVL.Append(UVtmp.Value(i));
}
// create faces
for (i=1; i<=dl; i++) {
for (j=1; j<nl; j++) {
SMDS_MeshFace* F =
myHelper->AddFace(NodesL.Value(i,j), NodesL.Value(i+1,j),
NodesL.Value(i+1,j+1), NodesL.Value(i,j+1));
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
}
}
else {
// fill UVL using c2d
for (i=1; i<npl.Length() && UVL.Length()<nbv-nnn-1; i++) {
UVL.Append(gp_UV (uv_el[i].u, uv_el[i].v));
}
}
// step2: create faces for right domain
StdMeshers_Array2OfNode NodesR(1,dr+1,1,nr);
// add right nodes
for (j=1; j<=nr; j++)
NodesR.SetValue(1,j,uv_er[nr-j].node);
if (dr>0) {
// add top nodes
for (i=1; i<=dr; i++)
NodesR.SetValue(i+1,1,uv_et[nt-1-i].node);
// create and add needed nodes
TColgp_SequenceOfXY UVtmp;
for (i=1; i<=dr; i++) {
double x0 = npt.Value(nt-i);
double x1 = x0;
// diagonal node
double y0 = npl.Value(i+1);
double y1 = npr.Value(i+1);
2013-02-12 20:37:44 +06:00
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2012-08-09 16:03:55 +06:00
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesR.SetValue(i+1,nr,N);
if (UVR.Length()<nbv-nnn-1) UVR.Append(UV);
// internal nodes
for (j=2; j<nr; j++) {
double y0 = npl.Value(nbv-j+1);
double y1 = npr.Value(nbv-j+1);
2013-02-12 20:37:44 +06:00
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2012-08-09 16:03:55 +06:00
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesR.SetValue(i+1,j,N);
if (i==dr) UVtmp.Prepend(UV);
}
}
for (i=1; i<=UVtmp.Length() && UVR.Length()<nbv-nnn-1; i++) {
UVR.Append(UVtmp.Value(i));
}
// create faces
for (i=1; i<=dr; i++) {
for (j=1; j<nr; j++) {
SMDS_MeshFace* F =
myHelper->AddFace(NodesR.Value(i,j), NodesR.Value(i+1,j),
NodesR.Value(i+1,j+1), NodesR.Value(i,j+1));
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
}
}
}
else {
// fill UVR using c2d
for (i=1; i<npr.Length() && UVR.Length()<nbv-nnn-1; i++) {
UVR.Append(gp_UV(uv_er[i].u, uv_er[i].v));
}
}
// step3: create faces for central domain
StdMeshers_Array2OfNode NodesC(1,nb,1,nbv);
// add first line using NodesL
for (i=1; i<=dl+1; i++)
NodesC.SetValue(1,i,NodesL(i,1));
for (i=2; i<=nl; i++)
NodesC.SetValue(1,dl+i,NodesL(dl+1,i));
// add last line using NodesR
for (i=1; i<=dr+1; i++)
NodesC.SetValue(nb,i,NodesR(i,nr));
for (i=1; i<nr; i++)
NodesC.SetValue(nb,dr+i+1,NodesR(dr+1,nr-i));
// add top nodes (last columns)
for (i=dl+2; i<nbh-dr; i++)
NodesC.SetValue(i-dl,nbv,uv_et[i-1].node);
// add bottom nodes (first columns)
for (i=2; i<nb; i++)
NodesC.SetValue(i,1,uv_eb[i-1].node);
2012-08-09 16:03:55 +06:00
// create and add needed nodes
// add linear layers
for (i=2; i<nb; i++) {
double x0 = npt.Value(dl+i);
double x1 = x0;
for (j=1; j<nnn; j++) {
double y0 = npl.Value(nbv-nnn+j);
double y1 = npr.Value(nbv-nnn+j);
2013-02-12 20:37:44 +06:00
gp_UV UV = calcUV(x0, x1, y0, y1, quad, a0, a1, a2, a3);
2012-08-09 16:03:55 +06:00
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesC.SetValue(i,nbv-nnn+j,N);
}
}
// add diagonal layers
for (i=1; i<nbv-nnn; i++) {
double du = UVR.Value(i).X() - UVL.Value(i).X();
double dv = UVR.Value(i).Y() - UVL.Value(i).Y();
for (j=2; j<nb; j++) {
double u = UVL.Value(i).X() + du*npb.Value(j);
double v = UVL.Value(i).Y() + dv*npb.Value(j);
gp_Pnt P = S->Value(u,v);
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, u, v);
NodesC.SetValue(j,i+1,N);
}
}
// create faces
for (i=1; i<nb; i++) {
for (j=1; j<nbv; j++) {
SMDS_MeshFace* F =
myHelper->AddFace(NodesC.Value(i,j), NodesC.Value(i+1,j),
2012-08-09 16:03:55 +06:00
NodesC.Value(i+1,j+1), NodesC.Value(i,j+1));
if (F) meshDS->SetMeshElementOnShape(F, geomFaceID);
2012-08-09 16:03:55 +06:00
}
}
} // end Multiple Reduce implementation
else { // Simple Reduce (!MultipleReduce)
//=========================================================
if (nr == nl) {
if (nt < nb) {
// it is a base case => not shift quad
2013-02-12 20:37:44 +06:00
//shiftQuad(quad,0,true);
2012-08-09 16:03:55 +06:00
}
else {
// we have to shift quad on 2
shiftQuad(quad,2);
2012-08-09 16:03:55 +06:00
}
}
else {
if (nl > nr) {
// we have to shift quad on 1
shiftQuad(quad,1);
2012-08-09 16:03:55 +06:00
}
else {
// we have to shift quad on 3
shiftQuad(quad,3);
2012-08-09 16:03:55 +06:00
}
}
nb = quad->side[0]->NbPoints();
nr = quad->side[1]->NbPoints();
nt = quad->side[2]->NbPoints();
nl = quad->side[3]->NbPoints();
// number of rows and columns
int nrows = nr - 1; // and also == nl - 1
int ncol_top = nt - 1;
int ncol_bot = nb - 1;
int npair_top = ncol_top / 2;
// maximum number of bottom elements for "linear" simple reduce 4->2
int max_lin42 = ncol_top + npair_top * 2 * nrows;
// maximum number of bottom elements for "linear" simple reduce 3->1
int max_lin31 = ncol_top + ncol_top * 2 * nrows;
// maximum number of bottom elements for "tree" simple reduce 4->2
int max_tree42 = 0;
// number of rows needed to reduce ncol_bot to ncol_top using simple 4->2 "tree"
int nrows_tree42 = int( log( (double)(ncol_bot / ncol_top) )/log((double)2) ); // needed to avoid overflow at pow(2) while computing max_tree42
if (nrows_tree42 < nrows) {
max_tree42 = npair_top * pow(2.0, nrows + 1);
if ( ncol_top > npair_top * 2 ) {
int delta = ncol_bot - max_tree42;
for (int irow = 1; irow < nrows; irow++) {
int nfour = delta / 4;
delta -= nfour * 2;
}
if (delta <= (ncol_top - npair_top * 2))
max_tree42 = ncol_bot;
}
}
// maximum number of bottom elements for "tree" simple reduce 3->1
//int max_tree31 = ncol_top * pow(3.0, nrows);
bool is_lin_31 = false;
bool is_lin_42 = false;
bool is_tree_31 = false;
bool is_tree_42 = false;
int max_lin = max_lin42;
if (ncol_bot > max_lin42) {
if (ncol_bot <= max_lin31) {
is_lin_31 = true;
max_lin = max_lin31;
}
}
else {
// if ncol_bot is a 3*n or not 2*n
if ((ncol_bot/3)*3 == ncol_bot || (ncol_bot/2)*2 != ncol_bot) {
is_lin_31 = true;
max_lin = max_lin31;
}
else {
is_lin_42 = true;
}
}
if (ncol_bot > max_lin) { // not "linear"
is_tree_31 = (ncol_bot > max_tree42);
if (ncol_bot <= max_tree42) {
if ((ncol_bot/3)*3 == ncol_bot || (ncol_bot/2)*2 != ncol_bot) {
is_tree_31 = true;
}
else {
is_tree_42 = true;
}
}
}
const vector<UVPtStruct>& uv_eb = quad->side[0]->GetUVPtStruct(true,0);
const vector<UVPtStruct>& uv_er = quad->side[1]->GetUVPtStruct(false,1);
const vector<UVPtStruct>& uv_et = quad->side[2]->GetUVPtStruct(true,1);
const vector<UVPtStruct>& uv_el = quad->side[3]->GetUVPtStruct(false,0);
if (uv_eb.size() != nb || uv_er.size() != nr || uv_et.size() != nt || uv_el.size() != nl)
return error(COMPERR_BAD_INPUT_MESH);
myHelper->SetElementsOnShape( true );
gp_UV uv[ UV_SIZE ];
uv[ UV_A0 ].SetCoord( uv_eb.front().u, uv_eb.front().v);
uv[ UV_A1 ].SetCoord( uv_eb.back().u, uv_eb.back().v );
uv[ UV_A2 ].SetCoord( uv_et.back().u, uv_et.back().v );
uv[ UV_A3 ].SetCoord( uv_et.front().u, uv_et.front().v);
vector<UVPtStruct> curr_base = uv_eb, next_base;
UVPtStruct nullUVPtStruct; nullUVPtStruct.node = 0;
int curr_base_len = nb;
int next_base_len = 0;
if ( true )
{ // ------------------------------------------------------------------
// New algorithm implemented by request of IPAL22856
// "2D quadrangle mesher of reduced type works wrong"
// http://bugtracker.opencascade.com/show_bug.cgi?id=22856
// the algorithm is following: all reduces are centred in horizontal
// direction and are distributed among all rows
if (ncol_bot > max_tree42) {
is_lin_31 = true;
}
else {
if ((ncol_top/3)*3 == ncol_top ) {
is_lin_31 = true;
}
else {
is_lin_42 = true;
}
}
const int col_top_size = is_lin_42 ? 2 : 1;
const int col_base_size = is_lin_42 ? 4 : 3;
// Compute nb of "columns" (like in "linear" simple reducing) in all rows
vector<int> nb_col_by_row;
int delta_all = nb - nt;
2012-08-09 16:03:55 +06:00
int delta_one_col = nrows * 2;
int nb_col = delta_all / delta_one_col;
int remainder = delta_all - nb_col * delta_one_col;
2012-08-09 16:03:55 +06:00
if (remainder > 0) {
nb_col++;
}
if ( nb_col * col_top_size >= nt ) // == "tree" reducing situation
{
// top row is full (all elements reduced), add "columns" one by one
// in rows below until all bottom elements are reduced
nb_col = ( nt - 1 ) / col_top_size;
nb_col_by_row.resize( nrows, nb_col );
int nbrows_not_full = nrows - 1;
int cur_top_size = nt - 1;
2012-08-09 16:03:55 +06:00
remainder = delta_all - nb_col * delta_one_col;
while ( remainder > 0 )
{
delta_one_col = nbrows_not_full * 2;
int nb_col_add = remainder / delta_one_col;
cur_top_size += 2 * nb_col_by_row[ nbrows_not_full ];
2012-08-09 16:03:55 +06:00
int nb_col_free = cur_top_size / col_top_size - nb_col_by_row[ nbrows_not_full-1 ];
if ( nb_col_add > nb_col_free )
nb_col_add = nb_col_free;
for ( int irow = 0; irow < nbrows_not_full; ++irow )
nb_col_by_row[ irow ] += nb_col_add;
nbrows_not_full --;
remainder -= nb_col_add * delta_one_col;
}
}
else // == "linear" reducing situation
{
nb_col_by_row.resize( nrows, nb_col );
if (remainder > 0)
for ( int irow = remainder / 2; irow < nrows; ++irow )
nb_col_by_row[ irow ]--;
}
// Make elements
PReduceFunction reduceFunction = & ( is_lin_42 ? reduce42 : reduce31 );
const int reduce_grp_size = is_lin_42 ? 4 : 3;
for (i = 1; i < nr; i++) // layer by layer
{
nb_col = nb_col_by_row[ i-1 ];
int nb_next = curr_base_len - nb_col * 2;
if (nb_next < nt) nb_next = nt;
const double y = uv_el[ i ].normParam;
if ( i + 1 == nr ) // top
{
next_base = uv_et;
}
else
{
next_base.clear();
next_base.resize( nb_next, nullUVPtStruct );
next_base.front() = uv_el[i];
next_base.back() = uv_er[i];
// compute normalized param u
double du = 1. / ( nb_next - 1 );
next_base[0].normParam = 0.;
for ( j = 1; j < nb_next; ++j )
next_base[j].normParam = next_base[j-1].normParam + du;
}
uv[ UV_L ].SetCoord( next_base.front().u, next_base.front().v );
uv[ UV_R ].SetCoord( next_base.back().u, next_base.back().v );
int free_left = ( curr_base_len - 1 - nb_col * col_base_size ) / 2;
int free_middle = curr_base_len - 1 - nb_col * col_base_size - 2 * free_left;
// not reduced left elements
for (j = 0; j < free_left; j++)
{
// f (i + 1, j + 1)
const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
if ( !Nf )
Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
myHelper->AddFace(curr_base[ j ].node,
curr_base[ j+1 ].node,
Nf,
next_base[ next_base_len-1 ].node);
}
for (int icol = 1; icol <= nb_col; icol++)
{
// add "H"
reduceFunction( curr_base, next_base, j, next_base_len, quad, uv, y, myHelper, S );
j += reduce_grp_size;
// elements in the middle of "columns" added for symmetry
if ( free_middle > 0 && ( nb_col % 2 == 0 ) && icol == nb_col / 2 )
{
for (int imiddle = 1; imiddle <= free_middle; imiddle++) {
// f (i + 1, j + imiddle)
const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
if ( !Nf )
Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
myHelper->AddFace(curr_base[ j-1+imiddle ].node,
curr_base[ j +imiddle ].node,
Nf,
next_base[ next_base_len-1 ].node);
}
j += free_middle;
}
}
// not reduced right elements
for (; j < curr_base_len-1; j++) {
// f (i + 1, j + 1)
const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
if ( !Nf )
Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
myHelper->AddFace(curr_base[ j ].node,
curr_base[ j+1 ].node,
Nf,
next_base[ next_base_len-1 ].node);
}
curr_base_len = next_base_len + 1;
next_base_len = 0;
curr_base.swap( next_base );
}
}
else if ( is_tree_42 || is_tree_31 )
{
// "tree" simple reduce "42": 2->4->8->16->32->...
//
// .-------------------------------.-------------------------------. nr
// | \ | / |
// | \ .---------------.---------------. / |
// | | | | |
// .---------------.---------------.---------------.---------------.
// | \ | / | \ | / |
// | \ .-------.-------. / | \ .-------.-------. / |
// | | | | | | | | |
// .-------.-------.-------.-------.-------.-------.-------.-------. i
// |\ | /|\ | /|\ | /|\ | /|
// | \.---.---./ | \.---.---./ | \.---.---./ | \.---.---./ |
// | | | | | | | | | | | | | | | | |
// .---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.
// |\ | /|\ | /|\ | /|\ | /|\ | /|\ | /|\ | /|\ | /|
// | .-.-. | .-.-. | .-.-. | .-.-. | .-.-. | .-.-. | .-.-. | .-.-. |
// | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. 1
// 1 j nb
// "tree" simple reduce "31": 1->3->9->27->...
//
// .-----------------------------------------------------. nr
// | \ / |
// | .-----------------. |
// | | | |
// .-----------------.-----------------.-----------------.
// | \ / | \ / | \ / |
// | .-----. | .-----. | .-----. | i
// | | | | | | | | | |
// .-----.-----.-----.-----.-----.-----.-----.-----.-----.
// |\ /|\ /|\ /|\ /|\ /|\ /|\ /|\ /|\ /|
// | .-. | .-. | .-. | .-. | .-. | .-. | .-. | .-. | .-. |
// | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. 1
// 1 j nb
PReduceFunction reduceFunction = & ( is_tree_42 ? reduce42 : reduce31 );
const int reduce_grp_size = is_tree_42 ? 4 : 3;
for (i = 1; i < nr; i++) // layer by layer
{
// to stop reducing, if number of nodes reaches nt
int delta = curr_base_len - nt;
// to calculate normalized parameter, we must know number of points in next layer
int nb_reduce_groups = (curr_base_len - 1) / reduce_grp_size;
int nb_next = nb_reduce_groups * (reduce_grp_size-2) + (curr_base_len - nb_reduce_groups*reduce_grp_size);
if (nb_next < nt) nb_next = nt;
const double y = uv_el[ i ].normParam;
if ( i + 1 == nr ) // top
{
next_base = uv_et;
}
else
{
next_base.clear();
next_base.resize( nb_next, nullUVPtStruct );
next_base.front() = uv_el[i];
next_base.back() = uv_er[i];
// compute normalized param u
double du = 1. / ( nb_next - 1 );
next_base[0].normParam = 0.;
for ( j = 1; j < nb_next; ++j )
next_base[j].normParam = next_base[j-1].normParam + du;
}
uv[ UV_L ].SetCoord( next_base.front().u, next_base.front().v );
uv[ UV_R ].SetCoord( next_base.back().u, next_base.back().v );
for (j = 0; j+reduce_grp_size < curr_base_len && delta > 0; j+=reduce_grp_size, delta-=2)
{
reduceFunction( curr_base, next_base, j, next_base_len, quad, uv, y, myHelper, S );
}
// not reduced side elements (if any)
for (; j < curr_base_len-1; j++)
{
// f (i + 1, j + 1)
const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
if ( !Nf )
Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
myHelper->AddFace(curr_base[ j ].node,
curr_base[ j+1 ].node,
Nf,
next_base[ next_base_len-1 ].node);
}
curr_base_len = next_base_len + 1;
next_base_len = 0;
curr_base.swap( next_base );
}
} // end "tree" simple reduce
else if ( is_lin_42 || is_lin_31 ) {
// "linear" simple reduce "31": 2->6->10->14
//
// .-----------------------------.-----------------------------. nr
// | \ / | \ / |
// | .---------. | .---------. |
// | | | | | | |
// .---------.---------.---------.---------.---------.---------.
// | / \ / \ | / \ / \ |
// | / .-----. \ | / .-----. \ | i
// | / | | \ | / | | \ |
// .-----.-----.-----.-----.-----.-----.-----.-----.-----.-----.
// | / / \ / \ \ | / / \ / \ \ |
// | / / .-. \ \ | / / .-. \ \ |
// | / / / \ \ \ | / / / \ \ \ |
// .--.----.---.-----.---.-----.-.--.----.---.-----.---.-----.-. 1
// 1 j nb
// "linear" simple reduce "42": 4->8->12->16
//
// .---------------.---------------.---------------.---------------. nr
// | \ | / | \ | / |
// | \ .-------.-------. / | \ .-------.-------. / |
// | | | | | | | | |
// .-------.-------.-------.-------.-------.-------.-------.-------.
// | / \ | / \ | / \ | / \ |
// | / \.----.----./ \ | / \.----.----./ \ | i
// | / | | | \ | / | | | \ |
// .-----.----.----.----.----.-----.-----.----.----.----.----.-----.
// | / / \ | / \ \ | / / \ | / \ \ |
// | / / .-.-. \ \ | / / .-.-. \ \ |
// | / / / | \ \ \ | / / / | \ \ \ |
// .---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---. 1
// 1 j nb
// nt = 5, nb = 7, nr = 4
//int delta_all = 2;
//int delta_one_col = 6;
//int nb_col = 0;
//int remainder = 2;
//if (remainder > 0) nb_col++;
//nb_col = 1;
//int free_left = 1;
//free_left += 2;
//int free_middle = 4;
int delta_all = nb - nt;
int delta_one_col = (nr - 1) * 2;
int nb_col = delta_all / delta_one_col;
int remainder = delta_all - nb_col * delta_one_col;
if (remainder > 0) {
nb_col++;
}
const int col_top_size = is_lin_42 ? 2 : 1;
int free_left = ((nt - 1) - nb_col * col_top_size) / 2;
free_left += nr - 2;
int free_middle = (nr - 2) * 2;
if (remainder > 0 && nb_col == 1) {
int nb_rows_short_col = remainder / 2;
int nb_rows_thrown = (nr - 1) - nb_rows_short_col;
free_left -= nb_rows_thrown;
}
// nt = 5, nb = 17, nr = 4
//int delta_all = 12;
//int delta_one_col = 6;
//int nb_col = 2;
//int remainder = 0;
//int free_left = 2;
//int free_middle = 4;
PReduceFunction reduceFunction = & ( is_lin_42 ? reduce42 : reduce31 );
const int reduce_grp_size = is_lin_42 ? 4 : 3;
for (i = 1; i < nr; i++, free_middle -= 2, free_left -= 1) // layer by layer
{
// to calculate normalized parameter, we must know number of points in next layer
int nb_next = curr_base_len - nb_col * 2;
if (remainder > 0 && i > remainder / 2)
// take into account short "column"
nb_next += 2;
if (nb_next < nt) nb_next = nt;
const double y = uv_el[ i ].normParam;
if ( i + 1 == nr ) // top
{
next_base = uv_et;
}
else
{
next_base.clear();
next_base.resize( nb_next, nullUVPtStruct );
next_base.front() = uv_el[i];
next_base.back() = uv_er[i];
// compute normalized param u
double du = 1. / ( nb_next - 1 );
next_base[0].normParam = 0.;
for ( j = 1; j < nb_next; ++j )
next_base[j].normParam = next_base[j-1].normParam + du;
}
uv[ UV_L ].SetCoord( next_base.front().u, next_base.front().v );
uv[ UV_R ].SetCoord( next_base.back().u, next_base.back().v );
// not reduced left elements
for (j = 0; j < free_left; j++)
{
// f (i + 1, j + 1)
const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
if ( !Nf )
Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
myHelper->AddFace(curr_base[ j ].node,
curr_base[ j+1 ].node,
Nf,
next_base[ next_base_len-1 ].node);
}
for (int icol = 1; icol <= nb_col; icol++) {
if (remainder > 0 && icol == nb_col && i > remainder / 2)
// stop short "column"
break;
// add "H"
reduceFunction( curr_base, next_base, j, next_base_len, quad, uv, y, myHelper, S );
j += reduce_grp_size;
// not reduced middle elements
if (icol < nb_col) {
if (remainder > 0 && icol == nb_col - 1 && i > remainder / 2)
// pass middle elements before stopped short "column"
break;
int free_add = free_middle;
if (remainder > 0 && icol == nb_col - 1)
// next "column" is short
free_add -= (nr - 1) - (remainder / 2);
for (int imiddle = 1; imiddle <= free_add; imiddle++) {
// f (i + 1, j + imiddle)
const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
if ( !Nf )
Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
myHelper->AddFace(curr_base[ j-1+imiddle ].node,
curr_base[ j +imiddle ].node,
Nf,
next_base[ next_base_len-1 ].node);
}
j += free_add;
}
}
// not reduced right elements
for (; j < curr_base_len-1; j++) {
// f (i + 1, j + 1)
const SMDS_MeshNode*& Nf = next_base[++next_base_len].node;
if ( !Nf )
Nf = makeNode( next_base[ next_base_len ], y, quad, uv, myHelper, S );
myHelper->AddFace(curr_base[ j ].node,
curr_base[ j+1 ].node,
Nf,
next_base[ next_base_len-1 ].node);
}
curr_base_len = next_base_len + 1;
next_base_len = 0;
curr_base.swap( next_base );
}
} // end "linear" simple reduce
else {
return false;
}
} // end Simple Reduce implementation
bool isOk = true;
return isOk;
}
//================================================================================
namespace // data for smoothing
{
struct TSmoothNode;
// --------------------------------------------------------------------------------
/*!
* \brief Structure used to check validity of node position after smoothing.
* It holds two nodes connected to a smoothed node and belonging to
* one mesh face
*/
struct TTriangle
{
TSmoothNode* _n1;
TSmoothNode* _n2;
TTriangle( TSmoothNode* n1=0, TSmoothNode* n2=0 ): _n1(n1), _n2(n2) {}
inline bool IsForward( gp_UV uv ) const;
};
// --------------------------------------------------------------------------------
/*!
* \brief Data of a smoothed node
*/
struct TSmoothNode
{
gp_XY _uv;
gp_XYZ _xyz;
2012-08-09 16:03:55 +06:00
vector< TTriangle > _triangles; // if empty, then node is not movable
};
// --------------------------------------------------------------------------------
inline bool TTriangle::IsForward( gp_UV uv ) const
{
gp_Vec2d v1( uv, _n1->_uv ), v2( uv, _n2->_uv );
double d = v1 ^ v2;
return d > 1e-100;
}
}
//================================================================================
/*!
* \brief Set UV of nodes on degenerated VERTEXes in the middle of degenerated EDGE
*
* WARNING: this method must be called AFTER retrieving UVPtStruct's from quad
*/
//================================================================================
void StdMeshers_Quadrangle_2D::updateDegenUV(FaceQuadStruct::Ptr quad)
2012-08-09 16:03:55 +06:00
{
if ( myNeedSmooth )
2012-08-09 16:03:55 +06:00
// Set UV of nodes on degenerated VERTEXes in the middle of degenerated EDGE
// --------------------------------------------------------------------------
for ( unsigned i = 0; i < quad->side.size(); ++i )
{
StdMeshers_FaceSide* side = quad->side[i];
const vector<UVPtStruct>& uvVec = side->GetUVPtStruct();
// find which end of the side is on degenerated shape
int degenInd = -1;
if ( myHelper->IsDegenShape( uvVec[0].node->getshapeId() ))
degenInd = 0;
else if ( myHelper->IsDegenShape( uvVec.back().node->getshapeId() ))
degenInd = uvVec.size() - 1;
else
continue;
// find another side sharing the degenerated shape
bool isPrev = ( degenInd == 0 );
if ( i >= QUAD_TOP_SIDE )
isPrev = !isPrev;
int i2 = ( isPrev ? ( i + 3 ) : ( i + 1 )) % 4;
StdMeshers_FaceSide* side2 = quad->side[ i2 ];
const vector<UVPtStruct>& uvVec2 = side2->GetUVPtStruct();
int degenInd2 = -1;
if ( uvVec[ degenInd ].node == uvVec2[0].node )
degenInd2 = 0;
else if ( uvVec[ degenInd ].node == uvVec2.back().node )
degenInd2 = uvVec2.size() - 1;
else
throw SALOME_Exception( LOCALIZED( "Logical error" ));
2012-08-09 16:03:55 +06:00
// move UV in the middle
uvPtStruct& uv1 = const_cast<uvPtStruct&>( uvVec [ degenInd ]);
uvPtStruct& uv2 = const_cast<uvPtStruct&>( uvVec2[ degenInd2 ]);
uv1.u = uv2.u = 0.5 * ( uv1.u + uv2.u );
uv1.v = uv2.v = 0.5 * ( uv1.v + uv2.v );
}
else if ( quad->side.size() == 4 )
// Set number of nodes on a degenerated side to be same as on an opposite side
// ----------------------------------------------------------------------------
for ( unsigned i = 0; i < quad->side.size(); ++i )
{
StdMeshers_FaceSide* degSide = quad->side[i];
if ( !myHelper->IsDegenShape( degSide->EdgeID(0) ))
continue;
StdMeshers_FaceSide* oppSide = quad->side[( i+2 ) % quad->side.size() ];
if ( degSide->NbSegments() == oppSide->NbSegments() )
continue;
// make new side data
const vector<UVPtStruct>& uvVecDegOld = degSide->GetUVPtStruct();
const SMDS_MeshNode* n = uvVecDegOld[0].node;
Handle(Geom2d_Curve) c2d = degSide->Curve2d(0);
double f = degSide->FirstU(0), l = degSide->LastU(0);
gp_Pnt2d p1( uvVecDegOld.front().u, uvVecDegOld.front().v );
gp_Pnt2d p2( uvVecDegOld.back().u, uvVecDegOld.back().v );
delete degSide;
quad->side[i] = new StdMeshers_FaceSide( oppSide, n, &p1, &p2, c2d, f, l );
}
2012-08-09 16:03:55 +06:00
}
//================================================================================
/*!
* \brief Perform smoothing of 2D elements on a FACE with ignored degenerated EDGE
*/
//================================================================================
void StdMeshers_Quadrangle_2D::smooth (FaceQuadStruct::Ptr quad)
2012-08-09 16:03:55 +06:00
{
if ( !myNeedSmooth ) return;
// Get nodes to smooth
typedef map< const SMDS_MeshNode*, TSmoothNode, TIDCompare > TNo2SmooNoMap;
TNo2SmooNoMap smooNoMap;
const TopoDS_Face& geomFace = TopoDS::Face( myHelper->GetSubShape() );
Handle(Geom_Surface) surface = BRep_Tool::Surface( geomFace );
double U1, U2, V1, V2;
surface->Bounds(U1, U2, V1, V2);
GeomAPI_ProjectPointOnSurf proj;
proj.Init( surface, U1, U2, V1, V2, BRep_Tool::Tolerance( geomFace ) );
SMESHDS_Mesh* meshDS = myHelper->GetMeshDS();
SMESHDS_SubMesh* fSubMesh = meshDS->MeshElements( geomFace );
SMDS_NodeIteratorPtr nIt = fSubMesh->GetNodes();
2012-08-09 16:03:55 +06:00
while ( nIt->more() ) // loop on nodes bound to a FACE
{
const SMDS_MeshNode* node = nIt->next();
TSmoothNode & sNode = smooNoMap[ node ];
sNode._uv = myHelper->GetNodeUV( geomFace, node );
sNode._xyz = SMESH_TNodeXYZ( node );
2012-08-09 16:03:55 +06:00
// set sNode._triangles
SMDS_ElemIteratorPtr fIt = node->GetInverseElementIterator( SMDSAbs_Face );
while ( fIt->more() )
{
const SMDS_MeshElement* face = fIt->next();
const int nbN = face->NbCornerNodes();
const int nInd = face->GetNodeIndex( node );
const int prevInd = myHelper->WrapIndex( nInd - 1, nbN );
const int nextInd = myHelper->WrapIndex( nInd + 1, nbN );
const SMDS_MeshNode* prevNode = face->GetNode( prevInd );
const SMDS_MeshNode* nextNode = face->GetNode( nextInd );
sNode._triangles.push_back( TTriangle( & smooNoMap[ prevNode ],
& smooNoMap[ nextNode ]));
}
}
// set _uv of smooth nodes on FACE boundary
for ( unsigned i = 0; i < quad->side.size(); ++i )
{
const vector<UVPtStruct>& uvVec = quad->side[i]->GetUVPtStruct();
for ( unsigned j = 0; j < uvVec.size(); ++j )
{
TSmoothNode & sNode = smooNoMap[ uvVec[j].node ];
sNode._uv.SetCoord( uvVec[j].u, uvVec[j].v );
sNode._xyz = SMESH_TNodeXYZ( uvVec[j].node );
2012-08-09 16:03:55 +06:00
}
}
// define refernce orientation in 2D
TNo2SmooNoMap::iterator n2sn = smooNoMap.begin();
for ( ; n2sn != smooNoMap.end(); ++n2sn )
if ( !n2sn->second._triangles.empty() )
break;
if ( n2sn == smooNoMap.end() ) return;
const TSmoothNode & sampleNode = n2sn->second;
const bool refForward = ( sampleNode._triangles[0].IsForward( sampleNode._uv ));
// Smoothing
for ( int iLoop = 0; iLoop < 5; ++iLoop )
{
for ( n2sn = smooNoMap.begin(); n2sn != smooNoMap.end(); ++n2sn )
{
TSmoothNode& sNode = n2sn->second;
if ( sNode._triangles.empty() )
continue; // not movable node
// compute a new XYZ
gp_XYZ newXYZ (0,0,0);
2012-08-09 16:03:55 +06:00
for ( unsigned i = 0; i < sNode._triangles.size(); ++i )
newXYZ += sNode._triangles[i]._n1->_xyz;
newXYZ /= sNode._triangles.size();
2012-08-09 16:03:55 +06:00
// compute a new UV by projection
gp_XY newUV;
proj.Perform( newXYZ );
bool isValid = ( proj.IsDone() && proj.NbPoints() > 0 );
if ( isValid )
{
// check validity of the newUV
Quantity_Parameter u,v;
proj.LowerDistanceParameters( u, v );
newUV.SetCoord( u, v );
for ( unsigned i = 0; i < sNode._triangles.size() && isValid; ++i )
isValid = ( sNode._triangles[i].IsForward( newUV ) == refForward );
}
if ( !isValid )
{
// compute a new UV by averaging
newUV.SetCoord(0.,0.);
for ( unsigned i = 0; i < sNode._triangles.size(); ++i )
newUV += sNode._triangles[i]._n1->_uv;
newUV /= sNode._triangles.size();
2012-08-09 16:03:55 +06:00
// check validity of the newUV
isValid = true;
for ( unsigned i = 0; i < sNode._triangles.size() && isValid; ++i )
isValid = ( sNode._triangles[i].IsForward( newUV ) == refForward );
}
2012-08-09 16:03:55 +06:00
if ( isValid )
{
2012-08-09 16:03:55 +06:00
sNode._uv = newUV;
sNode._xyz = surface->Value( newUV.X(), newUV.Y() ).XYZ();
}
2012-08-09 16:03:55 +06:00
}
}
// Set new XYZ to the smoothed nodes
for ( n2sn = smooNoMap.begin(); n2sn != smooNoMap.end(); ++n2sn )
{
TSmoothNode& sNode = n2sn->second;
if ( sNode._triangles.empty() )
continue; // not movable node
SMDS_MeshNode* node = const_cast< SMDS_MeshNode*>( n2sn->first );
gp_Pnt xyz = surface->Value( sNode._uv.X(), sNode._uv.Y() );
meshDS->MoveNode( node, xyz.X(), xyz.Y(), xyz.Z() );
// store the new UV
node->SetPosition( SMDS_PositionPtr( new SMDS_FacePosition( sNode._uv.X(), sNode._uv.Y() )));
}
// Move medium nodes in quadratic mesh
if ( _quadraticMesh )
{
const TLinkNodeMap& links = myHelper->GetTLinkNodeMap();
TLinkNodeMap::const_iterator linkIt = links.begin();
for ( ; linkIt != links.end(); ++linkIt )
{
const SMESH_TLink& link = linkIt->first;
SMDS_MeshNode* node = const_cast< SMDS_MeshNode*>( linkIt->second );
if ( node->getshapeId() != myHelper->GetSubShapeID() )
continue; // medium node is on EDGE or VERTEX
gp_XY uv1 = myHelper->GetNodeUV( geomFace, link.node1(), node );
gp_XY uv2 = myHelper->GetNodeUV( geomFace, link.node2(), node );
gp_XY uv = myHelper->GetMiddleUV( surface, uv1, uv2 );
node->SetPosition( SMDS_PositionPtr( new SMDS_FacePosition( uv.X(), uv.Y() )));
gp_Pnt xyz = surface->Value( uv.X(), uv.Y() );
meshDS->MoveNode( node, xyz.X(), xyz.Y(), xyz.Z() );
}
2009-02-17 10:27:49 +05:00
}
}
/*//================================================================================
/*!
* \brief Finds vertices at the most sharp face corners
* \param [in] theFace - the FACE
* \param [in,out] theWire - the ordered edges of the face. It can be modified to
* have the first VERTEX of the first EDGE in \a vertices
* \param [out] theVertices - the found corner vertices in the order corresponding to
* the order of EDGEs in \a theWire
* \param [out] theNbDegenEdges - nb of degenerated EDGEs in theFace
* \return int - number of quad sides found: 0, 3 or 4
*/
//================================================================================
int StdMeshers_Quadrangle_2D::getCorners(const TopoDS_Face& theFace,
SMESH_Mesh & theMesh,
std::list<TopoDS_Edge>& theWire,
std::vector<TopoDS_Vertex>& theVertices,
int & theNbDegenEdges)
{
theNbDegenEdges = 0;
SMESH_MesherHelper helper( theMesh );
// sort theVertices by angle
multimap<double, TopoDS_Vertex> vertexByAngle;
TopTools_DataMapOfShapeReal angleByVertex;
TopoDS_Edge prevE = theWire.back();
if ( SMESH_Algo::isDegenerated( prevE ))
{
list<TopoDS_Edge>::reverse_iterator edge = ++theWire.rbegin();
while ( SMESH_Algo::isDegenerated( *edge ))
++edge;
if ( edge == theWire.rend() )
return false;
prevE = *edge;
}
list<TopoDS_Edge>::iterator edge = theWire.begin();
for ( ; edge != theWire.end(); ++edge )
{
if ( SMESH_Algo::isDegenerated( *edge ))
{
++theNbDegenEdges;
continue;
}
TopoDS_Vertex v = helper.IthVertex( 0, *edge );
if ( SMESH_Algo::VertexNode( v, helper.GetMeshDS() ))
{
double angle = SMESH_MesherHelper::GetAngle( prevE, *edge, theFace );
vertexByAngle.insert( make_pair( angle, v ));
angleByVertex.Bind( v, angle );
}
prevE = *edge;
}
// find out required nb of corners (3 or 4)
int nbCorners = 4;
TopoDS_Shape triaVertex = helper.GetMeshDS()->IndexToShape( myTriaVertexID );
if ( !triaVertex.IsNull() &&
triaVertex.ShapeType() == TopAbs_VERTEX &&
helper.IsSubShape( triaVertex, theFace ))
nbCorners = 3;
else
triaVertex.Nullify();
// check nb of available corners
if ( nbCorners == 3 )
{
if ( vertexByAngle.size() < 3 )
return error(COMPERR_BAD_SHAPE,
TComm("Face must have 3 sides but not ") << vertexByAngle.size() );
}
else
{
if ( vertexByAngle.size() == 3 && theNbDegenEdges == 0 )
{
if ( myTriaVertexID < 1 )
return error(COMPERR_BAD_PARMETERS,
"No Base vertex provided for a trilateral geometrical face");
TComm comment("Invalid Base vertex: ");
comment << myTriaVertexID << " its ID is not among [ ";
multimap<double, TopoDS_Vertex>::iterator a2v = vertexByAngle.begin();
comment << helper.GetMeshDS()->ShapeToIndex( a2v->second ) << ", "; a2v++;
comment << helper.GetMeshDS()->ShapeToIndex( a2v->second ) << ", "; a2v++;
comment << helper.GetMeshDS()->ShapeToIndex( a2v->second ) << " ]";
return error(COMPERR_BAD_PARMETERS, comment );
}
if ( vertexByAngle.size() + ( theNbDegenEdges > 0 ) < 4 &&
vertexByAngle.size() + theNbDegenEdges != 4 )
return error(COMPERR_BAD_SHAPE,
TComm("Face must have 4 sides but not ") << vertexByAngle.size() );
}
// put all corner vertices in a map
TopTools_MapOfShape vMap;
if ( nbCorners == 3 )
vMap.Add( triaVertex );
multimap<double, TopoDS_Vertex>::reverse_iterator a2v = vertexByAngle.rbegin();
for ( ; a2v != vertexByAngle.rend() && vMap.Extent() < nbCorners; ++a2v )
vMap.Add( (*a2v).second );
// check if there are possible variations in choosing corners
bool isThereVariants = false;
if ( vertexByAngle.size() > nbCorners )
{
double lostAngle = a2v->first;
double lastAngle = ( --a2v, a2v->first );
isThereVariants = ( lostAngle * 1.1 >= lastAngle );
}
// make theWire begin from a corner vertex or triaVertex
if ( nbCorners == 3 )
while ( !triaVertex.IsSame( ( helper.IthVertex( 0, theWire.front() ))) ||
SMESH_Algo::isDegenerated( theWire.front() ))
theWire.splice( theWire.end(), theWire, theWire.begin() );
else
while ( !vMap.Contains( helper.IthVertex( 0, theWire.front() )) ||
SMESH_Algo::isDegenerated( theWire.front() ))
theWire.splice( theWire.end(), theWire, theWire.begin() );
// fill the result vector and prepare for its refinement
theVertices.clear();
vector< double > angles;
vector< TopoDS_Edge > edgeVec;
vector< int > cornerInd;
angles.reserve( vertexByAngle.size() );
edgeVec.reserve( vertexByAngle.size() );
cornerInd.reserve( nbCorners );
for ( edge = theWire.begin(); edge != theWire.end(); ++edge )
{
if ( SMESH_Algo::isDegenerated( *edge ))
continue;
TopoDS_Vertex v = helper.IthVertex( 0, *edge );
bool isCorner = vMap.Contains( v );
if ( isCorner )
{
theVertices.push_back( v );
cornerInd.push_back( angles.size() );
}
angles.push_back( angleByVertex.IsBound( v ) ? angleByVertex( v ) : -M_PI );
edgeVec.push_back( *edge );
}
// refine the result vector - make sides elual by length if
// there are several equal angles
if ( isThereVariants )
{
if ( nbCorners == 3 )
angles[0] = 2 * M_PI; // not to move the base triangle VERTEX
set< int > refinedCorners;
for ( size_t iC = 0; iC < cornerInd.size(); ++iC )
{
int iV = cornerInd[iC];
if ( !refinedCorners.insert( iV ).second )
continue;
list< int > equalVertices;
equalVertices.push_back( iV );
int nbC[2] = { 0, 0 };
// find equal angles backward and forward from the iV-th corner vertex
for ( int isFwd = 0; isFwd < 2; ++isFwd )
{
int dV = isFwd ? +1 : -1;
int iCNext = helper.WrapIndex( iC + dV, cornerInd.size() );
int iVNext = helper.WrapIndex( iV + dV, angles.size() );
while ( iVNext != iV )
{
bool equal = Abs( angles[iV] - angles[iVNext] ) < 0.1 * angles[iV];
if ( equal )
equalVertices.insert( isFwd ? equalVertices.end() : equalVertices.begin(), iVNext );
if ( iVNext == cornerInd[ iCNext ])
{
if ( !equal )
break;
nbC[ isFwd ]++;
refinedCorners.insert( cornerInd[ iCNext ] );
iCNext = helper.WrapIndex( iCNext + dV, cornerInd.size() );
}
iVNext = helper.WrapIndex( iVNext + dV, angles.size() );
}
}
// move corners to make sides equal by length
int nbEqualV = equalVertices.size();
int nbExcessV = nbEqualV - ( 1 + nbC[0] + nbC[1] );
if ( nbExcessV > 0 )
{
// calculate normalized length of each side enclosed between neighbor equalVertices
vector< double > curLengths;
double totalLen = 0;
vector< int > evVec( equalVertices.begin(), equalVertices.end() );
int iEV = 0;
int iE = cornerInd[ helper.WrapIndex( iC - nbC[0] - 1, cornerInd.size() )];
int iEEnd = cornerInd[ helper.WrapIndex( iC + nbC[1] + 1, cornerInd.size() )];
while ( curLengths.size() < nbEqualV + 1 )
{
curLengths.push_back( totalLen );
do {
curLengths.back() += SMESH_Algo::EdgeLength( edgeVec[ iE ]);
iE = helper.WrapIndex( iE + 1, edgeVec.size());
if ( iEV < evVec.size() && iE == evVec[ iEV++ ] )
break;
}
while( iE != iEEnd );
totalLen = curLengths.back();
}
curLengths.resize( equalVertices.size() );
for ( size_t iS = 0; iS < curLengths.size(); ++iS )
curLengths[ iS ] /= totalLen;
// find equalVertices most close to the ideal sub-division of all sides
int iBestEV = 0;
int iCorner = helper.WrapIndex( iC - nbC[0], cornerInd.size() );
int nbSides = 2 + nbC[0] + nbC[1];
for ( int iS = 1; iS < nbSides; ++iS, ++iBestEV )
{
double idealLen = iS / double( nbSides );
double d, bestDist = 1.;
for ( iEV = iBestEV; iEV < curLengths.size(); ++iEV )
if (( d = Abs( idealLen - curLengths[ iEV ])) < bestDist )
{
bestDist = d;
iBestEV = iEV;
}
if ( iBestEV > iS-1 + nbExcessV )
iBestEV = iS-1 + nbExcessV;
theVertices[ iCorner ] = helper.IthVertex( 0, edgeVec[ evVec[ iBestEV ]]);
iCorner = helper.WrapIndex( iCorner + 1, cornerInd.size() );
}
}
}
}
return nbCorners;
}