smesh/src/StdMeshers/StdMeshers_Regular_1D.cxx

990 lines
27 KiB
C++
Raw Normal View History

2004-06-18 14:34:31 +06:00
// SMESH SMESH : implementaion of SMESH idl descriptions
//
// Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
2004-12-17 16:07:35 +05:00
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org
2004-06-18 14:34:31 +06:00
//
//
//
// File : StdMeshers_Regular_1D.cxx
// Moved here from SMESH_Regular_1D.cxx
// Author : Paul RASCLE, EDF
// Module : SMESH
// $Header$
using namespace std;
#include "StdMeshers_Regular_1D.hxx"
#include "SMESH_Gen.hxx"
#include "SMESH_Mesh.hxx"
#include "StdMeshers_LocalLength.hxx"
#include "StdMeshers_NumberOfSegments.hxx"
2004-12-01 15:48:31 +05:00
#include "StdMeshers_Arithmetic1D.hxx"
#include "StdMeshers_StartEndLength.hxx"
#include "StdMeshers_Deflection1D.hxx"
#include <StdMeshers_AutomaticLength.hxx>
2004-06-18 14:34:31 +06:00
#include "SMDS_MeshElement.hxx"
#include "SMDS_MeshNode.hxx"
#include "SMDS_EdgePosition.hxx"
2004-12-01 15:48:31 +05:00
#include "SMESH_subMesh.hxx"
2004-06-18 14:34:31 +06:00
2005-08-16 18:26:35 +06:00
#include "Utils_SALOME_Exception.hxx"
2004-06-18 14:34:31 +06:00
#include "utilities.h"
2004-12-01 15:48:31 +05:00
#include <BRep_Tool.hxx>
2004-06-18 14:34:31 +06:00
#include <TopoDS_Edge.hxx>
#include <TopoDS_Shape.hxx>
2004-12-01 15:48:31 +05:00
#include <TopTools_ListIteratorOfListOfShape.hxx>
2004-06-18 14:34:31 +06:00
#include <GeomAdaptor_Curve.hxx>
#include <GCPnts_AbscissaPoint.hxx>
#include <GCPnts_UniformAbscissa.hxx>
2004-12-01 15:48:31 +05:00
#include <GCPnts_UniformDeflection.hxx>
#include <Standard_ErrorHandler.hxx>
#include <Precision.hxx>
2005-08-16 18:26:35 +06:00
#include <Expr_GeneralExpression.hxx>
#include <Expr_NamedUnknown.hxx>
#include <Expr_Array1OfNamedUnknown.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <ExprIntrp_GenExp.hxx>
2004-06-18 14:34:31 +06:00
#include <CASCatch_CatchSignals.hxx>
#include <CASCatch_Failure.hxx>
#include <CASCatch_ErrorHandler.hxx>
#include <OSD.hxx>
#include <math_GaussSingleIntegration.hxx>
2004-06-18 14:34:31 +06:00
#include <string>
2005-08-16 18:26:35 +06:00
#include <math.h>
2004-06-18 14:34:31 +06:00
//=============================================================================
/*!
2004-12-17 16:07:35 +05:00
*
2004-06-18 14:34:31 +06:00
*/
//=============================================================================
StdMeshers_Regular_1D::StdMeshers_Regular_1D(int hypId, int studyId,
SMESH_Gen * gen):SMESH_1D_Algo(hypId, studyId, gen)
{
MESSAGE("StdMeshers_Regular_1D::StdMeshers_Regular_1D");
_name = "Regular_1D";
_shapeType = (1 << TopAbs_EDGE);
2004-12-01 15:48:31 +05:00
2004-06-18 14:34:31 +06:00
_compatibleHypothesis.push_back("LocalLength");
_compatibleHypothesis.push_back("NumberOfSegments");
2004-12-01 15:48:31 +05:00
_compatibleHypothesis.push_back("StartEndLength");
_compatibleHypothesis.push_back("Deflection1D");
_compatibleHypothesis.push_back("Arithmetic1D");
_compatibleHypothesis.push_back("AutomaticLength");
2004-06-18 14:34:31 +06:00
}
//=============================================================================
/*!
2004-12-17 16:07:35 +05:00
*
2004-06-18 14:34:31 +06:00
*/
//=============================================================================
StdMeshers_Regular_1D::~StdMeshers_Regular_1D()
{
}
//=============================================================================
/*!
2004-12-17 16:07:35 +05:00
*
2004-06-18 14:34:31 +06:00
*/
//=============================================================================
bool StdMeshers_Regular_1D::CheckHypothesis
(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
SMESH_Hypothesis::Hypothesis_Status& aStatus)
{
2004-12-01 15:48:31 +05:00
_hypType = NONE;
const list <const SMESHDS_Hypothesis * >&hyps = GetUsedHypothesis(aMesh, aShape);
if (hyps.size() == 0)
{
aStatus = SMESH_Hypothesis::HYP_MISSING;
return false; // can't work without a hypothesis
}
// use only the first hypothesis
const SMESHDS_Hypothesis *theHyp = hyps.front();
string hypName = theHyp->GetName();
if (hypName == "LocalLength")
{
const StdMeshers_LocalLength * hyp =
dynamic_cast <const StdMeshers_LocalLength * >(theHyp);
ASSERT(hyp);
_value[ BEG_LENGTH_IND ] = _value[ END_LENGTH_IND ] = hyp->GetLength();
ASSERT( _value[ BEG_LENGTH_IND ] > 0 );
_hypType = LOCAL_LENGTH;
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if (hypName == "NumberOfSegments")
{
const StdMeshers_NumberOfSegments * hyp =
dynamic_cast <const StdMeshers_NumberOfSegments * >(theHyp);
ASSERT(hyp);
2005-08-16 18:26:35 +06:00
_ivalue[ NB_SEGMENTS_IND ] = hyp->GetNumberOfSegments();
ASSERT( _ivalue[ NB_SEGMENTS_IND ] > 0 );
_ivalue[ DISTR_TYPE_IND ] = (int) hyp->GetDistrType();
switch (_ivalue[ DISTR_TYPE_IND ])
{
case StdMeshers_NumberOfSegments::DT_Scale:
_value[ SCALE_FACTOR_IND ] = hyp->GetScaleFactor();
break;
case StdMeshers_NumberOfSegments::DT_TabFunc:
_vvalue[ TAB_FUNC_IND ] = hyp->GetTableFunction();
break;
case StdMeshers_NumberOfSegments::DT_ExprFunc:
_svalue[ EXPR_FUNC_IND ] = hyp->GetExpressionFunction();
break;
case StdMeshers_NumberOfSegments::DT_Regular:
break;
default:
ASSERT(0);
break;
}
if (_ivalue[ DISTR_TYPE_IND ] == StdMeshers_NumberOfSegments::DT_TabFunc ||
_ivalue[ DISTR_TYPE_IND ] == StdMeshers_NumberOfSegments::DT_ExprFunc)
_ivalue[ EXP_MODE_IND ] = (int) hyp->IsExponentMode();
2004-12-01 15:48:31 +05:00
_hypType = NB_SEGMENTS;
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if (hypName == "Arithmetic1D")
{
const StdMeshers_Arithmetic1D * hyp =
dynamic_cast <const StdMeshers_Arithmetic1D * >(theHyp);
ASSERT(hyp);
_value[ BEG_LENGTH_IND ] = hyp->GetLength( true );
_value[ END_LENGTH_IND ] = hyp->GetLength( false );
ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 );
_hypType = ARITHMETIC_1D;
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if (hypName == "StartEndLength")
{
const StdMeshers_StartEndLength * hyp =
dynamic_cast <const StdMeshers_StartEndLength * >(theHyp);
ASSERT(hyp);
_value[ BEG_LENGTH_IND ] = hyp->GetLength( true );
_value[ END_LENGTH_IND ] = hyp->GetLength( false );
ASSERT( _value[ BEG_LENGTH_IND ] > 0 && _value[ END_LENGTH_IND ] > 0 );
_hypType = BEG_END_LENGTH;
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if (hypName == "Deflection1D")
{
const StdMeshers_Deflection1D * hyp =
dynamic_cast <const StdMeshers_Deflection1D * >(theHyp);
ASSERT(hyp);
_value[ DEFLECTION_IND ] = hyp->GetDeflection();
ASSERT( _value[ DEFLECTION_IND ] > 0 );
_hypType = DEFLECTION;
aStatus = SMESH_Hypothesis::HYP_OK;
}
else if (hypName == "AutomaticLength")
{
StdMeshers_AutomaticLength * hyp = const_cast<StdMeshers_AutomaticLength *>
(dynamic_cast <const StdMeshers_AutomaticLength * >(theHyp));
ASSERT(hyp);
_value[ BEG_LENGTH_IND ] = _value[ END_LENGTH_IND ] = hyp->GetLength( &aMesh, aShape );
ASSERT( _value[ BEG_LENGTH_IND ] > 0 );
_hypType = LOCAL_LENGTH;
aStatus = SMESH_Hypothesis::HYP_OK;
}
2004-12-01 15:48:31 +05:00
else
aStatus = SMESH_Hypothesis::HYP_INCOMPATIBLE;
return ( _hypType != NONE );
}
2004-06-18 14:34:31 +06:00
//=======================================================================
//function : compensateError
//purpose : adjust theParams so that the last segment length == an
//=======================================================================
static void compensateError(double a1, double an,
double U1, double Un,
double length,
GeomAdaptor_Curve& C3d,
list<double> & theParams)
{
int i, nPar = theParams.size();
if ( a1 + an < length && nPar > 1 )
{
list<double>::reverse_iterator itU = theParams.rbegin();
double Ul = *itU++;
// dist from the last point to the edge end <Un>, it should be equal <an>
double Ln = GCPnts_AbscissaPoint::Length( C3d, Ul, Un );
double dLn = an - Ln; // error of <an>
if ( Abs( dLn ) <= Precision::Confusion() )
return;
double dU = Abs( Ul - *itU ); // parametric length of the last but one segment
double dUn = dLn * Abs( Un - U1 ) / length; // parametric error of <an>
if ( dUn < 0.5 * dU ) { // last segment is a bit shorter than it should
dUn = -dUn; // move the last parameter to the edge beginning
}
else { // last segment is much shorter than it should -> remove the last param and
theParams.pop_back(); nPar--; // move the rest points toward the edge end
Ln = GCPnts_AbscissaPoint::Length( C3d, theParams.back(), Un );
dUn = ( an - Ln ) * Abs( Un - U1 ) / length;
if ( dUn < 0.5 * dU )
dUn = -dUn;
}
if ( U1 > Un )
dUn = -dUn;
double q = dUn / ( nPar - 1 );
for ( itU = theParams.rbegin(), i = 1; i < nPar; itU++, i++ ) {
(*itU) += dUn;
dUn -= q;
}
}
}
class Function
2005-08-16 18:26:35 +06:00
{
public:
Function( const bool exp )
: myExp( exp )
{
}
virtual ~Function()
{
}
virtual bool value( const double, double& f )
{
if( myExp )
f = pow( 10, f );
return true;
}
virtual double integral( const double, const double ) = 0;
2005-08-16 18:26:35 +06:00
private:
bool myExp;
2005-08-16 18:26:35 +06:00
};
class FunctionIntegral : public Function
2005-08-16 18:26:35 +06:00
{
public:
FunctionIntegral( Function*, const double );
virtual ~FunctionIntegral();
virtual bool value( const double, double& );
virtual double integral( const double, const double );
2005-08-16 18:26:35 +06:00
private:
Function* myFunc;
double myStart;
2005-08-16 18:26:35 +06:00
};
FunctionIntegral::FunctionIntegral( Function* f, const double st )
: Function( false )
{
myFunc = f;
myStart = st;
}
FunctionIntegral::~FunctionIntegral()
{
}
bool FunctionIntegral::value( const double t, double& f )
{
f = myFunc ? myFunc->integral( myStart, t ) : 0;
return myFunc!=0 && Function::value( t, f );
}
double FunctionIntegral::integral( const double, const double )
{
return 0;
}
class FunctionTable : public Function
2005-08-16 18:26:35 +06:00
{
public:
FunctionTable( const std::vector<double>&, const bool );
virtual ~FunctionTable();
virtual bool value( const double, double& );
virtual double integral( const double, const double );
2005-08-16 18:26:35 +06:00
private:
bool findBounds( const double, int&, int& ) const;
//integral from x[i] to x[i+1]
double integral( const int i );
//integral from x[i] to x[i]+d
//warning: function is presented as linear on interaval from x[i] to x[i]+d,
// for correct result d must be >=0 and <=x[i+1]-x[i]
double integral( const int i, const double d );
private:
std::vector<double> myData;
2005-08-16 18:26:35 +06:00
};
FunctionTable::FunctionTable( const std::vector<double>& data, const bool exp )
: Function( exp )
2005-08-16 18:26:35 +06:00
{
myData = data;
2005-08-16 18:26:35 +06:00
}
FunctionTable::~FunctionTable()
2005-08-16 18:26:35 +06:00
{
}
bool FunctionTable::value( const double t, double& f )
2005-08-16 18:26:35 +06:00
{
int i1, i2;
if( !findBounds( t, i1, i2 ) )
return false;
double
x1 = myData[2*i1], y1 = myData[2*i1+1],
x2 = myData[2*i2], y2 = myData[2*i2+1];
Function::value( x1, y1 );
Function::value( x2, y2 );
f = y1 + ( y2-y1 ) * ( t-x1 ) / ( x2-x1 );
2005-08-16 18:26:35 +06:00
return true;
}
double FunctionTable::integral( const int i )
2005-08-16 18:26:35 +06:00
{
if( i>=0 && i<myData.size()-1 )
return integral( i, myData[2*(i+1)]-myData[2*i] );
else
return 0;
2005-08-16 18:26:35 +06:00
}
double FunctionTable::integral( const int i, const double d )
2005-08-16 18:26:35 +06:00
{
double f, res = 0.0;
if( value( myData[2*i]+d, f ) )
res = ( myData[2*i] + f ) / 2.0 * d;
return res;
2005-08-16 18:26:35 +06:00
}
double FunctionTable::integral( const double a, const double b )
2005-08-16 18:26:35 +06:00
{
int x1s, x1f, x2s, x2f;
findBounds( a, x1s, x1f );
findBounds( b, x2s, x2f );
double J = 0;
for( int i=x1s; i<x2s; i++ )
J+=integral( i );
J-=integral( x1s, a-myData[2*x1s] );
J+=integral( x2s, b-myData[2*x2s] );
return J;
2005-08-16 18:26:35 +06:00
}
bool FunctionTable::findBounds( const double x, int& x_ind_1, int& x_ind_2 ) const
2005-08-16 18:26:35 +06:00
{
int n = myData.size();
if( n==0 || x<myData[0] )
{
x_ind_1 = x_ind_2 = 0;
return false;
}
for( int i=0; i<n-1; i++ )
if( myData[2*i]<=x && x<=myData[2*(i+1)] )
{
x_ind_1 = i;
x_ind_2 = i+1;
return true;
}
x_ind_1 = n-1;
x_ind_2 = n-1;
return false;
2005-08-16 18:26:35 +06:00
}
class FunctionExpr : public Function, public math_Function
2005-08-16 18:26:35 +06:00
{
public:
FunctionExpr( const char*, const bool );
virtual ~FunctionExpr();
virtual Standard_Boolean Value( Standard_Real, Standard_Real& );
virtual bool value( const double, double& ); //inherited from Function
virtual double integral( const double, const double );
private:
Handle(ExprIntrp_GenExp) myExpr;
Expr_Array1OfNamedUnknown myVars;
TColStd_Array1OfReal myValues;
};
FunctionExpr::FunctionExpr( const char* str, const bool exp )
: Function( exp ),
myVars( 1, 1 ),
myValues( 1, 1 )
{
myExpr = ExprIntrp_GenExp::Create();
myExpr->Process( ( Standard_CString )str );
if( !myExpr->IsDone() )
myExpr.Nullify();
myVars.ChangeValue( 1 ) = new Expr_NamedUnknown( "t" );
2005-08-16 18:26:35 +06:00
}
FunctionExpr::~FunctionExpr()
{
}
2005-08-16 18:26:35 +06:00
Standard_Boolean FunctionExpr::Value( Standard_Real T, Standard_Real& F )
2005-08-16 18:26:35 +06:00
{
double f;
Standard_Boolean res = value( T, f );
F = f;
return res;
}
bool FunctionExpr::value( const double t, double& f )
{
if( myExpr.IsNull() )
2005-08-16 18:26:35 +06:00
return false;
CASCatch_CatchSignals aCatchSignals;
aCatchSignals.Activate();
myValues.ChangeValue( 1 ) = t;
bool ok = true;
CASCatch_TRY {
f = myExpr->Expression()->Evaluate( myVars, myValues );
}
CASCatch_CATCH(CASCatch_Failure) {
aCatchSignals.Deactivate();
Handle(CASCatch_Failure) aFail = CASCatch_Failure::Caught();
f = 0.0;
}
aCatchSignals.Deactivate();
ok = Function::value( t, f ) && ok;
return ok;
}
double FunctionExpr::integral( const double a, const double b )
{
double res = 0.0;
CASCatch_TRY
{
math_GaussSingleIntegration _int( *this, a, b, 20 );
if( _int.IsDone() )
res = _int.Value();
}
CASCatch_CATCH(CASCatch_Failure)
2005-08-16 18:26:35 +06:00
{
res = 0.0;
MESSAGE( "Exception in integral calculating" );
}
return res;
}
2005-08-16 18:26:35 +06:00
double dihotomySolve( Function& f, const double val, const double _start, const double _fin, const double eps, bool& ok )
{
double start = _start, fin = _fin, start_val, fin_val; bool ok1, ok2;
ok1 = f.value( start, start_val );
ok2 = f.value( fin, fin_val );
2005-08-16 18:26:35 +06:00
if( !ok1 || !ok2 )
{
ok = false;
return 0.0;
}
2005-08-16 18:26:35 +06:00
bool start_pos = start_val>=val, fin_pos = fin_val>=val;
ok = true;
while( fin-start>eps )
{
double mid = ( start+fin )/2.0, mid_val;
ok = f.value( mid, mid_val );
if( !ok )
return 0.0;
2005-08-16 18:26:35 +06:00
// char buf[1024];
// sprintf( buf, "start=%f\nfin=%f\nmid_val=%f\n", float( start ), float( fin ), float( mid_val ) );
// MESSAGE( buf );
2005-08-16 18:26:35 +06:00
bool mid_pos = mid_val>=val;
if( start_pos!=mid_pos )
{
fin_pos = mid_pos;
fin = mid;
2005-08-16 18:26:35 +06:00
}
else if( fin_pos!=mid_pos )
{
start_pos = mid_pos;
start = mid;
}
else
break;
2005-08-16 18:26:35 +06:00
}
return (start+fin)/2.0;
}
2005-08-16 18:26:35 +06:00
static bool computeParamByFunc(Adaptor3d_Curve& C3d, double first, double last,
double length, bool theReverse,
int nbSeg, Function& func,
list<double>& theParams)
{
OSD::SetSignal( true );
if( nbSeg<=0 )
return false;
MESSAGE( "computeParamByFunc" );
int nbPnt = 1 + nbSeg;
2005-08-16 18:26:35 +06:00
vector<double> x(nbPnt, 0.);
x[0] = 0.0;
double J = func.integral( 0.0, 1.0 ) / nbSeg;
bool ok;
for( int i=1; i<nbSeg; i++ )
{
FunctionIntegral f_int( &func, x[i-1] );
x[i] = dihotomySolve( f_int, J, x[i-1], 1.0, 1E-4, ok );
if( !ok )
return false;
}
x[nbSeg] = 1.0;
MESSAGE( "Points:\n" );
char buf[1024];
for( int i=0; i<=nbSeg; i++ )
{
sprintf( buf, "%f\n", float(x[i] ) );
MESSAGE( buf );
}
2005-08-16 18:26:35 +06:00
// apply parameters in range [0,1] to the space of the curve
double prevU = first;
double sign = 1.;
if (theReverse)
{
prevU = last;
sign = -1.;
}
for( int i = 1; i < nbSeg; i++ )
2005-08-16 18:26:35 +06:00
{
double curvLength = length * (x[i] - x[i-1]) * sign;
GCPnts_AbscissaPoint Discret( C3d, curvLength, prevU );
if ( !Discret.IsDone() )
return false;
double U = Discret.Parameter();
if ( U > first && U < last )
theParams.push_back( U );
else
return false;
prevU = U;
}
return true;
2005-08-16 18:26:35 +06:00
}
2004-12-01 15:48:31 +05:00
//=============================================================================
/*!
2004-12-17 16:07:35 +05:00
*
2004-12-01 15:48:31 +05:00
*/
//=============================================================================
bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge,
list<double> & theParams,
const bool theReverse) const
2004-12-01 15:48:31 +05:00
{
theParams.clear();
double f, l;
Handle(Geom_Curve) Curve = BRep_Tool::Curve(theEdge, f, l);
GeomAdaptor_Curve C3d(Curve);
double length = EdgeLength(theEdge);
switch( _hypType )
{
case LOCAL_LENGTH:
case NB_SEGMENTS: {
double eltSize = 1;
if ( _hypType == LOCAL_LENGTH )
{
2005-08-16 18:26:35 +06:00
// Local Length hypothesis
2004-12-01 15:48:31 +05:00
double nbseg = ceil(length / _value[ BEG_LENGTH_IND ]); // integer sup
if (nbseg <= 0)
nbseg = 1; // degenerated edge
eltSize = length / nbseg;
}
else
{
2005-08-16 18:26:35 +06:00
// Number Of Segments hypothesis
switch (_ivalue[ DISTR_TYPE_IND ])
2004-12-01 15:48:31 +05:00
{
2005-08-16 18:26:35 +06:00
case StdMeshers_NumberOfSegments::DT_Scale:
2004-06-18 14:34:31 +06:00
{
2005-08-16 18:26:35 +06:00
double scale = _value[ SCALE_FACTOR_IND ];
if ( theReverse )
scale = 1. / scale;
double alpha = pow( scale , 1.0 / (_ivalue[ NB_SEGMENTS_IND ] - 1));
double factor = (l - f) / (1 - pow( alpha,_ivalue[ NB_SEGMENTS_IND ]));
int i, NbPoints = 1 + _ivalue[ NB_SEGMENTS_IND ];
for ( i = 2; i < NbPoints; i++ )
{
double param = f + factor * (1 - pow(alpha, i - 1));
theParams.push_back( param );
}
return true;
2004-06-18 14:34:31 +06:00
}
2005-08-16 18:26:35 +06:00
break;
case StdMeshers_NumberOfSegments::DT_TabFunc:
{
FunctionTable func(_vvalue[ TAB_FUNC_IND ], (bool)_ivalue[ EXP_MODE_IND ]);
2005-08-16 18:26:35 +06:00
return computeParamByFunc(C3d, f, l, length, theReverse,
_ivalue[ NB_SEGMENTS_IND ], func,
theParams);
}
break;
case StdMeshers_NumberOfSegments::DT_ExprFunc:
{
FunctionExpr func(_svalue[ EXPR_FUNC_IND ].c_str(), (bool)_ivalue[ EXP_MODE_IND ]);
2005-08-16 18:26:35 +06:00
return computeParamByFunc(C3d, f, l, length, theReverse,
_ivalue[ NB_SEGMENTS_IND ], func,
theParams);
}
break;
case StdMeshers_NumberOfSegments::DT_Regular:
eltSize = length / _ivalue[ NB_SEGMENTS_IND ];
break;
default:
return false;
2004-12-01 15:48:31 +05:00
}
}
GCPnts_UniformAbscissa Discret(C3d, eltSize, f, l);
if ( !Discret.IsDone() )
return false;
int NbPoints = Discret.NbPoints();
for ( int i = 2; i < NbPoints; i++ )
{
double param = Discret.Parameter(i);
theParams.push_back( param );
}
return true;
}
case BEG_END_LENGTH: {
// geometric progression: SUM(n) = ( a1 - an * q ) / ( 1 - q ) = length
double a1 = _value[ BEG_LENGTH_IND ];
double an = _value[ END_LENGTH_IND ];
2004-12-01 15:48:31 +05:00
double q = ( length - a1 ) / ( length - an );
double U1 = theReverse ? l : f;
double Un = theReverse ? f : l;
2004-12-01 15:48:31 +05:00
double param = U1;
double eltSize = theReverse ? -a1 : a1;
2004-12-01 15:48:31 +05:00
while ( 1 ) {
// computes a point on a curve <C3d> at the distance <eltSize>
// from the point of parameter <param>.
GCPnts_AbscissaPoint Discret( C3d, eltSize, param );
if ( !Discret.IsDone() ) break;
param = Discret.Parameter();
if ( param > f && param < l )
2004-12-01 15:48:31 +05:00
theParams.push_back( param );
else
break;
eltSize *= q;
}
compensateError( a1, an, U1, Un, length, C3d, theParams );
2004-12-01 15:48:31 +05:00
return true;
}
case ARITHMETIC_1D: {
// arithmetic progression: SUM(n) = ( an - a1 + q ) * ( a1 + an ) / ( 2 * q ) = length
double a1 = _value[ BEG_LENGTH_IND ];
double an = _value[ END_LENGTH_IND ];
2004-12-01 15:48:31 +05:00
double q = ( an - a1 ) / ( 2 *length/( a1 + an ) - 1 );
int n = int( 1 + ( an - a1 ) / q );
2004-12-01 15:48:31 +05:00
double U1 = theReverse ? l : f;
double Un = theReverse ? f : l;
2004-12-01 15:48:31 +05:00
double param = U1;
double eltSize = a1;
if ( theReverse ) {
eltSize = -eltSize;
q = -q;
}
while ( n-- > 0 && eltSize * ( Un - U1 ) > 0 ) {
2004-12-01 15:48:31 +05:00
// computes a point on a curve <C3d> at the distance <eltSize>
// from the point of parameter <param>.
GCPnts_AbscissaPoint Discret( C3d, eltSize, param );
if ( !Discret.IsDone() ) break;
param = Discret.Parameter();
if ( param > f && param < l )
2004-12-01 15:48:31 +05:00
theParams.push_back( param );
else
break;
eltSize += q;
2004-12-01 15:48:31 +05:00
}
compensateError( a1, an, U1, Un, length, C3d, theParams );
return true;
}
case DEFLECTION: {
GCPnts_UniformDeflection Discret(C3d, _value[ DEFLECTION_IND ], true);
if ( !Discret.IsDone() )
return false;
2004-12-01 15:48:31 +05:00
int NbPoints = Discret.NbPoints();
for ( int i = 2; i < NbPoints; i++ )
{
double param = Discret.Parameter(i);
theParams.push_back( param );
}
2004-12-01 15:48:31 +05:00
return true;
2004-12-01 15:48:31 +05:00
}
default:;
}
return false;
2004-06-18 14:34:31 +06:00
}
//=============================================================================
/*!
2004-12-17 16:07:35 +05:00
*
2004-06-18 14:34:31 +06:00
*/
//=============================================================================
bool StdMeshers_Regular_1D::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape)
{
2004-12-01 15:48:31 +05:00
MESSAGE("StdMeshers_Regular_1D::Compute");
if ( _hypType == NONE )
return false;
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
aMesh.GetSubMesh(aShape);
const TopoDS_Edge & EE = TopoDS::Edge(aShape);
TopoDS_Edge E = TopoDS::Edge(EE.Oriented(TopAbs_FORWARD));
int shapeID = meshDS->ShapeToIndex( E );
2004-12-01 15:48:31 +05:00
double f, l;
Handle(Geom_Curve) Curve = BRep_Tool::Curve(E, f, l);
TopoDS_Vertex VFirst, VLast;
TopExp::Vertices(E, VFirst, VLast); // Vfirst corresponds to f and Vlast to l
ASSERT(!VFirst.IsNull());
SMDS_NodeIteratorPtr lid= aMesh.GetSubMesh(VFirst)->GetSubMeshDS()->GetNodes();
if (!lid->more())
{
MESSAGE (" NO NODE BUILT ON VERTEX ");
return false;
}
const SMDS_MeshNode * idFirst = lid->next();
ASSERT(!VLast.IsNull());
lid=aMesh.GetSubMesh(VLast)->GetSubMeshDS()->GetNodes();
if (!lid->more())
{
MESSAGE (" NO NODE BUILT ON VERTEX ");
return false;
}
const SMDS_MeshNode * idLast = lid->next();
if (!Curve.IsNull())
{
list< double > params;
bool reversed = false;
if ( !_mainEdge.IsNull() )
reversed = aMesh.IsReversedInChain( EE, _mainEdge );
2004-12-01 15:48:31 +05:00
try {
if ( ! computeInternalParameters( E, params, reversed ))
2004-12-01 15:48:31 +05:00
return false;
}
catch ( Standard_Failure ) {
return false;
}
// edge extrema (indexes : 1 & NbPoints) already in SMDS (TopoDS_Vertex)
// only internal nodes receive an edge position with param on curve
const SMDS_MeshNode * idPrev = idFirst;
2004-12-17 16:07:35 +05:00
2004-12-01 15:48:31 +05:00
for (list<double>::iterator itU = params.begin(); itU != params.end(); itU++)
{
double param = *itU;
gp_Pnt P = Curve->Value(param);
//Add the Node in the DataStructure
SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnEdge(node, shapeID, param);
2004-12-01 15:48:31 +05:00
SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, node);
meshDS->SetMeshElementOnShape(edge, shapeID);
2004-12-01 15:48:31 +05:00
idPrev = node;
}
SMDS_MeshEdge* edge = meshDS->AddEdge(idPrev, idLast);
meshDS->SetMeshElementOnShape(edge, shapeID);
2004-12-01 15:48:31 +05:00
}
else
{
// Edge is a degenerated Edge : We put n = 5 points on the edge.
int NbPoints = 5;
BRep_Tool::Range(E, f, l);
double du = (l - f) / (NbPoints - 1);
//MESSAGE("************* Degenerated edge! *****************");
TopoDS_Vertex V1, V2;
TopExp::Vertices(E, V1, V2);
gp_Pnt P = BRep_Tool::Pnt(V1);
const SMDS_MeshNode * idPrev = idFirst;
for (int i = 2; i < NbPoints; i++)
{
double param = f + (i - 1) * du;
SMDS_MeshNode * node = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnEdge(node, shapeID, param);
2004-12-01 15:48:31 +05:00
SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, node);
meshDS->SetMeshElementOnShape(edge, shapeID);
2004-12-01 15:48:31 +05:00
idPrev = node;
}
SMDS_MeshEdge * edge = meshDS->AddEdge(idPrev, idLast);
meshDS->SetMeshElementOnShape(edge, shapeID);
2004-12-01 15:48:31 +05:00
}
return true;
}
//=============================================================================
/*!
2004-12-17 16:07:35 +05:00
* See comments in SMESH_Algo.cxx
2004-12-01 15:48:31 +05:00
*/
//=============================================================================
2004-12-17 16:07:35 +05:00
const list <const SMESHDS_Hypothesis *> & StdMeshers_Regular_1D::GetUsedHypothesis(
SMESH_Mesh & aMesh, const TopoDS_Shape & aShape)
2004-12-01 15:48:31 +05:00
{
_usedHypList.clear();
2004-12-17 16:07:35 +05:00
_usedHypList = GetAppliedHypothesis(aMesh, aShape); // copy
2004-12-01 15:48:31 +05:00
int nbHyp = _usedHypList.size();
_mainEdge.Nullify();
2004-12-17 16:07:35 +05:00
if (nbHyp == 0)
{
// Check, if propagated from some other edge
if (aShape.ShapeType() == TopAbs_EDGE &&
aMesh.IsPropagatedHypothesis(aShape, _mainEdge))
2004-12-17 16:07:35 +05:00
{
// Propagation of 1D hypothesis from <aMainEdge> on this edge
//_usedHypList = GetAppliedHypothesis(aMesh, _mainEdge); // copy
// use a general method in order not to nullify _mainEdge
_usedHypList = SMESH_Algo::GetUsedHypothesis(aMesh, _mainEdge); // copy
2004-12-17 16:07:35 +05:00
nbHyp = _usedHypList.size();
2004-12-01 15:48:31 +05:00
}
}
2004-12-17 16:07:35 +05:00
if (nbHyp == 0)
{
TopTools_ListIteratorOfListOfShape ancIt( aMesh.GetAncestors( aShape ));
for (; ancIt.More(); ancIt.Next())
{
2004-12-01 15:48:31 +05:00
const TopoDS_Shape& ancestor = ancIt.Value();
2004-12-17 16:07:35 +05:00
_usedHypList = GetAppliedHypothesis(aMesh, ancestor); // copy
2004-12-01 15:48:31 +05:00
nbHyp = _usedHypList.size();
if (nbHyp == 1)
break;
}
}
if (nbHyp > 1)
2004-12-17 16:07:35 +05:00
_usedHypList.clear(); //only one compatible hypothesis allowed
2004-12-01 15:48:31 +05:00
return _usedHypList;
}
//=============================================================================
/*!
2004-12-17 16:07:35 +05:00
*
2004-06-18 14:34:31 +06:00
*/
//=============================================================================
ostream & StdMeshers_Regular_1D::SaveTo(ostream & save)
{
return save;
}
//=============================================================================
/*!
2004-12-17 16:07:35 +05:00
*
2004-06-18 14:34:31 +06:00
*/
//=============================================================================
istream & StdMeshers_Regular_1D::LoadFrom(istream & load)
{
return load;
}
//=============================================================================
/*!
2004-12-17 16:07:35 +05:00
*
2004-06-18 14:34:31 +06:00
*/
//=============================================================================
ostream & operator <<(ostream & save, StdMeshers_Regular_1D & hyp)
{
return hyp.SaveTo( save );
}
//=============================================================================
/*!
2004-12-17 16:07:35 +05:00
*
2004-06-18 14:34:31 +06:00
*/
//=============================================================================
istream & operator >>(istream & load, StdMeshers_Regular_1D & hyp)
{
return hyp.LoadFrom( load );
}