smesh/src/SMESH/SMESH_MeshEditor.cxx

4110 lines
143 KiB
C++
Raw Normal View History

2004-12-01 15:48:31 +05:00
// SMESH SMESH : idl implementation based on 'SMESH' unit's classes
//
// Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org
//
//
//
// File : SMESH_MeshEditor.cxx
// Created : Mon Apr 12 16:10:22 2004
// Author : Edward AGAPOV (eap)
#include "SMESH_MeshEditor.hxx"
2005-01-20 11:25:54 +05:00
#include "SMESH_ControlsDef.hxx"
2004-12-01 15:48:31 +05:00
#include "SMDS_FaceOfNodes.hxx"
#include "SMDS_VolumeTool.hxx"
#include "SMESHDS_Group.hxx"
#include "SMESHDS_Mesh.hxx"
#include "SMESH_subMesh.hxx"
2005-01-20 11:25:54 +05:00
#include "SMESH_ControlsDef.hxx"
2004-12-01 15:48:31 +05:00
#include "utilities.h"
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_ListOfShape.hxx>
#include <math.h>
2005-01-20 11:25:54 +05:00
#include <gp_Dir.hxx>
2004-12-01 15:48:31 +05:00
#include <gp_Vec.hxx>
#include <gp_Ax1.hxx>
#include <gp_Trsf.hxx>
#include <gp_Lin.hxx>
2005-01-20 11:25:54 +05:00
#include <gp_XYZ.hxx>
2004-12-01 15:48:31 +05:00
#include <gp.hxx>
#include <gp_Pln.hxx>
2005-01-20 11:25:54 +05:00
#include <BRep_Tool.hxx>
#include <SMDS_EdgePosition.hxx>
#include <Geom_Curve.hxx>
2004-12-01 15:48:31 +05:00
#include <map>
2005-01-20 11:25:54 +05:00
#include "utilities.h"
2004-12-01 15:48:31 +05:00
using namespace std;
2005-01-20 11:25:54 +05:00
using namespace SMESH::Controls;
2004-12-01 15:48:31 +05:00
2005-01-20 11:25:54 +05:00
typedef map<const SMDS_MeshNode*, const SMDS_MeshNode*> TNodeNodeMap;
typedef map<const SMDS_MeshElement*, list<const SMDS_MeshNode*> > TElemOfNodeListMap;
typedef map<const SMDS_MeshElement*, list<const SMDS_MeshElement*> > TElemOfElemListMap;
typedef map<const SMDS_MeshNode*, list<const SMDS_MeshNode*> > TNodeOfNodeListMap;
typedef TNodeOfNodeListMap::iterator TNodeOfNodeListMapItr;
typedef map<const SMDS_MeshElement*, vector<TNodeOfNodeListMapItr> > TElemOfVecOfNnlmiMap;
2004-12-01 15:48:31 +05:00
//=======================================================================
//function : SMESH_MeshEditor
//purpose :
//=======================================================================
SMESH_MeshEditor::SMESH_MeshEditor( SMESH_Mesh* theMesh ):
myMesh( theMesh )
{
}
//=======================================================================
//function : Remove
//purpose : Remove a node or an element.
// Modify a compute state of sub-meshes which become empty
//=======================================================================
bool SMESH_MeshEditor::Remove (const list< int >& theIDs,
const bool isNodes )
{
SMESHDS_Mesh* aMesh = GetMeshDS();
set< SMESH_subMesh *> smmap;
list<int>::const_iterator it = theIDs.begin();
for ( ; it != theIDs.end(); it++ )
{
const SMDS_MeshElement * elem;
if ( isNodes )
elem = aMesh->FindNode( *it );
else
elem = aMesh->FindElement( *it );
if ( !elem )
continue;
// Find sub-meshes to notify about modification
SMDS_ElemIteratorPtr nodeIt = elem->nodesIterator();
while ( nodeIt->more() )
{
const SMDS_MeshNode* node = static_cast<const SMDS_MeshNode*>( nodeIt->next() );
const SMDS_PositionPtr& aPosition = node->GetPosition();
if ( aPosition.get() ) {
int aShapeID = aPosition->GetShapeId();
if ( aShapeID ) {
TopoDS_Shape aShape = aMesh->IndexToShape( aShapeID );
SMESH_subMesh * sm = GetMesh()->GetSubMeshContaining( aShape );
if ( sm )
smmap.insert( sm );
}
}
}
// Do remove
if ( isNodes )
aMesh->RemoveNode( static_cast< const SMDS_MeshNode* >( elem ));
else
aMesh->RemoveElement( elem );
}
// Notify sub-meshes about modification
if ( !smmap.empty() ) {
set< SMESH_subMesh *>::iterator smIt;
for ( smIt = smmap.begin(); smIt != smmap.end(); smIt++ )
(*smIt)->ComputeStateEngine( SMESH_subMesh::MESH_ENTITY_REMOVED );
}
return true;
}
//=======================================================================
//function : FindShape
//purpose : Return an index of the shape theElem is on
// or zero if a shape not found
//=======================================================================
int SMESH_MeshEditor::FindShape (const SMDS_MeshElement * theElem)
{
SMESHDS_Mesh * aMesh = GetMeshDS();
if ( aMesh->ShapeToMesh().IsNull() )
return 0;
if ( theElem->GetType() == SMDSAbs_Node )
{
const SMDS_PositionPtr& aPosition =
static_cast<const SMDS_MeshNode*>( theElem )->GetPosition();
if ( aPosition.get() )
return aPosition->GetShapeId();
else
return 0;
}
TopoDS_Shape aShape; // the shape a node is on
SMDS_ElemIteratorPtr nodeIt = theElem->nodesIterator();
while ( nodeIt->more() )
{
const SMDS_MeshNode* node = static_cast<const SMDS_MeshNode*>( nodeIt->next() );
const SMDS_PositionPtr& aPosition = node->GetPosition();
if ( aPosition.get() ) {
int aShapeID = aPosition->GetShapeId();
SMESHDS_SubMesh * sm = aMesh->MeshElements( aShapeID );
if ( sm )
{
if ( sm->Contains( theElem ))
return aShapeID;
if ( aShape.IsNull() )
aShape = aMesh->IndexToShape( aShapeID );
}
else
{
//MESSAGE ( "::FindShape() No SubShape for aShapeID " << aShapeID );
}
}
}
// None of nodes is on a proper shape,
// find the shape among ancestors of aShape on which a node is
if ( aShape.IsNull() ) {
//MESSAGE ("::FindShape() - NONE node is on shape")
return 0;
}
TopTools_ListIteratorOfListOfShape ancIt( GetMesh()->GetAncestors( aShape ));
for ( ; ancIt.More(); ancIt.Next() )
{
SMESHDS_SubMesh * sm = aMesh->MeshElements( ancIt.Value() );
if ( sm && sm->Contains( theElem ))
return aMesh->ShapeToIndex( ancIt.Value() );
}
//MESSAGE ("::FindShape() - SHAPE NOT FOUND")
return 0;
}
//=======================================================================
//function : InverseDiag
//purpose : Replace two neighbour triangles with ones built on the same 4 nodes
// but having other common link.
// Return False if args are improper
//=======================================================================
bool SMESH_MeshEditor::InverseDiag (const SMDS_MeshElement * theTria1,
const SMDS_MeshElement * theTria2 )
{
if (!theTria1 || !theTria2)
return false;
const SMDS_FaceOfNodes* F1 = dynamic_cast<const SMDS_FaceOfNodes*>( theTria1 );
if (!F1) return false;
const SMDS_FaceOfNodes* F2 = dynamic_cast<const SMDS_FaceOfNodes*>( theTria2 );
if (!F2) return false;
// 1 +--+ A theTria1: ( 1 A B ) A->2 ( 1 2 B ) 1 +--+ A
// | /| theTria2: ( B A 2 ) B->1 ( 1 A 2 ) |\ |
// |/ | | \|
// B +--+ 2 B +--+ 2
// put nodes in array and find out indices of the same ones
const SMDS_MeshNode* aNodes [6];
int sameInd [] = { 0, 0, 0, 0, 0, 0 };
int i = 0;
SMDS_ElemIteratorPtr it = theTria1->nodesIterator();
while ( it->more() )
{
aNodes[ i ] = static_cast<const SMDS_MeshNode*>( it->next() );
if ( i > 2 ) // theTria2
// find same node of theTria1
for ( int j = 0; j < 3; j++ )
if ( aNodes[ i ] == aNodes[ j ]) {
sameInd[ j ] = i;
sameInd[ i ] = j;
break;
}
// next
i++;
if ( i == 3 ) {
if ( it->more() )
return false; // theTria1 is not a triangle
it = theTria2->nodesIterator();
}
if ( i == 6 && it->more() )
return false; // theTria2 is not a triangle
}
// find indices of 1,2 and of A,B in theTria1
int iA = 0, iB = 0, i1 = 0, i2 = 0;
for ( i = 0; i < 6; i++ )
{
if ( sameInd [ i ] == 0 )
if ( i < 3 ) i1 = i;
else i2 = i;
else if (i < 3)
if ( iA ) iB = i;
else iA = i;
}
// nodes 1 and 2 should not be the same
if ( aNodes[ i1 ] == aNodes[ i2 ] )
return false;
// theTria1: A->2
aNodes[ iA ] = aNodes[ i2 ];
// theTria2: B->1
aNodes[ sameInd[ iB ]] = aNodes[ i1 ];
//MESSAGE( theTria1 << theTria2 );
GetMeshDS()->ChangeElementNodes( theTria1, aNodes, 3 );
GetMeshDS()->ChangeElementNodes( theTria2, &aNodes[ 3 ], 3 );
//MESSAGE( theTria1 << theTria2 );
return true;
}
//=======================================================================
//function : findTriangles
//purpose : find triangles sharing theNode1-theNode2 link
//=======================================================================
static bool findTriangles(const SMDS_MeshNode * theNode1,
const SMDS_MeshNode * theNode2,
const SMDS_MeshElement*& theTria1,
const SMDS_MeshElement*& theTria2)
{
if ( !theNode1 || !theNode2 ) return false;
theTria1 = theTria2 = 0;
set< const SMDS_MeshElement* > emap;
SMDS_ElemIteratorPtr it = theNode1->GetInverseElementIterator();
while (it->more()) {
const SMDS_MeshElement* elem = it->next();
if ( elem->GetType() == SMDSAbs_Face && elem->NbNodes() == 3 )
emap.insert( elem );
}
it = theNode2->GetInverseElementIterator();
while (it->more()) {
const SMDS_MeshElement* elem = it->next();
if ( elem->GetType() == SMDSAbs_Face &&
emap.find( elem ) != emap.end() )
if ( theTria1 ) {
theTria2 = elem;
break;
} else {
theTria1 = elem;
}
}
return ( theTria1 && theTria2 );
}
//=======================================================================
//function : InverseDiag
//purpose : Replace two neighbour triangles sharing theNode1-theNode2 link
// with ones built on the same 4 nodes but having other common link.
// Return false if proper faces not found
//=======================================================================
bool SMESH_MeshEditor::InverseDiag (const SMDS_MeshNode * theNode1,
const SMDS_MeshNode * theNode2)
{
MESSAGE( "::InverseDiag()" );
const SMDS_MeshElement *tr1, *tr2;
if ( !findTriangles( theNode1, theNode2, tr1, tr2 ))
return false;
const SMDS_FaceOfNodes* F1 = dynamic_cast<const SMDS_FaceOfNodes*>( tr1 );
if (!F1) return false;
const SMDS_FaceOfNodes* F2 = dynamic_cast<const SMDS_FaceOfNodes*>( tr2 );
if (!F2) return false;
// 1 +--+ A tr1: ( 1 A B ) A->2 ( 1 2 B ) 1 +--+ A
// | /| tr2: ( B A 2 ) B->1 ( 1 A 2 ) |\ |
// |/ | | \|
// B +--+ 2 B +--+ 2
// put nodes in array
// and find indices of 1,2 and of A in tr1 and of B in tr2
int i, iA1 = 0, i1 = 0;
const SMDS_MeshNode* aNodes1 [3];
SMDS_ElemIteratorPtr it;
for (i = 0, it = tr1->nodesIterator(); it->more(); i++ ) {
aNodes1[ i ] = static_cast<const SMDS_MeshNode*>( it->next() );
if ( aNodes1[ i ] == theNode1 )
iA1 = i; // node A in tr1
else if ( aNodes1[ i ] != theNode2 )
i1 = i; // node 1
}
int iB2 = 0, i2 = 0;
const SMDS_MeshNode* aNodes2 [3];
for (i = 0, it = tr2->nodesIterator(); it->more(); i++ ) {
aNodes2[ i ] = static_cast<const SMDS_MeshNode*>( it->next() );
if ( aNodes2[ i ] == theNode2 )
iB2 = i; // node B in tr2
else if ( aNodes2[ i ] != theNode1 )
i2 = i; // node 2
}
// nodes 1 and 2 should not be the same
if ( aNodes1[ i1 ] == aNodes2[ i2 ] )
return false;
// tr1: A->2
aNodes1[ iA1 ] = aNodes2[ i2 ];
// tr2: B->1
aNodes2[ iB2 ] = aNodes1[ i1 ];
//MESSAGE( tr1 << tr2 );
GetMeshDS()->ChangeElementNodes( tr1, aNodes1, 3 );
GetMeshDS()->ChangeElementNodes( tr2, aNodes2, 3 );
//MESSAGE( tr1 << tr2 );
return true;
}
//=======================================================================
//function : getQuadrangleNodes
//purpose : fill theQuadNodes - nodes of a quadrangle resulting from
// fusion of triangles tr1 and tr2 having shared link on
// theNode1 and theNode2
//=======================================================================
bool getQuadrangleNodes(const SMDS_MeshNode * theQuadNodes [],
const SMDS_MeshNode * theNode1,
const SMDS_MeshNode * theNode2,
const SMDS_MeshElement * tr1,
const SMDS_MeshElement * tr2 )
{
// find the 4-th node to insert into tr1
const SMDS_MeshNode* n4 = 0;
SMDS_ElemIteratorPtr it = tr2->nodesIterator();
while ( !n4 && it->more() )
{
const SMDS_MeshNode * n = static_cast<const SMDS_MeshNode*>( it->next() );
bool isDiag = ( n == theNode1 || n == theNode2 );
if ( !isDiag )
n4 = n;
}
// Make an array of nodes to be in a quadrangle
int iNode = 0, iFirstDiag = -1;
it = tr1->nodesIterator();
while ( it->more() )
{
const SMDS_MeshNode * n = static_cast<const SMDS_MeshNode*>( it->next() );
bool isDiag = ( n == theNode1 || n == theNode2 );
if ( isDiag )
{
if ( iFirstDiag < 0 )
iFirstDiag = iNode;
else if ( iNode - iFirstDiag == 1 )
theQuadNodes[ iNode++ ] = n4; // insert the 4-th node between diagonal nodes
}
else if ( n == n4 )
{
return false; // tr1 and tr2 should not have all the same nodes
}
theQuadNodes[ iNode++ ] = n;
}
if ( iNode == 3 ) // diagonal nodes have 0 and 2 indices
theQuadNodes[ iNode ] = n4;
return true;
}
//=======================================================================
//function : DeleteDiag
//purpose : Replace two neighbour triangles sharing theNode1-theNode2 link
// with a quadrangle built on the same 4 nodes.
// Return false if proper faces not found
//=======================================================================
bool SMESH_MeshEditor::DeleteDiag (const SMDS_MeshNode * theNode1,
const SMDS_MeshNode * theNode2)
{
MESSAGE( "::DeleteDiag()" );
const SMDS_MeshElement *tr1, *tr2;
if ( !findTriangles( theNode1, theNode2, tr1, tr2 ))
return false;
const SMDS_FaceOfNodes* F1 = dynamic_cast<const SMDS_FaceOfNodes*>( tr1 );
if (!F1) return false;
const SMDS_FaceOfNodes* F2 = dynamic_cast<const SMDS_FaceOfNodes*>( tr2 );
if (!F2) return false;
const SMDS_MeshNode* aNodes [ 4 ];
if ( ! getQuadrangleNodes( aNodes, theNode1, theNode2, tr1, tr2 ))
return false;
//MESSAGE( endl << tr1 << tr2 );
GetMeshDS()->ChangeElementNodes( tr1, aNodes, 4 );
GetMeshDS()->RemoveElement( tr2 );
//MESSAGE( endl << tr1 );
return true;
}
//=======================================================================
//function : Reorient
//purpose : Reverse theElement orientation
2004-12-01 15:48:31 +05:00
//=======================================================================
bool SMESH_MeshEditor::Reorient (const SMDS_MeshElement * theElem)
2004-12-01 15:48:31 +05:00
{
if (!theElem)
return false;
SMDS_ElemIteratorPtr it = theElem->nodesIterator();
if ( !it || !it->more() )
return false;
2004-12-01 15:48:31 +05:00
switch ( theElem->GetType() ) {
case SMDSAbs_Edge:
case SMDSAbs_Face:
{
int i = theElem->NbNodes();
vector<const SMDS_MeshNode*> aNodes( i );
while ( it->more() )
aNodes[ --i ]= static_cast<const SMDS_MeshNode*>( it->next() );
return GetMeshDS()->ChangeElementNodes( theElem, &aNodes[0], theElem->NbNodes() );
}
case SMDSAbs_Volume:
{
SMDS_VolumeTool vTool;
if ( !vTool.Set( theElem ))
return false;
vTool.Inverse();
return GetMeshDS()->ChangeElementNodes( theElem, vTool.GetNodes(), vTool.NbNodes() );
}
default:;
}
2004-12-01 15:48:31 +05:00
return false;
2004-12-01 15:48:31 +05:00
}
//=======================================================================
//function : getBadRate
//purpose :
//=======================================================================
static double getBadRate (const SMDS_MeshElement* theElem,
SMESH::Controls::NumericalFunctorPtr& theCrit)
{
2005-01-20 11:25:54 +05:00
SMESH::Controls::TSequenceOfXYZ P;
2004-12-01 15:48:31 +05:00
if ( !theElem || !theCrit->GetPoints( theElem, P ))
return 1e100;
return theCrit->GetBadRate( theCrit->GetValue( P ), theElem->NbNodes() );
}
//=======================================================================
//function : QuadToTri
//purpose : Cut quadrangles into triangles.
// theCrit is used to select a diagonal to cut
//=======================================================================
bool SMESH_MeshEditor::QuadToTri (set<const SMDS_MeshElement*> & theElems,
SMESH::Controls::NumericalFunctorPtr theCrit)
{
MESSAGE( "::QuadToTri()" );
if ( !theCrit.get() )
return false;
SMESHDS_Mesh * aMesh = GetMeshDS();
set< const SMDS_MeshElement * >::iterator itElem;
for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ )
{
const SMDS_MeshElement* elem = (*itElem);
if ( !elem || elem->GetType() != SMDSAbs_Face || elem->NbNodes() != 4 )
continue;
// retrieve element nodes
const SMDS_MeshNode* aNodes [4];
SMDS_ElemIteratorPtr itN = elem->nodesIterator();
int i = 0;
while ( itN->more() )
aNodes[ i++ ] = static_cast<const SMDS_MeshNode*>( itN->next() );
// compare two sets of possible triangles
double aBadRate1, aBadRate2; // to what extent a set is bad
SMDS_FaceOfNodes tr1 ( aNodes[0], aNodes[1], aNodes[2] );
SMDS_FaceOfNodes tr2 ( aNodes[2], aNodes[3], aNodes[0] );
aBadRate1 = getBadRate( &tr1, theCrit ) + getBadRate( &tr2, theCrit );
SMDS_FaceOfNodes tr3 ( aNodes[1], aNodes[2], aNodes[3] );
SMDS_FaceOfNodes tr4 ( aNodes[3], aNodes[0], aNodes[1] );
aBadRate2 = getBadRate( &tr3, theCrit ) + getBadRate( &tr4, theCrit );
int aShapeId = FindShape( elem );
//MESSAGE( "aBadRate1 = " << aBadRate1 << "; aBadRate2 = " << aBadRate2
// << " ShapeID = " << aShapeId << endl << elem );
if ( aBadRate1 <= aBadRate2 ) {
// tr1 + tr2 is better
aMesh->ChangeElementNodes( elem, aNodes, 3 );
//MESSAGE( endl << elem );
elem = aMesh->AddFace( aNodes[2], aNodes[3], aNodes[0] );
}
else {
// tr3 + tr4 is better
aMesh->ChangeElementNodes( elem, &aNodes[1], 3 );
//MESSAGE( endl << elem );
elem = aMesh->AddFace( aNodes[3], aNodes[0], aNodes[1] );
}
//MESSAGE( endl << elem );
// put a new triangle on the same shape
if ( aShapeId )
aMesh->SetMeshElementOnShape( elem, aShapeId );
}
return true;
}
//=======================================================================
2005-01-20 11:25:54 +05:00
//function : AddToSameGroups
2004-12-01 15:48:31 +05:00
//purpose : add elemToAdd to the groups the elemInGroups belongs to
//=======================================================================
2005-01-20 11:25:54 +05:00
void SMESH_MeshEditor::AddToSameGroups (const SMDS_MeshElement* elemToAdd,
const SMDS_MeshElement* elemInGroups,
SMESHDS_Mesh * aMesh)
2004-12-01 15:48:31 +05:00
{
const set<SMESHDS_GroupBase*>& groups = aMesh->GetGroups();
set<SMESHDS_GroupBase*>::const_iterator grIt = groups.begin();
for ( ; grIt != groups.end(); grIt++ ) {
SMESHDS_Group* group = dynamic_cast<SMESHDS_Group*>( *grIt );
if ( group && group->SMDSGroup().Contains( elemInGroups ))
group->SMDSGroup().Add( elemToAdd );
}
}
//=======================================================================
//function : QuadToTri
//purpose : Cut quadrangles into triangles.
// theCrit is used to select a diagonal to cut
//=======================================================================
bool SMESH_MeshEditor::QuadToTri (std::set<const SMDS_MeshElement*> & theElems,
const bool the13Diag)
{
MESSAGE( "::QuadToTri()" );
SMESHDS_Mesh * aMesh = GetMeshDS();
set< const SMDS_MeshElement * >::iterator itElem;
for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ )
{
const SMDS_MeshElement* elem = (*itElem);
if ( !elem || elem->GetType() != SMDSAbs_Face || elem->NbNodes() != 4 )
continue;
// retrieve element nodes
const SMDS_MeshNode* aNodes [4];
SMDS_ElemIteratorPtr itN = elem->nodesIterator();
int i = 0;
while ( itN->more() )
aNodes[ i++ ] = static_cast<const SMDS_MeshNode*>( itN->next() );
int aShapeId = FindShape( elem );
const SMDS_MeshElement* newElem = 0;
if ( the13Diag )
{
aMesh->ChangeElementNodes( elem, aNodes, 3 );
newElem = aMesh->AddFace( aNodes[2], aNodes[3], aNodes[0] );
}
else
{
aMesh->ChangeElementNodes( elem, &aNodes[1], 3 );
newElem = aMesh->AddFace( aNodes[3], aNodes[0], aNodes[1] );
}
// put a new triangle on the same shape and add to the same groups
if ( aShapeId )
aMesh->SetMeshElementOnShape( newElem, aShapeId );
2005-01-20 11:25:54 +05:00
AddToSameGroups( newElem, elem, aMesh );
2004-12-01 15:48:31 +05:00
}
return true;
}
//=======================================================================
//function : getAngle
//purpose :
//=======================================================================
double getAngle(const SMDS_MeshElement * tr1,
const SMDS_MeshElement * tr2,
const SMDS_MeshNode * n1,
const SMDS_MeshNode * n2)
{
double angle = 2*PI; // bad angle
// get normals
2005-01-20 11:25:54 +05:00
SMESH::Controls::TSequenceOfXYZ P1, P2;
2004-12-01 15:48:31 +05:00
if ( !SMESH::Controls::NumericalFunctor::GetPoints( tr1, P1 ) ||
!SMESH::Controls::NumericalFunctor::GetPoints( tr2, P2 ))
return angle;
gp_Vec N1 = gp_Vec( P1(2) - P1(1) ) ^ gp_Vec( P1(3) - P1(1) );
if ( N1.SquareMagnitude() <= gp::Resolution() )
return angle;
gp_Vec N2 = gp_Vec( P2(2) - P2(1) ) ^ gp_Vec( P2(3) - P2(1) );
if ( N2.SquareMagnitude() <= gp::Resolution() )
return angle;
// find the first diagonal node n1 in the triangles:
// take in account a diagonal link orientation
const SMDS_MeshElement *nFirst[2], *tr[] = { tr1, tr2 };
for ( int t = 0; t < 2; t++ )
{
SMDS_ElemIteratorPtr it = tr[ t ]->nodesIterator();
int i = 0, iDiag = -1;
while ( it->more()) {
const SMDS_MeshElement *n = it->next();
if ( n == n1 || n == n2 )
if ( iDiag < 0)
iDiag = i;
else {
if ( i - iDiag == 1 )
nFirst[ t ] = ( n == n1 ? n2 : n1 );
else
nFirst[ t ] = n;
break;
}
i++;
}
}
if ( nFirst[ 0 ] == nFirst[ 1 ] )
N2.Reverse();
angle = N1.Angle( N2 );
//SCRUTE( angle );
return angle;
}
// =================================================
// class generating a unique ID for a pair of nodes
// and able to return nodes by that ID
// =================================================
class LinkID_Gen {
public:
LinkID_Gen( const SMESHDS_Mesh* theMesh )
:myMesh( theMesh ), myMaxID( theMesh->MaxNodeID() + 1)
{}
long GetLinkID (const SMDS_MeshNode * n1,
const SMDS_MeshNode * n2) const
{
return ( Min(n1->GetID(),n2->GetID()) * myMaxID + Max(n1->GetID(),n2->GetID()));
}
bool GetNodes (const long theLinkID,
const SMDS_MeshNode* & theNode1,
const SMDS_MeshNode* & theNode2) const
{
theNode1 = myMesh->FindNode( theLinkID / myMaxID );
if ( !theNode1 ) return false;
theNode2 = myMesh->FindNode( theLinkID % myMaxID );
if ( !theNode2 ) return false;
return true;
}
private:
LinkID_Gen();
const SMESHDS_Mesh* myMesh;
long myMaxID;
};
//=======================================================================
//function : TriToQuad
//purpose : Fuse neighbour triangles into quadrangles.
// theCrit is used to select a neighbour to fuse with.
// theMaxAngle is a max angle between element normals at which
// fusion is still performed.
//=======================================================================
bool SMESH_MeshEditor::TriToQuad (set<const SMDS_MeshElement*> & theElems,
SMESH::Controls::NumericalFunctorPtr theCrit,
const double theMaxAngle)
{
MESSAGE( "::TriToQuad()" );
if ( !theCrit.get() )
return false;
SMESHDS_Mesh * aMesh = GetMeshDS();
LinkID_Gen aLinkID_Gen( aMesh );
// Prepare data for algo: build
// 1. map of elements with their linkIDs
// 2. map of linkIDs with their elements
map< long, list< const SMDS_MeshElement* > > mapLi_listEl;
map< long, list< const SMDS_MeshElement* > >::iterator itLE;
map< const SMDS_MeshElement*, set< long > > mapEl_setLi;
map< const SMDS_MeshElement*, set< long > >::iterator itEL;
set<const SMDS_MeshElement*>::iterator itElem;
for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ )
{
const SMDS_MeshElement* elem = (*itElem);
if ( !elem || elem->NbNodes() != 3 )
continue;
// retrieve element nodes
const SMDS_MeshNode* aNodes [4];
SMDS_ElemIteratorPtr itN = elem->nodesIterator();
int i = 0;
while ( itN->more() )
aNodes[ i++ ] = static_cast<const SMDS_MeshNode*>( itN->next() );
ASSERT( i == 3 );
aNodes[ 3 ] = aNodes[ 0 ];
// fill maps
for ( i = 0; i < 3; i++ )
{
long linkID = aLinkID_Gen.GetLinkID( aNodes[ i ], aNodes[ i+1 ] );
// check if elements sharing a link can be fused
itLE = mapLi_listEl.find( linkID );
if ( itLE != mapLi_listEl.end() )
{
if ((*itLE).second.size() > 1 ) // consider only 2 elems adjacent by a link
continue;
const SMDS_MeshElement* elem2 = (*itLE).second.front();
// if ( FindShape( elem ) != FindShape( elem2 ))
// continue; // do not fuse triangles laying on different shapes
if ( getAngle( elem, elem2, aNodes[i], aNodes[i+1] ) > theMaxAngle )
continue; // avoid making badly shaped quads
(*itLE).second.push_back( elem );
}
else
mapLi_listEl[ linkID ].push_back( elem );
mapEl_setLi [ elem ].insert( linkID );
}
}
// Clean the maps from the links shared by a sole element, ie
// links to which only one element is bound in mapLi_listEl
for ( itLE = mapLi_listEl.begin(); itLE != mapLi_listEl.end(); itLE++ )
{
int nbElems = (*itLE).second.size();
if ( nbElems < 2 ) {
const SMDS_MeshElement* elem = (*itLE).second.front();
long link = (*itLE).first;
mapEl_setLi[ elem ].erase( link );
if ( mapEl_setLi[ elem ].empty() )
mapEl_setLi.erase( elem );
}
}
// Algo: fuse triangles into quadrangles
while ( ! mapEl_setLi.empty() )
{
// Look for the start element:
// the element having the least nb of shared links
const SMDS_MeshElement* startElem = 0;
int minNbLinks = 4;
for ( itEL = mapEl_setLi.begin(); itEL != mapEl_setLi.end(); itEL++ )
{
int nbLinks = (*itEL).second.size();
if ( nbLinks < minNbLinks )
{
startElem = (*itEL).first;
minNbLinks = nbLinks;
if ( minNbLinks == 1 )
break;
}
}
// search elements to fuse starting from startElem or links of elements
// fused earlyer - startLinks
list< long > startLinks;
while ( startElem || !startLinks.empty() )
{
while ( !startElem && !startLinks.empty() )
{
// Get an element to start, by a link
long linkId = startLinks.front();
startLinks.pop_front();
itLE = mapLi_listEl.find( linkId );
if ( itLE != mapLi_listEl.end() )
{
list< const SMDS_MeshElement* > & listElem = (*itLE).second;
list< const SMDS_MeshElement* >::iterator itE = listElem.begin();
for ( ; itE != listElem.end() ; itE++ )
if ( mapEl_setLi.find( (*itE) ) != mapEl_setLi.end() )
startElem = (*itE);
mapLi_listEl.erase( itLE );
}
}
if ( startElem )
{
// Get candidates to be fused
const SMDS_MeshElement *tr1 = startElem, *tr2 = 0, *tr3 = 0;
long link12, link13;
startElem = 0;
ASSERT( mapEl_setLi.find( tr1 ) != mapEl_setLi.end() );
set< long >& setLi = mapEl_setLi[ tr1 ];
ASSERT( !setLi.empty() );
set< long >::iterator itLi;
for ( itLi = setLi.begin(); itLi != setLi.end(); itLi++ )
{
long linkID = (*itLi);
itLE = mapLi_listEl.find( linkID );
if ( itLE == mapLi_listEl.end() )
continue;
const SMDS_MeshElement* elem = (*itLE).second.front();
if ( elem == tr1 )
elem = (*itLE).second.back();
mapLi_listEl.erase( itLE );
if ( mapEl_setLi.find( elem ) == mapEl_setLi.end())
continue;
if ( tr2 )
{
tr3 = elem;
link13 = linkID;
}
else
{
tr2 = elem;
link12 = linkID;
}
// add other links of elem to list of links to re-start from
set< long >& links = mapEl_setLi[ elem ];
set< long >::iterator it;
for ( it = links.begin(); it != links.end(); it++ )
{
long linkID2 = (*it);
if ( linkID2 != linkID )
startLinks.push_back( linkID2 );
}
}
// Get nodes of possible quadrangles
const SMDS_MeshNode *n12 [4], *n13 [4];
bool Ok12 = false, Ok13 = false;
const SMDS_MeshNode *linkNode1, *linkNode2;
if ( tr2 &&
aLinkID_Gen.GetNodes( link12, linkNode1, linkNode2 ) &&
getQuadrangleNodes( n12, linkNode1, linkNode2, tr1, tr2 ))
Ok12 = true;
if ( tr3 &&
aLinkID_Gen.GetNodes( link13, linkNode1, linkNode2 ) &&
getQuadrangleNodes( n13, linkNode1, linkNode2, tr1, tr3 ))
Ok13 = true;
// Choose a pair to fuse
if ( Ok12 && Ok13 )
{
SMDS_FaceOfNodes quad12 ( n12[ 0 ], n12[ 1 ], n12[ 2 ], n12[ 3 ] );
SMDS_FaceOfNodes quad13 ( n13[ 0 ], n13[ 1 ], n13[ 2 ], n13[ 3 ] );
double aBadRate12 = getBadRate( &quad12, theCrit );
double aBadRate13 = getBadRate( &quad13, theCrit );
if ( aBadRate13 < aBadRate12 )
Ok12 = false;
else
Ok13 = false;
}
// Make quadrangles
// and remove fused elems and removed links from the maps
mapEl_setLi.erase( tr1 );
if ( Ok12 )
{
mapEl_setLi.erase( tr2 );
mapLi_listEl.erase( link12 );
aMesh->ChangeElementNodes( tr1, n12, 4 );
aMesh->RemoveElement( tr2 );
}
else if ( Ok13 )
{
mapEl_setLi.erase( tr3 );
mapLi_listEl.erase( link13 );
aMesh->ChangeElementNodes( tr1, n13, 4 );
aMesh->RemoveElement( tr3 );
}
// Next element to fuse: the rejected one
if ( tr3 )
startElem = Ok12 ? tr3 : tr2;
} // if ( startElem )
} // while ( startElem || !startLinks.empty() )
} // while ( ! mapEl_setLi.empty() )
return true;
}
#define DUMPSO(txt) \
// cout << txt << endl;
//=============================================================================
/*!
*
*/
//=============================================================================
static void swap( int i1, int i2, int idNodes[], gp_Pnt P[] )
{
if ( i1 == i2 )
return;
int tmp = idNodes[ i1 ];
idNodes[ i1 ] = idNodes[ i2 ];
idNodes[ i2 ] = tmp;
gp_Pnt Ptmp = P[ i1 ];
P[ i1 ] = P[ i2 ];
P[ i2 ] = Ptmp;
DUMPSO( i1 << "(" << idNodes[ i2 ] << ") <-> " << i2 << "(" << idNodes[ i1 ] << ")");
}
//=======================================================================
//function : SortQuadNodes
//purpose : Set 4 nodes of a quadrangle face in a good order.
// Swap 1<->2 or 2<->3 nodes and correspondingly return
// 1 or 2 else 0.
//=======================================================================
int SMESH_MeshEditor::SortQuadNodes (const SMDS_Mesh * theMesh,
int idNodes[] )
{
gp_Pnt P[4];
int i;
for ( i = 0; i < 4; i++ ) {
const SMDS_MeshNode *n = theMesh->FindNode( idNodes[i] );
if ( !n ) return 0;
P[ i ].SetCoord( n->X(), n->Y(), n->Z() );
}
gp_Vec V1(P[0], P[1]);
gp_Vec V2(P[0], P[2]);
gp_Vec V3(P[0], P[3]);
gp_Vec Cross1 = V1 ^ V2;
gp_Vec Cross2 = V2 ^ V3;
i = 0;
if (Cross1.Dot(Cross2) < 0)
{
Cross1 = V2 ^ V1;
Cross2 = V1 ^ V3;
if (Cross1.Dot(Cross2) < 0)
i = 2;
else
i = 1;
swap ( i, i + 1, idNodes, P );
// for ( int ii = 0; ii < 4; ii++ ) {
// const SMDS_MeshNode *n = theMesh->FindNode( idNodes[ii] );
// DUMPSO( ii << "(" << idNodes[ii] <<") : "<<n->X()<<" "<<n->Y()<<" "<<n->Z());
// }
}
return i;
}
//=======================================================================
//function : SortHexaNodes
//purpose : Set 8 nodes of a hexahedron in a good order.
// Return success status
//=======================================================================
bool SMESH_MeshEditor::SortHexaNodes (const SMDS_Mesh * theMesh,
int idNodes[] )
{
gp_Pnt P[8];
int i;
DUMPSO( "INPUT: ========================================");
for ( i = 0; i < 8; i++ ) {
const SMDS_MeshNode *n = theMesh->FindNode( idNodes[i] );
if ( !n ) return false;
P[ i ].SetCoord( n->X(), n->Y(), n->Z() );
DUMPSO( i << "(" << idNodes[i] <<") : "<<n->X()<<" "<<n->Y()<<" "<<n->Z());
}
DUMPSO( "========================================");
set<int> faceNodes; // ids of bottom face nodes, to be found
set<int> checkedId1; // ids of tried 2-nd nodes
Standard_Real leastDist = DBL_MAX; // dist of the 4-th node from 123 plane
const Standard_Real tol = 1.e-6; // tolerance to find nodes in plane
int iMin, iLoop1 = 0;
// Loop to try the 2-nd nodes
while ( leastDist > DBL_MIN && ++iLoop1 < 8 )
{
// Find not checked 2-nd node
for ( i = 1; i < 8; i++ )
if ( checkedId1.find( idNodes[i] ) == checkedId1.end() ) {
int id1 = idNodes[i];
swap ( 1, i, idNodes, P );
checkedId1.insert ( id1 );
break;
}
// Find the 3-d node so that 1-2-3 triangle to be on a hexa face,
// ie that all but meybe one (id3 which is on the same face) nodes
// lay on the same side from the triangle plane.
bool manyInPlane = false; // more than 4 nodes lay in plane
int iLoop2 = 0;
while ( ++iLoop2 < 6 ) {
// get 1-2-3 plane coeffs
Standard_Real A, B, C, D;
gp_Vec N = gp_Vec (P[0], P[1]).Crossed( gp_Vec (P[0], P[2]) );
if ( N.SquareMagnitude() > gp::Resolution() )
{
gp_Pln pln ( P[0], N );
pln.Coefficients( A, B, C, D );
// find the node (iMin) closest to pln
Standard_Real dist[ 8 ], minDist = DBL_MAX;
set<int> idInPln;
for ( i = 3; i < 8; i++ ) {
dist[i] = A * P[i].X() + B * P[i].Y() + C * P[i].Z() + D;
if ( fabs( dist[i] ) < minDist ) {
minDist = fabs( dist[i] );
iMin = i;
}
if ( fabs( dist[i] ) <= tol )
idInPln.insert( idNodes[i] );
}
// there should not be more than 4 nodes in bottom plane
if ( idInPln.size() > 1 )
{
DUMPSO( "### idInPln.size() = " << idInPln.size());
// idInPlane does not contain the first 3 nodes
if ( manyInPlane || idInPln.size() == 5)
return false; // all nodes in one plane
manyInPlane = true;
// set the 1-st node to be not in plane
for ( i = 3; i < 8; i++ ) {
if ( idInPln.find( idNodes[ i ] ) == idInPln.end() ) {
DUMPSO( "### Reset 0-th node");
swap( 0, i, idNodes, P );
break;
}
}
// reset to re-check second nodes
leastDist = DBL_MAX;
faceNodes.clear();
checkedId1.clear();
iLoop1 = 0;
break; // from iLoop2;
}
// check that the other 4 nodes are on the same side
bool sameSide = true;
bool isNeg = dist[ iMin == 3 ? 4 : 3 ] <= 0.;
for ( i = 3; sameSide && i < 8; i++ ) {
if ( i != iMin )
sameSide = ( isNeg == dist[i] <= 0.);
}
// keep best solution
if ( sameSide && minDist < leastDist ) {
leastDist = minDist;
faceNodes.clear();
faceNodes.insert( idNodes[ 1 ] );
faceNodes.insert( idNodes[ 2 ] );
faceNodes.insert( idNodes[ iMin ] );
DUMPSO( "loop " << iLoop2 << " id2 " << idNodes[ 1 ] << " id3 " << idNodes[ 2 ]
<< " leastDist = " << leastDist);
if ( leastDist <= DBL_MIN )
break;
}
}
// set next 3-d node to check
int iNext = 2 + iLoop2;
if ( iNext < 8 ) {
DUMPSO( "Try 2-nd");
swap ( 2, iNext, idNodes, P );
}
} // while ( iLoop2 < 6 )
} // iLoop1
if ( faceNodes.empty() ) return false;
// Put the faceNodes in proper places
for ( i = 4; i < 8; i++ ) {
if ( faceNodes.find( idNodes[ i ] ) != faceNodes.end() ) {
// find a place to put
int iTo = 1;
while ( faceNodes.find( idNodes[ iTo ] ) != faceNodes.end() )
iTo++;
DUMPSO( "Set faceNodes");
swap ( iTo, i, idNodes, P );
}
}
// Set nodes of the found bottom face in good order
DUMPSO( " Found bottom face: ");
i = SortQuadNodes( theMesh, idNodes );
if ( i ) {
gp_Pnt Ptmp = P[ i ];
P[ i ] = P[ i+1 ];
P[ i+1 ] = Ptmp;
}
// else
// for ( int ii = 0; ii < 4; ii++ ) {
// const SMDS_MeshNode *n = theMesh->FindNode( idNodes[ii] );
// DUMPSO( ii << "(" << idNodes[ii] <<") : "<<n->X()<<" "<<n->Y()<<" "<<n->Z());
// }
// Gravity center of the top and bottom faces
gp_Pnt aGCb = ( P[0].XYZ() + P[1].XYZ() + P[2].XYZ() + P[3].XYZ() ) / 4.;
gp_Pnt aGCt = ( P[4].XYZ() + P[5].XYZ() + P[6].XYZ() + P[7].XYZ() ) / 4.;
// Get direction from the bottom to the top face
gp_Vec upDir ( aGCb, aGCt );
Standard_Real upDirSize = upDir.Magnitude();
if ( upDirSize <= gp::Resolution() ) return false;
upDir / upDirSize;
// Assure that the bottom face normal points up
gp_Vec Nb = gp_Vec (P[0], P[1]).Crossed( gp_Vec (P[0], P[2]) );
Nb += gp_Vec (P[0], P[2]).Crossed( gp_Vec (P[0], P[3]) );
if ( Nb.Dot( upDir ) < 0 ) {
DUMPSO( "Reverse bottom face");
swap( 1, 3, idNodes, P );
}
// Find 5-th node - the one closest to the 1-st among the last 4 nodes.
Standard_Real minDist = DBL_MAX;
for ( i = 4; i < 8; i++ ) {
// projection of P[i] to the plane defined by P[0] and upDir
gp_Pnt Pp = P[i].Translated( upDir * ( upDir.Dot( gp_Vec( P[i], P[0] ))));
Standard_Real sqDist = P[0].SquareDistance( Pp );
if ( sqDist < minDist ) {
minDist = sqDist;
iMin = i;
}
}
DUMPSO( "Set 4-th");
swap ( 4, iMin, idNodes, P );
// Set nodes of the top face in good order
DUMPSO( "Sort top face");
i = SortQuadNodes( theMesh, &idNodes[4] );
if ( i ) {
i += 4;
gp_Pnt Ptmp = P[ i ];
P[ i ] = P[ i+1 ];
P[ i+1 ] = Ptmp;
}
// Assure that direction of the top face normal is from the bottom face
gp_Vec Nt = gp_Vec (P[4], P[5]).Crossed( gp_Vec (P[4], P[6]) );
Nt += gp_Vec (P[4], P[6]).Crossed( gp_Vec (P[4], P[7]) );
if ( Nt.Dot( upDir ) < 0 ) {
DUMPSO( "Reverse top face");
swap( 5, 7, idNodes, P );
}
// DUMPSO( "OUTPUT: ========================================");
// for ( i = 0; i < 8; i++ ) {
// float *p = ugrid->GetPoint(idNodes[i]);
// DUMPSO( i << "(" << idNodes[i] << ") : " << p[0] << " " << p[1] << " " << p[2]);
// }
return true;
}
//=======================================================================
//function : laplacianSmooth
//purpose : pulls theNode toward the center of surrounding nodes directly
// connected to that node along an element edge
//=======================================================================
void laplacianSmooth(SMESHDS_Mesh * theMesh,
const SMDS_MeshNode* theNode,
const set<const SMDS_MeshElement*> & theElems,
const set<const SMDS_MeshNode*> & theFixedNodes)
{
// find surrounding nodes
set< const SMDS_MeshNode* > nodeSet;
SMDS_ElemIteratorPtr elemIt = theNode->GetInverseElementIterator();
while ( elemIt->more() )
{
const SMDS_MeshElement* elem = elemIt->next();
if ( theElems.find( elem ) == theElems.end() )
continue;
int i = 0, iNode = 0;
const SMDS_MeshNode* aNodes [4];
SMDS_ElemIteratorPtr itN = elem->nodesIterator();
while ( itN->more() )
{
aNodes[ i ] = static_cast<const SMDS_MeshNode*>( itN->next() );
if ( aNodes[ i ] == theNode )
iNode = i;
else
nodeSet.insert( aNodes[ i ] );
i++;
}
if ( elem->NbNodes() == 4 ) { // remove an opposite node
iNode += ( iNode < 2 ) ? 2 : -2;
nodeSet.erase( aNodes[ iNode ]);
}
}
// compute new coodrs
double coord[] = { 0., 0., 0. };
set< const SMDS_MeshNode* >::iterator nodeSetIt = nodeSet.begin();
for ( ; nodeSetIt != nodeSet.end(); nodeSetIt++ ) {
const SMDS_MeshNode* node = (*nodeSetIt);
coord[0] += node->X();
coord[1] += node->Y();
coord[2] += node->Z();
}
double nbNodes = nodeSet.size();
theMesh->MoveNode (theNode,
coord[0]/nbNodes,
coord[1]/nbNodes,
coord[2]/nbNodes);
}
//=======================================================================
//function : centroidalSmooth
//purpose : pulls theNode toward the element-area-weighted centroid of the
// surrounding elements
//=======================================================================
void centroidalSmooth(SMESHDS_Mesh * theMesh,
const SMDS_MeshNode* theNode,
const set<const SMDS_MeshElement*> & theElems,
const set<const SMDS_MeshNode*> & theFixedNodes)
{
gp_XYZ aNewXYZ(0.,0.,0.);
SMESH::Controls::Area anAreaFunc;
double totalArea = 0.;
int nbElems = 0;
SMDS_ElemIteratorPtr elemIt = theNode->GetInverseElementIterator();
while ( elemIt->more() )
{
const SMDS_MeshElement* elem = elemIt->next();
if ( theElems.find( elem ) == theElems.end() )
continue;
nbElems++;
gp_XYZ elemCenter(0.,0.,0.);
2005-01-20 11:25:54 +05:00
SMESH::Controls::TSequenceOfXYZ aNodePoints;
2004-12-01 15:48:31 +05:00
SMDS_ElemIteratorPtr itN = elem->nodesIterator();
while ( itN->more() )
{
const SMDS_MeshNode* aNode = static_cast<const SMDS_MeshNode*>( itN->next() );
gp_XYZ aP( aNode->X(), aNode->Y(), aNode->Z() );
2005-01-20 11:25:54 +05:00
aNodePoints.push_back( aP );
2004-12-01 15:48:31 +05:00
elemCenter += aP;
}
double elemArea = anAreaFunc.GetValue( aNodePoints );
totalArea += elemArea;
elemCenter /= elem->NbNodes();
aNewXYZ += elemCenter * elemArea;
}
aNewXYZ /= totalArea;
theMesh->MoveNode (theNode,
aNewXYZ.X(),
aNewXYZ.Y(),
aNewXYZ.Z());
}
//=======================================================================
//function : Smooth
//purpose : Smooth theElements during theNbIterations or until a worst
// element has aspect ratio <= theTgtAspectRatio.
// Aspect Ratio varies in range [1.0, inf].
// If theElements is empty, the whole mesh is smoothed.
// theFixedNodes contains additionally fixed nodes. Nodes built
// on edges and boundary nodes are always fixed.
//=======================================================================
void SMESH_MeshEditor::Smooth (set<const SMDS_MeshElement*> & theElems,
set<const SMDS_MeshNode*> & theFixedNodes,
const SmoothMethod theSmoothMethod,
const int theNbIterations,
double theTgtAspectRatio)
{
MESSAGE((theSmoothMethod==LAPLACIAN ? "LAPLACIAN" : "CENTROIDAL") << "--::Smooth()");
SMESHDS_Mesh* aMesh = GetMeshDS();
if ( theElems.empty() ) {
// add all faces
SMDS_FaceIteratorPtr fIt = aMesh->facesIterator();
while ( fIt->more() )
theElems.insert( fIt->next() );
}
set<const SMDS_MeshNode*> setMovableNodes;
// Fill setMovableNodes
map< const SMDS_MeshNode*, int > mapNodeNbFaces;
set< const SMDS_MeshElement* >::iterator itElem;
for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ )
{
const SMDS_MeshElement* elem = (*itElem);
if ( !elem || elem->GetType() != SMDSAbs_Face )
continue;
SMDS_ElemIteratorPtr itN = elem->nodesIterator();
while ( itN->more() ) {
const SMDS_MeshNode* node =
static_cast<const SMDS_MeshNode*>( itN->next() );
if ( theFixedNodes.find( node ) != theFixedNodes.end() )
continue;
// if node is on edge => it is fixed
SMDS_PositionPtr aPositionPtr = node->GetPosition();
if ( aPositionPtr.get() &&
(aPositionPtr->GetTypeOfPosition() == SMDS_TOP_EDGE ||
aPositionPtr->GetTypeOfPosition() == SMDS_TOP_VERTEX)) {
theFixedNodes.insert( node );
continue;
}
// fill mapNodeNbFaces in order to detect fixed boundary nodes
map<const SMDS_MeshNode*,int>::iterator nodeNbFacesIt =
mapNodeNbFaces.find ( node );
if ( nodeNbFacesIt == mapNodeNbFaces.end() )
mapNodeNbFaces.insert( map<const SMDS_MeshNode*,int>::value_type( node, 1 ));
else
(*nodeNbFacesIt).second++;
}
}
// put not fixed nodes in setMovableNodes
map<const SMDS_MeshNode*,int>::iterator nodeNbFacesIt =
mapNodeNbFaces.begin();
for ( ; nodeNbFacesIt != mapNodeNbFaces.end(); nodeNbFacesIt++ ) {
const SMDS_MeshNode* node = (*nodeNbFacesIt).first;
// a node is on free boundary if it is shared by 1-2 faces
if ( (*nodeNbFacesIt).second > 2 )
setMovableNodes.insert( node );
else
theFixedNodes.insert( node );
}
// SMOOTHING //
if ( theTgtAspectRatio < 1.0 )
theTgtAspectRatio = 1.0;
SMESH::Controls::AspectRatio aQualityFunc;
for ( int it = 0; it < theNbIterations; it++ )
{
Standard_Real maxDisplacement = 0.;
set<const SMDS_MeshNode*>::iterator movableNodesIt
= setMovableNodes.begin();
for ( ; movableNodesIt != setMovableNodes.end(); movableNodesIt++ )
{
const SMDS_MeshNode* node = (*movableNodesIt);
gp_XYZ aPrevPos ( node->X(), node->Y(), node->Z() );
// smooth
if ( theSmoothMethod == LAPLACIAN )
laplacianSmooth( aMesh, node, theElems, theFixedNodes );
else
centroidalSmooth( aMesh, node, theElems, theFixedNodes );
// displacement
gp_XYZ aNewPos ( node->X(), node->Y(), node->Z() );
Standard_Real aDispl = (aPrevPos - aNewPos).SquareModulus();
if ( aDispl > maxDisplacement )
maxDisplacement = aDispl;
}
// no node movement => exit
if ( maxDisplacement < 1.e-16 ) {
MESSAGE("-- no node movement -- maxDisplacement: " << maxDisplacement << " it "<< it);
break;
}
// check elements quality
double maxRatio = 0;
for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ )
{
const SMDS_MeshElement* elem = (*itElem);
if ( !elem || elem->GetType() != SMDSAbs_Face )
continue;
2005-01-20 11:25:54 +05:00
SMESH::Controls::TSequenceOfXYZ aPoints;
2004-12-01 15:48:31 +05:00
if ( aQualityFunc.GetPoints( elem, aPoints )) {
double aValue = aQualityFunc.GetValue( aPoints );
if ( aValue > maxRatio )
maxRatio = aValue;
}
}
if ( maxRatio <= theTgtAspectRatio ) {
MESSAGE("-- quality achived -- maxRatio " << maxRatio << " it "<< it);
break;
}
if (it+1 == theNbIterations) {
MESSAGE("-- Iteration limit exceeded --");
}
}
}
//=======================================================================
//function : isReverse
2005-01-20 11:25:54 +05:00
//purpose : Return true if normal of prevNodes is not co-directied with
// gp_Vec(prevNodes[iNotSame],nextNodes[iNotSame]).
// iNotSame is where prevNodes and nextNodes are different
2004-12-01 15:48:31 +05:00
//=======================================================================
static bool isReverse(const SMDS_MeshNode* prevNodes[],
const SMDS_MeshNode* nextNodes[],
const int nbNodes,
const int iNotSame)
{
int iBeforeNotSame = ( iNotSame == 0 ? nbNodes - 1 : iNotSame - 1 );
int iAfterNotSame = ( iNotSame + 1 == nbNodes ? 0 : iNotSame + 1 );
const SMDS_MeshNode* nB = prevNodes[ iBeforeNotSame ];
const SMDS_MeshNode* nA = prevNodes[ iAfterNotSame ];
const SMDS_MeshNode* nP = prevNodes[ iNotSame ];
const SMDS_MeshNode* nN = nextNodes[ iNotSame ];
gp_Pnt pB ( nB->X(), nB->Y(), nB->Z() );
gp_Pnt pA ( nA->X(), nA->Y(), nA->Z() );
gp_Pnt pP ( nP->X(), nP->Y(), nP->Z() );
gp_Pnt pN ( nN->X(), nN->Y(), nN->Z() );
gp_Vec vB ( pP, pB ), vA ( pP, pA ), vN ( pP, pN );
return (vA ^ vB) * vN < 0.0;
}
//=======================================================================
//function : sweepElement
2005-01-20 11:25:54 +05:00
//purpose :
2004-12-01 15:48:31 +05:00
//=======================================================================
2005-01-20 11:25:54 +05:00
static void sweepElement(SMESHDS_Mesh* aMesh,
const SMDS_MeshElement* elem,
const vector<TNodeOfNodeListMapItr> & newNodesItVec,
list<const SMDS_MeshElement*>& newElems)
2004-12-01 15:48:31 +05:00
{
// Loop on elem nodes:
// find new nodes and detect same nodes indices
2005-01-20 11:25:54 +05:00
int nbNodes = elem->NbNodes();
list<const SMDS_MeshNode*>::const_iterator itNN[ nbNodes ];
const SMDS_MeshNode* prevNod[ nbNodes ], *nextNod[ nbNodes ];
int iNode, nbSame = 0, iNotSameNode = 0, iSameNode = 0;
for ( iNode = 0; iNode < nbNodes; iNode++ )
2004-12-01 15:48:31 +05:00
{
2005-01-20 11:25:54 +05:00
TNodeOfNodeListMapItr nnIt = newNodesItVec[ iNode ];
const SMDS_MeshNode* node = nnIt->first;
const list< const SMDS_MeshNode* > & listNewNodes = nnIt->second;
if ( listNewNodes.empty() )
return;
2004-12-01 15:48:31 +05:00
2005-01-20 11:25:54 +05:00
itNN[ iNode ] = listNewNodes.begin();
2004-12-01 15:48:31 +05:00
prevNod[ iNode ] = node;
2005-01-20 11:25:54 +05:00
nextNod[ iNode ] = listNewNodes.front();
2004-12-01 15:48:31 +05:00
if ( prevNod[ iNode ] != nextNod [ iNode ])
iNotSameNode = iNode;
else {
iSameNode = iNode;
nbSame++;
}
}
if ( nbSame == nbNodes || nbSame > 2) {
MESSAGE( " Too many same nodes of element " << elem->GetID() );
return;
}
int iBeforeSame = 0, iAfterSame = 0, iOpposSame = 0;
if ( nbSame > 0 ) {
iBeforeSame = ( iSameNode == 0 ? nbNodes - 1 : iSameNode - 1 );
iAfterSame = ( iSameNode + 1 == nbNodes ? 0 : iSameNode + 1 );
iOpposSame = ( iSameNode - 2 < 0 ? iSameNode + 2 : iSameNode - 2 );
}
// check element orientation
int i0 = 0, i2 = 2;
2005-01-20 11:25:54 +05:00
if ( nbNodes > 2 && !isReverse( prevNod, nextNod, nbNodes, iNotSameNode )) {
//MESSAGE("Reversed elem " << elem );
2004-12-01 15:48:31 +05:00
i0 = 2;
i2 = 0;
if ( nbSame > 0 ) {
int iAB = iAfterSame + iBeforeSame;
iBeforeSame = iAB - iBeforeSame;
iAfterSame = iAB - iAfterSame;
}
}
// make new elements
2005-01-20 11:25:54 +05:00
int iStep, nbSteps = newNodesItVec[ 0 ]->second.size();
2004-12-01 15:48:31 +05:00
for (iStep = 0; iStep < nbSteps; iStep++ )
{
// get next nodes
for ( iNode = 0; iNode < nbNodes; iNode++ ) {
nextNod[ iNode ] = *itNN[ iNode ];
itNN[ iNode ]++;
}
2005-01-20 11:25:54 +05:00
SMDS_MeshElement* aNewElem = 0;
2004-12-01 15:48:31 +05:00
switch ( nbNodes )
{
2005-01-20 11:25:54 +05:00
case 1: { // NODE
if ( nbSame == 0 )
aNewElem = aMesh->AddEdge( prevNod[ 0 ], nextNod[ 0 ] );
break;
}
2004-12-01 15:48:31 +05:00
case 2: { // EDGE
if ( nbSame == 0 )
2005-01-20 11:25:54 +05:00
aNewElem = aMesh->AddFace(prevNod[ 0 ], prevNod[ 1 ],
nextNod[ 1 ], nextNod[ 0 ] );
2004-12-01 15:48:31 +05:00
else
2005-01-20 11:25:54 +05:00
aNewElem = aMesh->AddFace(prevNod[ 0 ], prevNod[ 1 ],
nextNod[ iNotSameNode ] );
2004-12-01 15:48:31 +05:00
break;
}
case 3: { // TRIANGLE
2005-01-20 11:25:54 +05:00
if ( nbSame == 0 ) // --- pentahedron
aNewElem = aMesh->AddVolume (prevNod[ i0 ], prevNod[ 1 ], prevNod[ i2 ],
nextNod[ i0 ], nextNod[ 1 ], nextNod[ i2 ] );
else if ( nbSame == 1 ) // --- pyramid
aNewElem = aMesh->AddVolume (prevNod[ iBeforeSame ], prevNod[ iAfterSame ],
nextNod[ iAfterSame ], nextNod[ iBeforeSame ],
2005-01-20 11:25:54 +05:00
nextNod[ iSameNode ]);
else // 2 same nodes: --- tetrahedron
aNewElem = aMesh->AddVolume (prevNod[ i0 ], prevNod[ 1 ], prevNod[ i2 ],
nextNod[ iNotSameNode ]);
2004-12-01 15:48:31 +05:00
break;
}
case 4: { // QUADRANGLE
2005-01-20 11:25:54 +05:00
if ( nbSame == 0 ) // --- hexahedron
aNewElem = aMesh->AddVolume (prevNod[ i0 ], prevNod[ 1 ], prevNod[ i2 ], prevNod[ 3 ],
nextNod[ i0 ], nextNod[ 1 ], nextNod[ i2 ], nextNod[ 3 ]);
else if ( nbSame == 1 ) // --- pyramid + pentahedron
2004-12-01 15:48:31 +05:00
{
aNewElem = aMesh->AddVolume (prevNod[ iBeforeSame ], prevNod[ iAfterSame ],
nextNod[ iAfterSame ], nextNod[ iBeforeSame ],
2005-01-20 11:25:54 +05:00
nextNod[ iSameNode ]);
newElems.push_back( aNewElem );
aNewElem = aMesh->AddVolume (prevNod[ iAfterSame ], prevNod[ iOpposSame ],
prevNod[ iBeforeSame ], nextNod[ iAfterSame ],
nextNod[ iOpposSame ], nextNod[ iBeforeSame ] );
2004-12-01 15:48:31 +05:00
}
2005-01-20 11:25:54 +05:00
else if ( nbSame == 2 ) // pentahedron
2004-12-01 15:48:31 +05:00
{
if ( prevNod[ iBeforeSame ] == nextNod[ iBeforeSame ] )
// iBeforeSame is same too
aNewElem = aMesh->AddVolume (prevNod[ iBeforeSame ], prevNod[ iOpposSame ],
nextNod[ iOpposSame ], prevNod[ iSameNode ],
prevNod[ iAfterSame ], nextNod[ iAfterSame ]);
2004-12-01 15:48:31 +05:00
else
// iAfterSame is same too
aNewElem = aMesh->AddVolume (prevNod[ iSameNode ], prevNod[ iBeforeSame ],
nextNod[ iBeforeSame ], prevNod[ iAfterSame ],
prevNod[ iOpposSame ], nextNod[ iOpposSame ]);
2004-12-01 15:48:31 +05:00
}
break;
}
default:
return;
}
2005-01-20 11:25:54 +05:00
if ( aNewElem )
newElems.push_back( aNewElem );
2004-12-01 15:48:31 +05:00
// set new prev nodes
for ( iNode = 0; iNode < nbNodes; iNode++ )
prevNod[ iNode ] = nextNod[ iNode ];
} // for steps
}
2005-01-20 11:25:54 +05:00
//=======================================================================
//function : makeWalls
//purpose : create 1D and 2D elements around swept elements
//=======================================================================
static void makeWalls (SMESHDS_Mesh* aMesh,
TNodeOfNodeListMap & mapNewNodes,
TElemOfElemListMap & newElemsMap,
TElemOfVecOfNnlmiMap & elemNewNodesMap,
set<const SMDS_MeshElement*>& elemSet)
{
ASSERT( newElemsMap.size() == elemNewNodesMap.size() );
// Find nodes belonging to only one initial element - sweep them to get edges.
TNodeOfNodeListMapItr nList = mapNewNodes.begin();
for ( ; nList != mapNewNodes.end(); nList++ )
{
const SMDS_MeshNode* node =
static_cast<const SMDS_MeshNode*>( nList->first );
SMDS_ElemIteratorPtr eIt = node->GetInverseElementIterator();
int nbInitElems = 0;
while ( eIt->more() && nbInitElems < 2 )
if ( elemSet.find( eIt->next() ) != elemSet.end() )
nbInitElems++;
if ( nbInitElems < 2 ) {
vector<TNodeOfNodeListMapItr> newNodesItVec( 1, nList );
list<const SMDS_MeshElement*> newEdges;
sweepElement( aMesh, node, newNodesItVec, newEdges );
}
}
// Make a ceiling for each element ie an equal element of last new nodes.
// Find free links of faces - make edges and sweep them into faces.
TElemOfElemListMap::iterator itElem = newElemsMap.begin();
TElemOfVecOfNnlmiMap::iterator itElemNodes = elemNewNodesMap.begin();
for ( ; itElem != newElemsMap.end(); itElem++, itElemNodes++ )
{
const SMDS_MeshElement* elem = itElem->first;
vector<TNodeOfNodeListMapItr>& vecNewNodes = itElemNodes->second;
if ( elem->GetType() == SMDSAbs_Edge )
{
// create a ceiling edge
aMesh->AddEdge(vecNewNodes[ 0 ]->second.back(),
vecNewNodes[ 1 ]->second.back() );
}
if ( elem->GetType() != SMDSAbs_Face )
continue;
bool hasFreeLinks = false;
set<const SMDS_MeshElement*> avoidSet;
avoidSet.insert( elem );
// loop on a face nodes
set<const SMDS_MeshNode*> aFaceLastNodes;
int iNode, nbNodes = vecNewNodes.size();
for ( iNode = 0; iNode < nbNodes; iNode++ )
{
aFaceLastNodes.insert( vecNewNodes[ iNode ]->second.back() );
// look for free links of a face
int iNext = ( iNode + 1 == nbNodes ) ? 0 : iNode + 1;
const SMDS_MeshNode* n1 = vecNewNodes[ iNode ]->first;
const SMDS_MeshNode* n2 = vecNewNodes[ iNext ]->first;
// check if a link is free
if ( ! SMESH_MeshEditor::FindFaceInSet ( n1, n2, elemSet, avoidSet ))
{
hasFreeLinks = true;
// make an edge and a ceiling for a new edge
if ( !aMesh->FindEdge( n1, n2 ))
aMesh->AddEdge( n1, n2 );
n1 = vecNewNodes[ iNode ]->second.back();
n2 = vecNewNodes[ iNext ]->second.back();
if ( !aMesh->FindEdge( n1, n2 ))
aMesh->AddEdge( n1, n2 );
}
}
// sweep free links into faces
if ( hasFreeLinks )
{
list<const SMDS_MeshElement*> & newVolumes = itElem->second;
int iStep, nbSteps = vecNewNodes[0]->second.size();
int iVol, volNb, nbVolumesByStep = newVolumes.size() / nbSteps;
set<const SMDS_MeshNode*> initNodeSet, faceNodeSet;
for ( iNode = 0; iNode < nbNodes; iNode++ )
initNodeSet.insert( vecNewNodes[ iNode ]->first );
for ( volNb = 0; volNb < nbVolumesByStep; volNb++ )
{
list<const SMDS_MeshElement*>::iterator v = newVolumes.begin();
iVol = 0;
while ( iVol++ < volNb ) v++;
// find indices of free faces of a volume
list< int > fInd;
SMDS_VolumeTool vTool( *v );
int iF, nbF = vTool.NbFaces();
for ( iF = 0; iF < nbF; iF ++ )
if (vTool.IsFreeFace( iF ) &&
vTool.GetFaceNodes( iF, faceNodeSet ) &&
initNodeSet != faceNodeSet) // except an initial face
fInd.push_back( iF );
if ( fInd.empty() )
continue;
// create faces for all steps
for ( iStep = 0; iStep < nbSteps; iStep++ )
{
vTool.Set( *v );
vTool.SetExternalNormal();
list< int >::iterator ind = fInd.begin();
for ( ; ind != fInd.end(); ind++ )
{
const SMDS_MeshNode** nodes = vTool.GetFaceNodes( *ind );
switch ( vTool.NbFaceNodes( *ind ) ) {
case 3:
aMesh->AddFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] ); break;
case 4:
aMesh->AddFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ], nodes[ 3 ] ); break;
}
}
// go to the next volume
iVol = 0;
while ( iVol++ < nbVolumesByStep ) v++;
}
}
} // sweep free links into faces
// make a ceiling face with a normal external to a volume
SMDS_VolumeTool lastVol( itElem->second.back() );
int iF = lastVol.GetFaceIndex( aFaceLastNodes );
if ( iF >= 0 )
{
lastVol.SetExternalNormal();
const SMDS_MeshNode** nodes = lastVol.GetFaceNodes( iF );
switch ( lastVol.NbFaceNodes( iF ) ) {
case 3:
if (!hasFreeLinks ||
!aMesh->FindFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ]))
aMesh->AddFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] );
break;
case 4:
if (!hasFreeLinks ||
!aMesh->FindFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ], nodes[ 3 ]))
aMesh->AddFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ], nodes[ 3 ] );
break;
}
}
} // loop on swept elements
}
2004-12-01 15:48:31 +05:00
//=======================================================================
//function : RotationSweep
//purpose :
//=======================================================================
void SMESH_MeshEditor::RotationSweep(set<const SMDS_MeshElement*> & theElems,
const gp_Ax1& theAxis,
const double theAngle,
const int theNbSteps,
const double theTol)
{
2005-01-20 11:25:54 +05:00
MESSAGE( "RotationSweep()");
2004-12-01 15:48:31 +05:00
gp_Trsf aTrsf;
aTrsf.SetRotation( theAxis, theAngle );
gp_Lin aLine( theAxis );
double aSqTol = theTol * theTol;
SMESHDS_Mesh* aMesh = GetMeshDS();
TNodeOfNodeListMap mapNewNodes;
2005-01-20 11:25:54 +05:00
TElemOfVecOfNnlmiMap mapElemNewNodes;
TElemOfElemListMap newElemsMap;
2004-12-01 15:48:31 +05:00
// loop on theElems
set< const SMDS_MeshElement* >::iterator itElem;
for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ )
{
const SMDS_MeshElement* elem = (*itElem);
2005-01-20 11:25:54 +05:00
if ( !elem )
2004-12-01 15:48:31 +05:00
continue;
2005-01-20 11:25:54 +05:00
vector<TNodeOfNodeListMapItr> & newNodesItVec = mapElemNewNodes[ elem ];
newNodesItVec.reserve( elem->NbNodes() );
2004-12-01 15:48:31 +05:00
// loop on elem nodes
SMDS_ElemIteratorPtr itN = elem->nodesIterator();
while ( itN->more() ) {
// check if a node has been already sweeped
const SMDS_MeshNode* node =
static_cast<const SMDS_MeshNode*>( itN->next() );
2005-01-20 11:25:54 +05:00
TNodeOfNodeListMapItr nIt = mapNewNodes.find( node );
if ( nIt == mapNewNodes.end() )
{
nIt = mapNewNodes.insert( make_pair( node, list<const SMDS_MeshNode*>() )).first;
list<const SMDS_MeshNode*>& listNewNodes = nIt->second;
// make new nodes
gp_XYZ aXYZ( node->X(), node->Y(), node->Z() );
double coord[3];
aXYZ.Coord( coord[0], coord[1], coord[2] );
bool isOnAxis = ( aLine.SquareDistance( aXYZ ) <= aSqTol );
const SMDS_MeshNode * newNode = node;
for ( int i = 0; i < theNbSteps; i++ ) {
if ( !isOnAxis ) {
aTrsf.Transforms( coord[0], coord[1], coord[2] );
newNode = aMesh->AddNode( coord[0], coord[1], coord[2] );
}
listNewNodes.push_back( newNode );
2004-12-01 15:48:31 +05:00
}
}
2005-01-20 11:25:54 +05:00
newNodesItVec.push_back( nIt );
2004-12-01 15:48:31 +05:00
}
// make new elements
2005-01-20 11:25:54 +05:00
sweepElement( aMesh, elem, newNodesItVec, newElemsMap[elem] );
2004-12-01 15:48:31 +05:00
}
2005-01-20 11:25:54 +05:00
makeWalls( aMesh, mapNewNodes, newElemsMap, mapElemNewNodes, theElems );
2004-12-01 15:48:31 +05:00
}
//=======================================================================
//function : ExtrusionSweep
//purpose :
//=======================================================================
void SMESH_MeshEditor::ExtrusionSweep(set<const SMDS_MeshElement*> & theElems,
const gp_Vec& theStep,
const int theNbSteps)
{
gp_Trsf aTrsf;
aTrsf.SetTranslation( theStep );
SMESHDS_Mesh* aMesh = GetMeshDS();
TNodeOfNodeListMap mapNewNodes;
2005-01-20 11:25:54 +05:00
TElemOfVecOfNnlmiMap mapElemNewNodes;
TElemOfElemListMap newElemsMap;
2004-12-01 15:48:31 +05:00
// loop on theElems
set< const SMDS_MeshElement* >::iterator itElem;
for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ )
{
// check element type
const SMDS_MeshElement* elem = (*itElem);
2005-01-20 11:25:54 +05:00
if ( !elem )
2004-12-01 15:48:31 +05:00
continue;
2005-01-20 11:25:54 +05:00
vector<TNodeOfNodeListMapItr> & newNodesItVec = mapElemNewNodes[ elem ];
newNodesItVec.reserve( elem->NbNodes() );
2004-12-01 15:48:31 +05:00
// loop on elem nodes
SMDS_ElemIteratorPtr itN = elem->nodesIterator();
while ( itN->more() ) {
// check if a node has been already sweeped
const SMDS_MeshNode* node =
static_cast<const SMDS_MeshNode*>( itN->next() );
2005-01-20 11:25:54 +05:00
TNodeOfNodeListMap::iterator nIt = mapNewNodes.find( node );
if ( nIt == mapNewNodes.end() )
{
nIt = mapNewNodes.insert( make_pair( node, list<const SMDS_MeshNode*>() )).first;
list<const SMDS_MeshNode*>& listNewNodes = nIt->second;
2004-12-01 15:48:31 +05:00
2005-01-20 11:25:54 +05:00
// make new nodes
double coord[] = { node->X(), node->Y(), node->Z() };
for ( int i = 0; i < theNbSteps; i++ ) {
aTrsf.Transforms( coord[0], coord[1], coord[2] );
const SMDS_MeshNode * newNode = aMesh->AddNode( coord[0], coord[1], coord[2] );
listNewNodes.push_back( newNode );
}
}
newNodesItVec.push_back( nIt );
}
// make new elements
sweepElement( aMesh, elem, newNodesItVec, newElemsMap[elem] );
}
makeWalls( aMesh, mapNewNodes, newElemsMap, mapElemNewNodes, theElems );
}
//=======================================================================
//class : SMESH_MeshEditor_PathPoint
//purpose : auxiliary class
//=======================================================================
2005-01-20 11:25:54 +05:00
class SMESH_MeshEditor_PathPoint {
public:
SMESH_MeshEditor_PathPoint() {
myPnt.SetCoord(99., 99., 99.);
myTgt.SetCoord(1.,0.,0.);
myAngle=0.;
myPrm=0.;
}
void SetPnt(const gp_Pnt& aP3D){
myPnt=aP3D;
}
void SetTangent(const gp_Dir& aTgt){
myTgt=aTgt;
}
void SetAngle(const double& aBeta){
myAngle=aBeta;
}
void SetParameter(const double& aPrm){
myPrm=aPrm;
}
const gp_Pnt& Pnt()const{
return myPnt;
}
const gp_Dir& Tangent()const{
return myTgt;
}
double Angle()const{
return myAngle;
}
double Parameter()const{
return myPrm;
}
protected:
gp_Pnt myPnt;
gp_Dir myTgt;
double myAngle;
double myPrm;
};
//=======================================================================
//function : ExtrusionAlongTrack
//purpose :
//=======================================================================
SMESH_MeshEditor::Extrusion_Error
SMESH_MeshEditor::ExtrusionAlongTrack (std::set<const SMDS_MeshElement*> & theElements,
SMESH_subMesh* theTrack,
const SMDS_MeshNode* theN1,
const bool theHasAngles,
std::list<double>& theAngles,
const bool theHasRefPoint,
const gp_Pnt& theRefPoint)
2005-01-20 11:25:54 +05:00
{
MESSAGE("SMESH_MeshEditor::ExtrusionAlongTrack")
int j, aNbTP, aNbE, aNb;
2005-01-20 11:25:54 +05:00
double aT1, aT2, aT, aAngle, aX, aY, aZ;
std::list<double> aPrms;
std::list<double>::iterator aItD;
std::set< const SMDS_MeshElement* >::iterator itElem;
Standard_Real aTx1, aTx2, aL2, aTolVec, aTolVec2;
gp_Pnt aP3D, aV0;
gp_Vec aVec;
gp_XYZ aGC;
Handle(Geom_Curve) aC3D;
TopoDS_Edge aTrackEdge;
TopoDS_Vertex aV1, aV2;
SMDS_ElemIteratorPtr aItE;
SMDS_NodeIteratorPtr aItN;
SMDSAbs_ElementType aTypeE;
TNodeOfNodeListMap mapNewNodes;
TElemOfVecOfNnlmiMap mapElemNewNodes;
TElemOfElemListMap newElemsMap;
aTolVec=1.e-7;
aTolVec2=aTolVec*aTolVec;
// 1. Check data
aNbE = theElements.size();
// nothing to do
if ( !aNbE )
return EXTR_NO_ELEMENTS;
2005-01-20 11:25:54 +05:00
// 1.1 Track Pattern
ASSERT( theTrack );
SMESHDS_SubMesh* pSubMeshDS=theTrack->GetSubMeshDS();
aItE = pSubMeshDS->GetElements();
while ( aItE->more() ) {
const SMDS_MeshElement* pE = aItE->next();
aTypeE = pE->GetType();
// Pattern must contain links only
if ( aTypeE != SMDSAbs_Edge )
return EXTR_PATH_NOT_EDGE;
2005-01-20 11:25:54 +05:00
}
const TopoDS_Shape& aS = theTrack->GetSubShape();
// Sub shape for the Pattern must be an Edge
if ( aS.ShapeType() != TopAbs_EDGE )
return EXTR_BAD_PATH_SHAPE;
aTrackEdge = TopoDS::Edge( aS );
// the Edge must not be degenerated
if ( BRep_Tool::Degenerated( aTrackEdge ) )
return EXTR_BAD_PATH_SHAPE;
2005-01-20 11:25:54 +05:00
TopExp::Vertices( aTrackEdge, aV1, aV2 );
aT1=BRep_Tool::Parameter( aV1, aTrackEdge );
aT2=BRep_Tool::Parameter( aV2, aTrackEdge );
aItN = theTrack->GetFather()->GetSubMesh( aV1 )->GetSubMeshDS()->GetNodes();
2005-01-20 11:25:54 +05:00
const SMDS_MeshNode* aN1 = aItN->next();
aItN = theTrack->GetFather()->GetSubMesh( aV2 )->GetSubMeshDS()->GetNodes();
2005-01-20 11:25:54 +05:00
const SMDS_MeshNode* aN2 = aItN->next();
// starting node must be aN1 or aN2
if ( !( aN1 == theN1 || aN2 == theN1 ) )
return EXTR_BAD_STARTING_NODE;
2005-01-20 11:25:54 +05:00
aNbTP = pSubMeshDS->NbNodes() + 2;
// 1.2. Angles
vector<double> aAngles( aNbTP );
for ( j=0; j < aNbTP; ++j ) {
aAngles[j] = 0.;
}
2005-01-20 11:25:54 +05:00
if ( theHasAngles ) {
aItD = theAngles.begin();
for ( j=1; (aItD != theAngles.end()) && (j<aNbTP); ++aItD, ++j ) {
2005-01-20 11:25:54 +05:00
aAngle = *aItD;
aAngles[j] = aAngle;
}
}
// 2. Collect parameters on the track edge
aPrms.push_back( aT1 );
aPrms.push_back( aT2 );
aItN = pSubMeshDS->GetNodes();
while ( aItN->more() ) {
const SMDS_MeshNode* pNode = aItN->next();
const SMDS_EdgePosition* pEPos =
static_cast<const SMDS_EdgePosition*>( pNode->GetPosition().get() );
aT = pEPos->GetUParameter();
aPrms.push_back( aT );
}
// sort parameters
aPrms.sort();
if ( aN1 == theN1 ) {
if ( aT1 > aT2 ) {
aPrms.reverse();
}
}
else {
if ( aT2 > aT1 ) {
aPrms.reverse();
}
}
// 3. Path Points
SMESH_MeshEditor_PathPoint aPP;
vector<SMESH_MeshEditor_PathPoint> aPPs( aNbTP );
//
aC3D = BRep_Tool::Curve( aTrackEdge, aTx1, aTx2 );
//
aItD = aPrms.begin();
for ( j=0; aItD != aPrms.end(); ++aItD, ++j ) {
aT = *aItD;
aC3D->D1( aT, aP3D, aVec );
aL2 = aVec.SquareMagnitude();
if ( aL2 < aTolVec2 )
return EXTR_CANT_GET_TANGENT;
2005-01-20 11:25:54 +05:00
gp_Dir aTgt( aVec );
aAngle = aAngles[j];
aPP.SetPnt( aP3D );
aPP.SetTangent( aTgt );
aPP.SetAngle( aAngle );
aPP.SetParameter( aT );
aPPs[j]=aPP;
}
// 3. Center of rotation aV0
aV0 = theRefPoint;
if ( !theHasRefPoint ) {
aNb = 0;
aGC.SetCoord( 0.,0.,0. );
itElem = theElements.begin();
for ( ; itElem != theElements.end(); itElem++ ) {
const SMDS_MeshElement* elem = (*itElem);
SMDS_ElemIteratorPtr itN = elem->nodesIterator();
while ( itN->more() ) {
const SMDS_MeshNode* node = static_cast<const SMDS_MeshNode*>( itN->next() );
aX = node->X();
aY = node->Y();
aZ = node->Z();
if ( mapNewNodes.find( node ) == mapNewNodes.end() ) {
list<const SMDS_MeshNode*> aLNx;
mapNewNodes[node] = aLNx;
//
gp_XYZ aXYZ( aX, aY, aZ );
aGC += aXYZ;
++aNb;
}
}
}
aGC /= aNb;
aV0.SetXYZ( aGC );
} // if (!theHasRefPoint) {
mapNewNodes.clear();
// 4. Processing the elements
SMESHDS_Mesh* aMesh = GetMeshDS();
for ( itElem = theElements.begin(); itElem != theElements.end(); itElem++ ) {
// check element type
const SMDS_MeshElement* elem = (*itElem);
aTypeE = elem->GetType();
if ( !elem || ( aTypeE != SMDSAbs_Face && aTypeE != SMDSAbs_Edge ) )
continue;
vector<TNodeOfNodeListMapItr> & newNodesItVec = mapElemNewNodes[ elem ];
newNodesItVec.reserve( elem->NbNodes() );
// loop on elem nodes
SMDS_ElemIteratorPtr itN = elem->nodesIterator();
while ( itN->more() ) {
// check if a node has been already processed
const SMDS_MeshNode* node =
static_cast<const SMDS_MeshNode*>( itN->next() );
TNodeOfNodeListMap::iterator nIt = mapNewNodes.find( node );
if ( nIt == mapNewNodes.end() ) {
nIt = mapNewNodes.insert( make_pair( node, list<const SMDS_MeshNode*>() )).first;
list<const SMDS_MeshNode*>& listNewNodes = nIt->second;
// make new nodes
aX = node->X(); aY = node->Y(); aZ = node->Z();
Standard_Real aAngle1x, aAngleT1T0, aTolAng;
2005-01-20 11:25:54 +05:00
gp_Pnt aP0x, aP1x, aPN0, aPN1, aV0x, aV1x;
gp_Ax1 anAx1, anAxT1T0;
gp_Dir aDT1x, aDT0x, aDT1T0;
aTolAng=1.e-4;
2005-01-20 11:25:54 +05:00
aV0x = aV0;
aPN0.SetCoord(aX, aY, aZ);
const SMESH_MeshEditor_PathPoint& aPP0 = aPPs[0];
aP0x = aPP0.Pnt();
aDT0x= aPP0.Tangent();
2005-01-20 11:25:54 +05:00
for ( j = 1; j < aNbTP; ++j ) {
const SMESH_MeshEditor_PathPoint& aPP1 = aPPs[j];
aP1x = aPP1.Pnt();
aDT1x = aPP1.Tangent();
2005-01-20 11:25:54 +05:00
aAngle1x = aPP1.Angle();
gp_Trsf aTrsf, aTrsfRot, aTrsfRotT1T0;
2005-01-20 11:25:54 +05:00
// Translation
gp_Vec aV01x( aP0x, aP1x );
aTrsf.SetTranslation( aV01x );
// traslated point
aV1x = aV0x.Transformed( aTrsf );
aPN1 = aPN0.Transformed( aTrsf );
// rotation 1 [ T1,T0 ]
aAngleT1T0=-aDT1x.Angle( aDT0x );
if (fabs(aAngleT1T0) > aTolAng) {
aDT1T0=aDT1x^aDT0x;
anAxT1T0.SetLocation( aV1x );
anAxT1T0.SetDirection( aDT1T0 );
aTrsfRotT1T0.SetRotation( anAxT1T0, aAngleT1T0 );
aPN1 = aPN1.Transformed( aTrsfRotT1T0 );
}
// rotation 2
2005-01-20 11:25:54 +05:00
if ( theHasAngles ) {
anAx1.SetLocation( aV1x );
anAx1.SetDirection( aDT1x );
aTrsfRot.SetRotation( anAx1, aAngle1x );
aPN1 = aPN1.Transformed( aTrsfRot );
}
// make new node
aX = aPN1.X();
aY = aPN1.Y();
aZ = aPN1.Z();
2005-01-20 11:25:54 +05:00
const SMDS_MeshNode* newNode = aMesh->AddNode( aX, aY, aZ );
listNewNodes.push_back( newNode );
aPN0 = aPN1;
aP0x = aP1x;
aV0x = aV1x;
aDT0x = aDT1x;
2005-01-20 11:25:54 +05:00
}
2004-12-01 15:48:31 +05:00
}
2005-01-20 11:25:54 +05:00
newNodesItVec.push_back( nIt );
2004-12-01 15:48:31 +05:00
}
// make new elements
2005-01-20 11:25:54 +05:00
sweepElement( aMesh, elem, newNodesItVec, newElemsMap[elem] );
2004-12-01 15:48:31 +05:00
}
2005-01-20 11:25:54 +05:00
makeWalls( aMesh, mapNewNodes, newElemsMap, mapElemNewNodes, theElements );
return EXTR_OK;
2004-12-01 15:48:31 +05:00
}
//=======================================================================
//function : Transform
//purpose :
//=======================================================================
void SMESH_MeshEditor::Transform (set<const SMDS_MeshElement*> & theElems,
const gp_Trsf& theTrsf,
const bool theCopy)
{
bool needReverse;
switch ( theTrsf.Form() ) {
case gp_PntMirror:
case gp_Ax2Mirror:
needReverse = true;
break;
default:
needReverse = false;
}
SMESHDS_Mesh* aMesh = GetMeshDS();
// map old node to new one
TNodeNodeMap nodeMap;
// elements sharing moved nodes; those of them which have all
// nodes mirrored but are not in theElems are to be reversed
set<const SMDS_MeshElement*> inverseElemSet;
// loop on theElems
set< const SMDS_MeshElement* >::iterator itElem;
for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ )
{
const SMDS_MeshElement* elem = (*itElem);
if ( !elem )
continue;
// loop on elem nodes
SMDS_ElemIteratorPtr itN = elem->nodesIterator();
while ( itN->more() ) {
// check if a node has been already transormed
const SMDS_MeshNode* node =
static_cast<const SMDS_MeshNode*>( itN->next() );
if (nodeMap.find( node ) != nodeMap.end() )
continue;
double coord[3];
coord[0] = node->X();
coord[1] = node->Y();
coord[2] = node->Z();
theTrsf.Transforms( coord[0], coord[1], coord[2] );
const SMDS_MeshNode * newNode = node;
if ( theCopy )
newNode = aMesh->AddNode( coord[0], coord[1], coord[2] );
else
aMesh->MoveNode( node, coord[0], coord[1], coord[2] );
nodeMap.insert( TNodeNodeMap::value_type( node, newNode ));
// keep inverse elements
if ( !theCopy && needReverse ) {
SMDS_ElemIteratorPtr invElemIt = node->GetInverseElementIterator();
while ( invElemIt->more() )
inverseElemSet.insert( invElemIt->next() );
}
}
}
// either new elements are to be created
// or a mirrored element are to be reversed
if ( !theCopy && !needReverse)
return;
if ( !inverseElemSet.empty()) {
set<const SMDS_MeshElement*>::iterator invElemIt = inverseElemSet.begin();
for ( ; invElemIt != inverseElemSet.end(); invElemIt++ )
theElems.insert( *invElemIt );
}
// replicate or reverse elements
enum {
REV_TETRA = 0, // = nbNodes - 4
REV_PYRAMID = 1, // = nbNodes - 4
REV_PENTA = 2, // = nbNodes - 4
REV_FACE = 3,
REV_HEXA = 4, // = nbNodes - 4
FORWARD = 5
};
int index[][8] = {
{ 2, 1, 0, 3, 4, 0, 0, 0 }, // REV_TETRA
{ 2, 1, 0, 3, 4, 0, 0, 0 }, // REV_PYRAMID
{ 2, 1, 0, 5, 4, 3, 0, 0 }, // REV_PENTA
{ 2, 1, 0, 3, 0, 0, 0, 0 }, // REV_FACE
{ 2, 1, 0, 3, 6, 5, 4, 7 }, // REV_HEXA
{ 0, 1, 2, 3, 4, 5, 6, 7 } // FORWARD
};
for ( itElem = theElems.begin(); itElem != theElems.end(); itElem++ )
{
const SMDS_MeshElement* elem = (*itElem);
if ( !elem || elem->GetType() == SMDSAbs_Node )
continue;
int nbNodes = elem->NbNodes();
int elemType = elem->GetType();
int* i = index[ FORWARD ];
if ( needReverse && nbNodes > 2) // reverse mirrored faces and volumes
if ( elemType == SMDSAbs_Face )
i = index[ REV_FACE ];
else
i = index[ nbNodes - 4 ];
// find transformed nodes
const SMDS_MeshNode* nodes[8];
int iNode = 0;
SMDS_ElemIteratorPtr itN = elem->nodesIterator();
while ( itN->more() )
{
const SMDS_MeshNode* node =
static_cast<const SMDS_MeshNode*>( itN->next() );
TNodeNodeMap::iterator nodeMapIt = nodeMap.find( node );
if ( nodeMapIt == nodeMap.end() )
break; // not all nodes transformed
nodes[ i [ iNode++ ]] = (*nodeMapIt).second;
}
if ( iNode != nbNodes )
continue; // not all nodes transformed
if ( theCopy )
{
// add a new element
switch ( elemType ) {
case SMDSAbs_Edge:
aMesh->AddEdge( nodes[ 0 ], nodes[ 1 ] );
break;
case SMDSAbs_Face:
if ( nbNodes == 3 )
aMesh->AddFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] );
else
aMesh->AddFace( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] , nodes[ 3 ]);
break;
case SMDSAbs_Volume:
if ( nbNodes == 4 )
aMesh->AddVolume( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] , nodes[ 3 ] );
else if ( nbNodes == 8 )
aMesh->AddVolume( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] , nodes[ 3 ],
nodes[ 4 ], nodes[ 5 ], nodes[ 6 ] , nodes[ 7 ]);
else if ( nbNodes == 6 )
aMesh->AddVolume( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] , nodes[ 3 ],
nodes[ 4 ], nodes[ 5 ]);
else if ( nbNodes == 5 )
aMesh->AddVolume( nodes[ 0 ], nodes[ 1 ], nodes[ 2 ] , nodes[ 3 ],
nodes[ 4 ]);
break;
default:;
}
}
else
{
// reverse element as it was reversed by transformation
if ( nbNodes > 2 )
aMesh->ChangeElementNodes( elem, nodes, nbNodes );
}
}
}
//=======================================================================
//function : FindCoincidentNodes
//purpose : Return list of group of nodes close to each other within theTolerance
2005-01-20 11:25:54 +05:00
// Search among theNodes or in the whole mesh if theNodes is empty.
2004-12-01 15:48:31 +05:00
//=======================================================================
2005-01-20 11:25:54 +05:00
void SMESH_MeshEditor::FindCoincidentNodes (set<const SMDS_MeshNode*> & theNodes,
const double theTolerance,
TListOfListOfNodes & theGroupsOfNodes)
2004-12-01 15:48:31 +05:00
{
double tol2 = theTolerance * theTolerance;
list<const SMDS_MeshNode*> nodes;
2005-01-20 11:25:54 +05:00
if ( theNodes.empty() )
{ // get all nodes in the mesh
SMDS_NodeIteratorPtr nIt = GetMeshDS()->nodesIterator();
while ( nIt->more() )
nodes.push_back( nIt->next() );
}
else
{
nodes.insert( nodes.end(), theNodes.begin(), theNodes.end() );
}
2004-12-01 15:48:31 +05:00
list<const SMDS_MeshNode*>::iterator it2, it1 = nodes.begin();
for ( ; it1 != nodes.end(); it1++ )
{
const SMDS_MeshNode* n1 = *it1;
gp_Pnt p1( n1->X(), n1->Y(), n1->Z() );
list<const SMDS_MeshNode*> * groupPtr = 0;
it2 = it1;
for ( it2++; it2 != nodes.end(); it2++ )
{
const SMDS_MeshNode* n2 = *it2;
gp_Pnt p2( n2->X(), n2->Y(), n2->Z() );
if ( p1.SquareDistance( p2 ) <= tol2 )
{
if ( !groupPtr ) {
theGroupsOfNodes.push_back( list<const SMDS_MeshNode*>() );
groupPtr = & theGroupsOfNodes.back();
groupPtr->push_back( n1 );
}
groupPtr->push_back( n2 );
it2 = nodes.erase( it2 );
it2--;
}
}
}
}
//=======================================================================
//function : MergeNodes
//purpose : In each group, the cdr of nodes are substituted by the first one
// in all elements.
//=======================================================================
void SMESH_MeshEditor::MergeNodes (TListOfListOfNodes & theGroupsOfNodes)
{
SMESHDS_Mesh* aMesh = GetMeshDS();
TNodeNodeMap nodeNodeMap; // node to replace - new node
set<const SMDS_MeshElement*> elems; // all elements with changed nodes
list< int > rmElemIds, rmNodeIds;
// Fill nodeNodeMap and elems
TListOfListOfNodes::iterator grIt = theGroupsOfNodes.begin();
for ( ; grIt != theGroupsOfNodes.end(); grIt++ )
{
list<const SMDS_MeshNode*>& nodes = *grIt;
list<const SMDS_MeshNode*>::iterator nIt = nodes.begin();
const SMDS_MeshNode* nToKeep = *nIt;
for ( ; nIt != nodes.end(); nIt++ )
{
const SMDS_MeshNode* nToRemove = *nIt;
nodeNodeMap.insert( TNodeNodeMap::value_type( nToRemove, nToKeep ));
if ( nToRemove != nToKeep ) {
rmNodeIds.push_back( nToRemove->GetID() );
2005-01-20 11:25:54 +05:00
AddToSameGroups( nToKeep, nToRemove, aMesh );
2004-12-01 15:48:31 +05:00
}
SMDS_ElemIteratorPtr invElemIt = nToRemove->GetInverseElementIterator();
while ( invElemIt->more() )
elems.insert( invElemIt->next() );
}
}
// Change element nodes or remove an element
set<const SMDS_MeshElement*>::iterator eIt = elems.begin();
for ( ; eIt != elems.end(); eIt++ )
{
const SMDS_MeshElement* elem = *eIt;
int nbNodes = elem->NbNodes();
int aShapeId = FindShape( elem );
set<const SMDS_MeshNode*> nodeSet;
const SMDS_MeshNode* curNodes[ nbNodes ], *uniqueNodes[ nbNodes ];
int iUnique = 0, iCur = 0, nbRepl = 0, iRepl [ nbNodes ];
// get new seq of nodes
SMDS_ElemIteratorPtr itN = elem->nodesIterator();
while ( itN->more() )
{
const SMDS_MeshNode* n =
static_cast<const SMDS_MeshNode*>( itN->next() );
TNodeNodeMap::iterator nnIt = nodeNodeMap.find( n );
if ( nnIt != nodeNodeMap.end() ) { // n sticks
n = (*nnIt).second;
iRepl[ nbRepl++ ] = iCur;
}
curNodes[ iCur ] = n;
bool isUnique = nodeSet.insert( n ).second;
if ( isUnique )
uniqueNodes[ iUnique++ ] = n;
iCur++;
}
// Analyse element topology after replacement
bool isOk = true;
int nbUniqueNodes = nodeSet.size();
if ( nbNodes != nbUniqueNodes ) // some nodes stick
{
switch ( nbNodes ) {
case 2: ///////////////////////////////////// EDGE
isOk = false; break;
case 3: ///////////////////////////////////// TRIANGLE
isOk = false; break;
case 4:
if ( elem->GetType() == SMDSAbs_Volume ) // TETRAHEDRON
isOk = false;
else { //////////////////////////////////// QUADRANGLE
if ( nbUniqueNodes < 3 )
isOk = false;
else if ( nbRepl == 2 && iRepl[ 1 ] - iRepl[ 0 ] == 2 )
isOk = false; // opposite nodes stick
}
break;
case 6: ///////////////////////////////////// PENTAHEDRON
if ( nbUniqueNodes == 4 ) {
// ---------------------------------> tetrahedron
if (nbRepl == 3 &&
iRepl[ 0 ] > 2 && iRepl[ 1 ] > 2 && iRepl[ 2 ] > 2 ) {
// all top nodes stick: reverse a bottom
uniqueNodes[ 0 ] = curNodes [ 1 ];
uniqueNodes[ 1 ] = curNodes [ 0 ];
}
else if (nbRepl == 3 &&
iRepl[ 0 ] < 3 && iRepl[ 1 ] < 3 && iRepl[ 2 ] < 3 ) {
// all bottom nodes stick: set a top before
uniqueNodes[ 3 ] = uniqueNodes [ 0 ];
uniqueNodes[ 0 ] = curNodes [ 3 ];
uniqueNodes[ 1 ] = curNodes [ 4 ];
uniqueNodes[ 2 ] = curNodes [ 5 ];
}
else if (nbRepl == 4 &&
iRepl[ 2 ] - iRepl [ 0 ] == 3 && iRepl[ 3 ] - iRepl [ 1 ] == 3 ) {
// a lateral face turns into a line: reverse a bottom
uniqueNodes[ 0 ] = curNodes [ 1 ];
uniqueNodes[ 1 ] = curNodes [ 0 ];
}
else
isOk = false;
}
else if ( nbUniqueNodes == 5 ) {
// PENTAHEDRON --------------------> 2 tetrahedrons
if ( nbRepl == 2 && iRepl[ 1 ] - iRepl [ 0 ] == 3 ) {
// a bottom node sticks with a linked top one
// 1.
SMDS_MeshElement* newElem =
aMesh->AddVolume(curNodes[ 3 ],
curNodes[ 4 ],
curNodes[ 5 ],
curNodes[ iRepl[ 0 ] == 2 ? 1 : 2 ]);
if ( aShapeId )
aMesh->SetMeshElementOnShape( newElem, aShapeId );
// 2. : reverse a bottom
uniqueNodes[ 0 ] = curNodes [ 1 ];
uniqueNodes[ 1 ] = curNodes [ 0 ];
nbUniqueNodes = 4;
}
else
isOk = false;
}
else
isOk = false;
break;
case 8: { //////////////////////////////////// HEXAHEDRON
isOk = false;
SMDS_VolumeTool hexa (elem);
hexa.SetExternalNormal();
if ( nbUniqueNodes == 4 && nbRepl == 6 ) {
//////////////////////// ---> tetrahedron
for ( int iFace = 0; iFace < 6; iFace++ ) {
const int *ind = hexa.GetFaceNodesIndices( iFace ); // indices of face nodes
if (curNodes[ind[ 0 ]] == curNodes[ind[ 1 ]] &&
curNodes[ind[ 0 ]] == curNodes[ind[ 2 ]] &&
curNodes[ind[ 0 ]] == curNodes[ind[ 3 ]] ) {
// one face turns into a point ...
int iOppFace = hexa.GetOppFaceIndex( iFace );
ind = hexa.GetFaceNodesIndices( iOppFace );
int nbStick = 0;
iUnique = 2; // reverse a tetrahedron bottom
for ( iCur = 0; iCur < 4 && nbStick < 2; iCur++ ) {
if ( curNodes[ind[ iCur ]] == curNodes[ind[ iCur + 1 ]] )
nbStick++;
else if ( iUnique >= 0 )
uniqueNodes[ iUnique-- ] = curNodes[ind[ iCur ]];
}
if ( nbStick == 1 ) {
// ... and the opposite one - into a triangle.
// set a top node
ind = hexa.GetFaceNodesIndices( iFace );
uniqueNodes[ 3 ] = curNodes[ind[ 0 ]];
isOk = true;
}
break;
}
}
}
else if (nbUniqueNodes == 5 && nbRepl == 4 ) {
//////////////////// HEXAHEDRON ---> 2 tetrahedrons
for ( int iFace = 0; iFace < 6; iFace++ ) {
const int *ind = hexa.GetFaceNodesIndices( iFace ); // indices of face nodes
if (curNodes[ind[ 0 ]] == curNodes[ind[ 1 ]] &&
curNodes[ind[ 0 ]] == curNodes[ind[ 2 ]] &&
curNodes[ind[ 0 ]] == curNodes[ind[ 3 ]] ) {
// one face turns into a point ...
int iOppFace = hexa.GetOppFaceIndex( iFace );
ind = hexa.GetFaceNodesIndices( iOppFace );
int nbStick = 0;
iUnique = 2; // reverse a tetrahedron 1 bottom
for ( iCur = 0; iCur < 4 && nbStick == 0; iCur++ ) {
if ( curNodes[ind[ iCur ]] == curNodes[ind[ iCur + 1 ]] )
nbStick++;
else if ( iUnique >= 0 )
uniqueNodes[ iUnique-- ] = curNodes[ind[ iCur ]];
}
if ( nbStick == 0 ) {
// ... and the opposite one is a quadrangle
// set a top node
const int* indTop = hexa.GetFaceNodesIndices( iFace );
uniqueNodes[ 3 ] = curNodes[indTop[ 0 ]];
nbUniqueNodes = 4;
// tetrahedron 2
SMDS_MeshElement* newElem =
aMesh->AddVolume(curNodes[ind[ 0 ]],
curNodes[ind[ 3 ]],
curNodes[ind[ 2 ]],
curNodes[indTop[ 0 ]]);
if ( aShapeId )
aMesh->SetMeshElementOnShape( newElem, aShapeId );
isOk = true;
}
break;
}
}
}
else if ( nbUniqueNodes == 6 && nbRepl == 4 ) {
////////////////// HEXAHEDRON ---> 2 tetrahedrons or 1 prism
// find indices of quad and tri faces
int iQuadFace[ 6 ], iTriFace[ 6 ], nbQuad = 0, nbTri = 0, iFace;
for ( iFace = 0; iFace < 6; iFace++ ) {
const int *ind = hexa.GetFaceNodesIndices( iFace ); // indices of face nodes
nodeSet.clear();
for ( iCur = 0; iCur < 4; iCur++ )
nodeSet.insert( curNodes[ind[ iCur ]] );
nbUniqueNodes = nodeSet.size();
if ( nbUniqueNodes == 3 )
iTriFace[ nbTri++ ] = iFace;
else if ( nbUniqueNodes == 4 )
iQuadFace[ nbQuad++ ] = iFace;
}
if (nbQuad == 2 && nbTri == 4 &&
hexa.GetOppFaceIndex( iQuadFace[ 0 ] ) == iQuadFace[ 1 ]) {
// 2 opposite quadrangles stuck with a diagonal;
// sample groups of merged indices: (0-4)(2-6)
// --------------------------------------------> 2 tetrahedrons
const int *ind1 = hexa.GetFaceNodesIndices( iQuadFace[ 0 ]); // indices of quad1 nodes
const int *ind2 = hexa.GetFaceNodesIndices( iQuadFace[ 1 ]);
int i0, i1d, i2, i3d, i0t, i2t; // d-daigonal, t-top
if (curNodes[ind1[ 0 ]] == curNodes[ind2[ 0 ]] &&
curNodes[ind1[ 2 ]] == curNodes[ind2[ 2 ]]) {
// stuck with 0-2 diagonal
i0 = ind1[ 3 ];
i1d = ind1[ 0 ];
i2 = ind1[ 1 ];
i3d = ind1[ 2 ];
i0t = ind2[ 1 ];
i2t = ind2[ 3 ];
}
else if (curNodes[ind1[ 1 ]] == curNodes[ind2[ 3 ]] &&
curNodes[ind1[ 3 ]] == curNodes[ind2[ 1 ]]) {
// stuck with 1-3 diagonal
i0 = ind1[ 0 ];
i1d = ind1[ 1 ];
i2 = ind1[ 2 ];
i3d = ind1[ 3 ];
i0t = ind2[ 0 ];
i2t = ind2[ 1 ];
}
else {
ASSERT(0);
}
// tetrahedron 1
uniqueNodes[ 0 ] = curNodes [ i0 ];
uniqueNodes[ 1 ] = curNodes [ i1d ];
uniqueNodes[ 2 ] = curNodes [ i3d ];
uniqueNodes[ 3 ] = curNodes [ i0t ];
nbUniqueNodes = 4;
// tetrahedron 2
SMDS_MeshElement* newElem = aMesh->AddVolume(curNodes[ i1d ],
curNodes[ i2 ],
curNodes[ i3d ],
curNodes[ i2t ]);
if ( aShapeId )
aMesh->SetMeshElementOnShape( newElem, aShapeId );
isOk = true;
}
else if (( nbTri == 2 && nbQuad == 3 ) || // merged (0-4)(1-5)
( nbTri == 4 && nbQuad == 2 )) { // merged (7-4)(1-5)
// --------------------------------------------> prism
// find 2 opposite triangles
nbUniqueNodes = 6;
for ( iFace = 0; iFace + 1 < nbTri; iFace++ ) {
if ( hexa.GetOppFaceIndex( iTriFace[ iFace ] ) == iTriFace[ iFace + 1 ]) {
// find indices of kept and replaced nodes
// and fill unique nodes of 2 opposite triangles
const int *ind1 = hexa.GetFaceNodesIndices( iTriFace[ iFace ]);
const int *ind2 = hexa.GetFaceNodesIndices( iTriFace[ iFace + 1 ]);
const SMDS_MeshNode** hexanodes = hexa.GetNodes();
// fill unique nodes
iUnique = 0;
isOk = true;
for ( iCur = 0; iCur < 4 && isOk; iCur++ ) {
const SMDS_MeshNode* n = curNodes[ind1[ iCur ]];
const SMDS_MeshNode* nInit = hexanodes[ind1[ iCur ]];
if ( n == nInit ) {
// iCur of a linked node of the opposite face (make normals co-directed):
int iCurOpp = ( iCur == 1 || iCur == 3 ) ? 4 - iCur : iCur;
// check that correspondent corners of triangles are linked
if ( !hexa.IsLinked( ind1[ iCur ], ind2[ iCurOpp ] ))
isOk = false;
else {
uniqueNodes[ iUnique ] = n;
uniqueNodes[ iUnique + 3 ] = curNodes[ind2[ iCurOpp ]];
iUnique++;
}
}
}
break;
}
}
}
} // if ( nbUniqueNodes == 6 && nbRepl == 4 )
break;
} // HEXAHEDRON
default:
isOk = false;
} // switch ( nbNodes )
} // if ( nbNodes != nbUniqueNodes ) // some nodes stick
if ( isOk )
aMesh->ChangeElementNodes( elem, uniqueNodes, nbUniqueNodes );
else
rmElemIds.push_back( elem->GetID() );
} // loop on elements
// Remove equal nodes and bad elements
Remove( rmNodeIds, true );
Remove( rmElemIds, false );
}
//=======================================================================
//function : MergeEqualElements
//purpose : Remove all but one of elements built on the same nodes.
//=======================================================================
void SMESH_MeshEditor::MergeEqualElements()
{
SMESHDS_Mesh* aMesh = GetMeshDS();
SMDS_EdgeIteratorPtr eIt = aMesh->edgesIterator();
SMDS_FaceIteratorPtr fIt = aMesh->facesIterator();
SMDS_VolumeIteratorPtr vIt = aMesh->volumesIterator();
list< int > rmElemIds; // IDs of elems to remove
for ( int iDim = 1; iDim <= 3; iDim++ ) {
set< set <const SMDS_MeshElement*> > setOfNodeSet;
while ( 1 ) {
// get next element
const SMDS_MeshElement* elem = 0;
if ( iDim == 1 ) {
if ( eIt->more() ) elem = eIt->next();
} else if ( iDim == 2 ) {
if ( fIt->more() ) elem = fIt->next();
} else {
if ( vIt->more() ) elem = vIt->next();
}
if ( !elem ) break;
// get elem nodes
set <const SMDS_MeshElement*> nodeSet;
SMDS_ElemIteratorPtr nodeIt = elem->nodesIterator();
while ( nodeIt->more() )
nodeSet.insert( nodeIt->next() );
// check uniqueness
bool isUnique = setOfNodeSet.insert( nodeSet ).second;
if ( !isUnique )
rmElemIds.push_back( elem->GetID() );
}
}
Remove( rmElemIds, false );
}
2005-01-20 11:25:54 +05:00
//=======================================================================
//function : FindFaceInSet
//purpose : Return a face having linked nodes n1 and n2 and which is
// - not in avoidSet,
// - in elemSet provided that !elemSet.empty()
//=======================================================================
const SMDS_MeshElement*
SMESH_MeshEditor::FindFaceInSet(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const set<const SMDS_MeshElement*>& elemSet,
const set<const SMDS_MeshElement*>& avoidSet)
{
SMDS_ElemIteratorPtr invElemIt = n1->GetInverseElementIterator();
while ( invElemIt->more() ) { // loop on inverse elements of n1
const SMDS_MeshElement* elem = invElemIt->next();
if (elem->GetType() != SMDSAbs_Face ||
avoidSet.find( elem ) != avoidSet.end() )
continue;
if ( !elemSet.empty() && elemSet.find( elem ) == elemSet.end())
continue;
// get face nodes and find index of n1
int i1, nbN = elem->NbNodes(), iNode = 0;
const SMDS_MeshNode* faceNodes[ nbN ], *n;
SMDS_ElemIteratorPtr nIt = elem->nodesIterator();
while ( nIt->more() ) {
faceNodes[ iNode ] = static_cast<const SMDS_MeshNode*>( nIt->next() );
if ( faceNodes[ iNode++ ] == n1 )
i1 = iNode - 1;
}
// find a n2 linked to n1
for ( iNode = 0; iNode < 2; iNode++ ) {
if ( iNode ) // node before n1
n = faceNodes[ i1 == 0 ? nbN - 1 : i1 - 1 ];
else // node after n1
n = faceNodes[ i1 + 1 == nbN ? 0 : i1 + 1 ];
if ( n == n2 )
return elem;
}
}
return 0;
}
2004-12-01 15:48:31 +05:00
//=======================================================================
//function : findAdjacentFace
//purpose :
//=======================================================================
static const SMDS_MeshElement* findAdjacentFace(const SMDS_MeshNode* n1,
const SMDS_MeshNode* n2,
const SMDS_MeshElement* elem)
{
2005-01-20 11:25:54 +05:00
set<const SMDS_MeshElement*> elemSet, avoidSet;
if ( elem )
avoidSet.insert ( elem );
2005-01-31 12:21:33 +05:00
return SMESH_MeshEditor::FindFaceInSet( n1, n2, elemSet, avoidSet );
2004-12-01 15:48:31 +05:00
}
//=======================================================================
//function : findFreeBorder
//purpose :
//=======================================================================
#define ControlFreeBorder SMESH::Controls::FreeEdges::IsFreeEdge
static bool findFreeBorder (const SMDS_MeshNode* theFirstNode,
const SMDS_MeshNode* theSecondNode,
const SMDS_MeshNode* theLastNode,
list< const SMDS_MeshNode* > & theNodes,
list< const SMDS_MeshElement* > & theFaces)
{
if ( !theFirstNode || !theSecondNode )
return false;
// find border face between theFirstNode and theSecondNode
const SMDS_MeshElement* curElem = findAdjacentFace( theFirstNode, theSecondNode, 0 );
if ( !curElem )
return false;
theFaces.push_back( curElem );
theNodes.push_back( theFirstNode );
theNodes.push_back( theSecondNode );
const SMDS_MeshNode* nodes [5], *nIgnore = theFirstNode, * nStart = theSecondNode;
set < const SMDS_MeshElement* > foundElems;
bool needTheLast = ( theLastNode != 0 );
while ( nStart != theLastNode )
{
if ( nStart == theFirstNode )
return !needTheLast;
// find all free border faces sharing form nStart
list< const SMDS_MeshElement* > curElemList;
list< const SMDS_MeshNode* > nStartList;
SMDS_ElemIteratorPtr invElemIt = nStart->facesIterator();
while ( invElemIt->more() ) {
const SMDS_MeshElement* e = invElemIt->next();
if ( e == curElem || foundElems.insert( e ).second )
{
// get nodes
SMDS_ElemIteratorPtr nIt = e->nodesIterator();
int iNode = 0, nbNodes = e->NbNodes();
while ( nIt->more() )
nodes[ iNode++ ] = static_cast<const SMDS_MeshNode*>( nIt->next() );
nodes[ iNode ] = nodes[ 0 ];
// check 2 links
for ( iNode = 0; iNode < nbNodes; iNode++ )
if (((nodes[ iNode ] == nStart && nodes[ iNode + 1] != nIgnore ) ||
(nodes[ iNode + 1] == nStart && nodes[ iNode ] != nIgnore )) &&
ControlFreeBorder( &nodes[ iNode ], e->GetID() ))
{
nStartList.push_back( nodes[ iNode + ( nodes[ iNode ] == nStart ? 1 : 0 )]);
curElemList.push_back( e );
}
}
}
// analyse the found
int nbNewBorders = curElemList.size();
if ( nbNewBorders == 0 ) {
// no free border furthermore
return !needTheLast;
}
else if ( nbNewBorders == 1 ) {
// one more element found
nIgnore = nStart;
nStart = nStartList.front();
curElem = curElemList.front();
theFaces.push_back( curElem );
theNodes.push_back( nStart );
}
else {
// several continuations found
list< const SMDS_MeshElement* >::iterator curElemIt;
list< const SMDS_MeshNode* >::iterator nStartIt;
// check if one of them reached the last node
if ( needTheLast ) {
for (curElemIt = curElemList.begin(), nStartIt = nStartList.begin();
curElemIt!= curElemList.end();
curElemIt++, nStartIt++ )
if ( *nStartIt == theLastNode ) {
theFaces.push_back( *curElemIt );
theNodes.push_back( *nStartIt );
return true;
}
}
// find the best free border by the continuations
list<const SMDS_MeshNode*> contNodes[ 2 ], *cNL;
list<const SMDS_MeshElement*> contFaces[ 2 ], *cFL;
for (curElemIt = curElemList.begin(), nStartIt = nStartList.begin();
curElemIt!= curElemList.end();
curElemIt++, nStartIt++ )
{
cNL = & contNodes[ contNodes[0].empty() ? 0 : 1 ];
cFL = & contFaces[ contFaces[0].empty() ? 0 : 1 ];
// find one more free border
if ( ! findFreeBorder( nIgnore, nStart, theLastNode, *cNL, *cFL )) {
cNL->clear();
cFL->clear();
}
else if ( !contNodes[0].empty() && !contNodes[1].empty() ) {
// choice: clear a worse one
int iLongest = ( contNodes[0].size() < contNodes[1].size() ? 1 : 0 );
int iWorse = ( needTheLast ? 1 - iLongest : iLongest );
contNodes[ iWorse ].clear();
contFaces[ iWorse ].clear();
}
}
if ( contNodes[0].empty() && contNodes[1].empty() )
return false;
// append the best free border
cNL = & contNodes[ contNodes[0].empty() ? 1 : 0 ];
cFL = & contFaces[ contFaces[0].empty() ? 1 : 0 ];
theNodes.pop_back(); // remove nIgnore
theNodes.pop_back(); // remove nStart
theFaces.pop_back(); // remove curElem
list< const SMDS_MeshNode* >::iterator nIt = cNL->begin();
list< const SMDS_MeshElement* >::iterator fIt = cFL->begin();
for ( ; nIt != cNL->end(); nIt++ ) theNodes.push_back( *nIt );
for ( ; fIt != cFL->end(); fIt++ ) theFaces.push_back( *fIt );
return true;
} // several continuations found
} // while ( nStart != theLastNode )
return true;
}
//=======================================================================
//function : CheckFreeBorderNodes
//purpose : Return true if the tree nodes are on a free border
//=======================================================================
bool SMESH_MeshEditor::CheckFreeBorderNodes(const SMDS_MeshNode* theNode1,
const SMDS_MeshNode* theNode2,
const SMDS_MeshNode* theNode3)
{
list< const SMDS_MeshNode* > nodes;
list< const SMDS_MeshElement* > faces;
return findFreeBorder( theNode1, theNode2, theNode3, nodes, faces);
}
//=======================================================================
//function : SewFreeBorder
//purpose :
//=======================================================================
SMESH_MeshEditor::Sew_Error
SMESH_MeshEditor::SewFreeBorder (const SMDS_MeshNode* theBordFirstNode,
const SMDS_MeshNode* theBordSecondNode,
const SMDS_MeshNode* theBordLastNode,
const SMDS_MeshNode* theSideFirstNode,
const SMDS_MeshNode* theSideSecondNode,
const SMDS_MeshNode* theSideThirdNode,
bool theSideIsFreeBorder)
{
MESSAGE("::SewFreeBorder()");
Sew_Error aResult = SEW_OK;
// ====================================
// find side nodes and elements
// ====================================
list< const SMDS_MeshNode* > nSide[ 2 ];
list< const SMDS_MeshElement* > eSide[ 2 ];
list< const SMDS_MeshNode* >::iterator nIt[ 2 ];
list< const SMDS_MeshElement* >::iterator eIt[ 2 ];
// Free border 1
// --------------
if (!findFreeBorder(theBordFirstNode,theBordSecondNode,theBordLastNode,
nSide[0], eSide[0])) {
MESSAGE(" Free Border 1 not found " );
aResult = SEW_BORDER1_NOT_FOUND;
}
if (theSideIsFreeBorder)
{
// Free border 2
// --------------
if (!findFreeBorder(theSideFirstNode, theSideSecondNode, theSideThirdNode,
nSide[1], eSide[1])) {
MESSAGE(" Free Border 2 not found " );
aResult = ( aResult != SEW_OK ? SEW_BOTH_BORDERS_NOT_FOUND : SEW_BORDER2_NOT_FOUND );
}
}
if ( aResult != SEW_OK )
return aResult;
if (!theSideIsFreeBorder)
{
// Side 2
// --------------
// -------------------------------------------------------------------------
// Algo:
// 1. If nodes to merge are not coincident, move nodes of the free border
// from the coord sys defined by the direction from the first to last
// nodes of the border to the correspondent sys of the side 2
// 2. On the side 2, find the links most co-directed with the correspondent
// links of the free border
// -------------------------------------------------------------------------
// 1. Since sewing may brake if there are volumes to split on the side 2,
// we wont move nodes but just compute new coordinates for them
typedef map<const SMDS_MeshNode*, gp_XYZ> TNodeXYZMap;
TNodeXYZMap nBordXYZ;
list< const SMDS_MeshNode* >& bordNodes = nSide[ 0 ];
list< const SMDS_MeshNode* >::iterator nBordIt;
gp_XYZ Pb1( theBordFirstNode->X(), theBordFirstNode->Y(), theBordFirstNode->Z() );
gp_XYZ Pb2( theBordLastNode->X(), theBordLastNode->Y(), theBordLastNode->Z() );
gp_XYZ Ps1( theSideFirstNode->X(), theSideFirstNode->Y(), theSideFirstNode->Z() );
gp_XYZ Ps2( theSideSecondNode->X(), theSideSecondNode->Y(), theSideSecondNode->Z() );
double tol2 = 1.e-8;
gp_Vec Vbs1( Pb1 - Ps1 ),Vbs2( Pb2 - Ps2 );
if ( Vbs1.SquareMagnitude() > tol2 || Vbs2.SquareMagnitude() > tol2 )
{
// Need node movement.
// find X and Z axes to create trsf
gp_Vec Zb( Pb1 - Pb2 ), Zs( Ps1 - Ps2 );
gp_Vec X = Zs ^ Zb;
if ( X.SquareMagnitude() <= gp::Resolution() * gp::Resolution() )
// Zb || Zs
X = gp_Ax2( gp::Origin(), Zb ).XDirection();
// coord systems
gp_Ax3 toBordAx( Pb1, Zb, X );
gp_Ax3 fromSideAx( Ps1, Zs, X );
gp_Ax3 toGlobalAx( gp::Origin(), gp::DZ(), gp::DX() );
// set trsf
gp_Trsf toBordSys, fromSide2Sys;
toBordSys.SetTransformation( toBordAx );
fromSide2Sys.SetTransformation( fromSideAx, toGlobalAx );
fromSide2Sys.SetScaleFactor( Zs.Magnitude() / Zb.Magnitude() );
// move
for ( nBordIt = bordNodes.begin(); nBordIt != bordNodes.end(); nBordIt++ ) {
const SMDS_MeshNode* n = *nBordIt;
gp_XYZ xyz( n->X(),n->Y(),n->Z() );
toBordSys.Transforms( xyz );
fromSide2Sys.Transforms( xyz );
nBordXYZ.insert( TNodeXYZMap::value_type( n, xyz ));
}
}
else
{
// just insert nodes XYZ in the nBordXYZ map
for ( nBordIt = bordNodes.begin(); nBordIt != bordNodes.end(); nBordIt++ ) {
const SMDS_MeshNode* n = *nBordIt;
nBordXYZ.insert( TNodeXYZMap::value_type( n, gp_XYZ( n->X(),n->Y(),n->Z() )));
}
}
// 2. On the side 2, find the links most co-directed with the correspondent
// links of the free border
list< const SMDS_MeshElement* >& sideElems = eSide[ 1 ];
list< const SMDS_MeshNode* >& sideNodes = nSide[ 1 ];
sideNodes.push_back( theSideFirstNode );
bool hasVolumes = false;
LinkID_Gen aLinkID_Gen( GetMeshDS() );
set<long> foundSideLinkIDs, checkedLinkIDs;
SMDS_VolumeTool volume;
const SMDS_MeshNode* faceNodes[ 4 ];
const SMDS_MeshNode* sideNode;
const SMDS_MeshElement* sideElem;
const SMDS_MeshNode* prevSideNode = theSideFirstNode;
const SMDS_MeshNode* prevBordNode = theBordFirstNode;
nBordIt = bordNodes.begin();
nBordIt++;
// border node position and border link direction to compare with
gp_XYZ bordPos = nBordXYZ[ *nBordIt ];
gp_XYZ bordDir = bordPos - nBordXYZ[ prevBordNode ];
// choose next side node by link direction or by closeness to
// the current border node:
bool searchByDir = ( *nBordIt != theBordLastNode );
do {
// find the next node on the Side 2
sideNode = 0;
double maxDot = -DBL_MAX, minDist = DBL_MAX;
long linkID;
checkedLinkIDs.clear();
gp_XYZ prevXYZ( prevSideNode->X(), prevSideNode->Y(), prevSideNode->Z() );
SMDS_ElemIteratorPtr invElemIt
= prevSideNode->GetInverseElementIterator();
while ( invElemIt->more() ) { // loop on inverse elements on the Side 2
const SMDS_MeshElement* elem = invElemIt->next();
// prepare data for a loop on links, of a face or a volume
int iPrevNode, iNode = 0, nbNodes = elem->NbNodes();
bool isVolume = volume.Set( elem );
const SMDS_MeshNode** nodes = isVolume ? volume.GetNodes() : faceNodes;
if ( isVolume ) // --volume
hasVolumes = true;
else if ( nbNodes > 2 ) { // --face
// retrieve all face nodes and find iPrevNode - an index of the prevSideNode
SMDS_ElemIteratorPtr nIt = elem->nodesIterator();
while ( nIt->more() ) {
nodes[ iNode ] = static_cast<const SMDS_MeshNode*>( nIt->next() );
if ( nodes[ iNode++ ] == prevSideNode )
iPrevNode = iNode - 1;
}
// there are 2 links to check
nbNodes = 2;
}
else // --edge
continue;
// loop on links, to be precise, on the second node of links
for ( iNode = 0; iNode < nbNodes; iNode++ ) {
const SMDS_MeshNode* n = nodes[ iNode ];
if ( isVolume ) {
if ( !volume.IsLinked( n, prevSideNode ))
continue;
} else {
if ( iNode ) // a node before prevSideNode
n = nodes[ iPrevNode == 0 ? elem->NbNodes() - 1 : iPrevNode - 1 ];
else // a node after prevSideNode
n = nodes[ iPrevNode + 1 == elem->NbNodes() ? 0 : iPrevNode + 1 ];
}
// check if this link was already used
long iLink = aLinkID_Gen.GetLinkID( prevSideNode, n );
bool isJustChecked = !checkedLinkIDs.insert( iLink ).second;
if (!isJustChecked &&
foundSideLinkIDs.find( iLink ) == foundSideLinkIDs.end() ) {
// test a link geometrically
gp_XYZ nextXYZ ( n->X(), n->Y(), n->Z() );
bool linkIsBetter = false;
double dot, dist;
if ( searchByDir ) { // choose most co-directed link
dot = bordDir * ( nextXYZ - prevXYZ ).Normalized();
linkIsBetter = ( dot > maxDot );
}
else { // choose link with the node closest to bordPos
dist = ( nextXYZ - bordPos ).SquareModulus();
linkIsBetter = ( dist < minDist );
}
if ( linkIsBetter ) {
maxDot = dot;
minDist = dist;
linkID = iLink;
sideNode = n;
sideElem = elem;
}
}
}
} // loop on inverse elements of prevSideNode
if ( !sideNode ) {
MESSAGE(" Cant find path by links of the Side 2 ");
return SEW_BAD_SIDE_NODES;
}
sideNodes.push_back( sideNode );
sideElems.push_back( sideElem );
foundSideLinkIDs.insert ( linkID );
prevSideNode = sideNode;
if ( *nBordIt == theBordLastNode )
searchByDir = false;
else {
// find the next border link to compare with
gp_XYZ sidePos( sideNode->X(), sideNode->Y(), sideNode->Z() );
searchByDir = ( bordDir * ( sidePos - bordPos ) <= 0 );
while ( *nBordIt != theBordLastNode && !searchByDir ) {
prevBordNode = *nBordIt;
nBordIt++;
bordPos = nBordXYZ[ *nBordIt ];
bordDir = bordPos - nBordXYZ[ prevBordNode ];
searchByDir = ( bordDir * ( sidePos - bordPos ) <= 0 );
}
}
}
while ( sideNode != theSideSecondNode );
if ( hasVolumes && sideNodes.size () != bordNodes.size() ) {
MESSAGE("VOLUME SPLITTING IS FORBIDDEN");
return SEW_VOLUMES_TO_SPLIT; // volume splitting is forbidden
}
} // end nodes search on the side 2
// ============================
// sew the border to the side 2
// ============================
int nbNodes[] = { nSide[0].size(), nSide[1].size() };
int maxNbNodes = Max( nbNodes[0], nbNodes[1] );
TListOfListOfNodes nodeGroupsToMerge;
if ( nbNodes[0] == nbNodes[1] ||
( theSideIsFreeBorder && !theSideThirdNode)) {
// all nodes are to be merged
for (nIt[0] = nSide[0].begin(), nIt[1] = nSide[1].begin();
nIt[0] != nSide[0].end() && nIt[1] != nSide[1].end();
nIt[0]++, nIt[1]++ )
{
nodeGroupsToMerge.push_back( list<const SMDS_MeshNode*>() );
nodeGroupsToMerge.back().push_back( *nIt[1] ); // to keep
nodeGroupsToMerge.back().push_back( *nIt[0] ); // tp remove
}
}
else {
// insert new nodes into the border and the side to get equal nb of segments
// get normalized parameters of nodes on the borders
double param[ 2 ][ maxNbNodes ];
int iNode, iBord;
for ( iBord = 0; iBord < 2; iBord++ ) { // loop on 2 borders
list< const SMDS_MeshNode* >& nodes = nSide[ iBord ];
list< const SMDS_MeshNode* >::iterator nIt = nodes.begin();
const SMDS_MeshNode* nPrev = *nIt;
double bordLength = 0;
for ( iNode = 0; nIt != nodes.end(); nIt++, iNode++ ) { // loop on border nodes
const SMDS_MeshNode* nCur = *nIt;
gp_XYZ segment (nCur->X() - nPrev->X(),
nCur->Y() - nPrev->Y(),
nCur->Z() - nPrev->Z());
double segmentLen = segment.Modulus();
bordLength += segmentLen;
param[ iBord ][ iNode ] = bordLength;
nPrev = nCur;
}
// normalize within [0,1]
for ( iNode = 0; iNode < nbNodes[ iBord ]; iNode++ ) {
param[ iBord ][ iNode ] /= bordLength;
}
}
// loop on border segments
const SMDS_MeshNode *nPrev[ 2 ] = { 0, 0 };
int i[ 2 ] = { 0, 0 };
nIt[0] = nSide[0].begin(); eIt[0] = eSide[0].begin();
nIt[1] = nSide[1].begin(); eIt[1] = eSide[1].begin();
TElemOfNodeListMap insertMap;
TElemOfNodeListMap::iterator insertMapIt;
// insertMap is
// key: elem to insert nodes into
// value: 2 nodes to insert between + nodes to be inserted
do {
bool next[ 2 ] = { false, false };
// find min adjacent segment length after sewing
double nextParam = 10., prevParam = 0;
for ( iBord = 0; iBord < 2; iBord++ ) { // loop on 2 borders
if ( i[ iBord ] + 1 < nbNodes[ iBord ])
nextParam = Min( nextParam, param[iBord][ i[iBord] + 1 ]);
if ( i[ iBord ] > 0 )
prevParam = Max( prevParam, param[iBord][ i[iBord] - 1 ]);
}
double minParam = Min( param[ 0 ][ i[0] ], param[ 1 ][ i[1] ]);
double maxParam = Max( param[ 0 ][ i[0] ], param[ 1 ][ i[1] ]);
double minSegLen = Min( nextParam - minParam, maxParam - prevParam );
// choose to insert or to merge nodes
double du = param[ 1 ][ i[1] ] - param[ 0 ][ i[0] ];
if ( Abs( du ) <= minSegLen * 0.2 ) {
// merge
// ------
nodeGroupsToMerge.push_back( list<const SMDS_MeshNode*>() );
const SMDS_MeshNode* n0 = *nIt[0];
const SMDS_MeshNode* n1 = *nIt[1];
nodeGroupsToMerge.back().push_back( n1 );
nodeGroupsToMerge.back().push_back( n0 );
// position of node of the border changes due to merge
param[ 0 ][ i[0] ] += du;
// move n1 for the sake of elem shape evaluation during insertion.
// n1 will be removed by MergeNodes() anyway
const_cast<SMDS_MeshNode*>( n0 )->setXYZ( n1->X(), n1->Y(), n1->Z() );
next[0] = next[1] = true;
}
else {
// insert
// ------
int intoBord = ( du < 0 ) ? 0 : 1;
const SMDS_MeshElement* elem = *eIt[ intoBord ];
const SMDS_MeshNode* n1 = nPrev[ intoBord ];
const SMDS_MeshNode* n2 = *nIt[ intoBord ];
const SMDS_MeshNode* nIns = *nIt[ 1 - intoBord ];
if ( intoBord == 1 ) {
// move node of the border to be on a link of elem of the side
gp_XYZ p1 (n1->X(), n1->Y(), n1->Z());
gp_XYZ p2 (n2->X(), n2->Y(), n2->Z());
double ratio = du / ( param[ 1 ][ i[1] ] - param[ 1 ][ i[1]-1 ]);
gp_XYZ p = p2 * ( 1 - ratio ) + p1 * ratio;
GetMeshDS()->MoveNode( nIns, p.X(), p.Y(), p.Z() );
}
insertMapIt = insertMap.find( elem );
bool notFound = ( insertMapIt == insertMap.end() );
bool otherLink = ( !notFound && (*insertMapIt).second.front() != n1 );
if ( otherLink ) {
// insert into another link of the same element:
// 1. perform insertion into the other link of the elem
list<const SMDS_MeshNode*> & nodeList = (*insertMapIt).second;
const SMDS_MeshNode* n12 = nodeList.front(); nodeList.pop_front();
const SMDS_MeshNode* n22 = nodeList.front(); nodeList.pop_front();
InsertNodesIntoLink( elem, n12, n22, nodeList );
// 2. perform insertion into the link of adjacent faces
while (true) {
const SMDS_MeshElement* adjElem = findAdjacentFace( n12, n22, elem );
if ( adjElem )
InsertNodesIntoLink( adjElem, n12, n22, nodeList );
else
break;
}
// 3. find an element appeared on n1 and n2 after the insertion
insertMap.erase( elem );
elem = findAdjacentFace( n1, n2, 0 );
}
if ( notFound || otherLink ) {
// add element and nodes of the side into the insertMap
insertMapIt = insertMap.insert
( TElemOfNodeListMap::value_type( elem, list<const SMDS_MeshNode*>() )).first;
(*insertMapIt).second.push_back( n1 );
(*insertMapIt).second.push_back( n2 );
}
// add node to be inserted into elem
(*insertMapIt).second.push_back( nIns );
next[ 1 - intoBord ] = true;
}
// go to the next segment
for ( iBord = 0; iBord < 2; iBord++ ) { // loop on 2 borders
if ( next[ iBord ] ) {
if ( i[ iBord ] != 0 && eIt[ iBord ] != eSide[ iBord ].end())
eIt[ iBord ]++;
nPrev[ iBord ] = *nIt[ iBord ];
nIt[ iBord ]++; i[ iBord ]++;
}
}
}
while ( nIt[0] != nSide[0].end() && nIt[1] != nSide[1].end());
// perform insertion of nodes into elements
for (insertMapIt = insertMap.begin();
insertMapIt != insertMap.end();
insertMapIt++ )
{
const SMDS_MeshElement* elem = (*insertMapIt).first;
list<const SMDS_MeshNode*> & nodeList = (*insertMapIt).second;
const SMDS_MeshNode* n1 = nodeList.front(); nodeList.pop_front();
const SMDS_MeshNode* n2 = nodeList.front(); nodeList.pop_front();
InsertNodesIntoLink( elem, n1, n2, nodeList );
if ( !theSideIsFreeBorder ) {
// look for and insert nodes into the faces adjacent to elem
while (true) {
const SMDS_MeshElement* adjElem = findAdjacentFace( n1, n2, elem );
if ( adjElem )
InsertNodesIntoLink( adjElem, n1, n2, nodeList );
else
break;
}
}
}
} // end: insert new nodes
MergeNodes ( nodeGroupsToMerge );
return aResult;
}
//=======================================================================
//function : InsertNodesIntoLink
//purpose : insert theNodesToInsert into theFace between theBetweenNode1
// and theBetweenNode2 and split theElement
//=======================================================================
void SMESH_MeshEditor::InsertNodesIntoLink(const SMDS_MeshElement* theFace,
const SMDS_MeshNode* theBetweenNode1,
const SMDS_MeshNode* theBetweenNode2,
list<const SMDS_MeshNode*>& theNodesToInsert)
{
if ( theFace->GetType() != SMDSAbs_Face ) return;
// find indices of 2 link nodes and of the rest nodes
int iNode = 0, il1, il2, i3, i4;
il1 = il2 = i3 = i4 = -1;
const SMDS_MeshNode* nodes[ 8 ];
SMDS_ElemIteratorPtr nodeIt = theFace->nodesIterator();
while ( nodeIt->more() ) {
const SMDS_MeshNode* n = static_cast<const SMDS_MeshNode*>( nodeIt->next() );
if ( n == theBetweenNode1 )
il1 = iNode;
else if ( n == theBetweenNode2 )
il2 = iNode;
else if ( i3 < 0 )
i3 = iNode;
else
i4 = iNode;
nodes[ iNode++ ] = n;
}
if ( il1 < 0 || il2 < 0 || i3 < 0 )
return ;
// arrange link nodes to go one after another regarding the face orientation
bool reverse = ( Abs( il2 - il1 ) == 1 ? il2 < il1 : il1 < il2 );
if ( reverse ) {
iNode = il1;
il1 = il2;
il2 = iNode;
theNodesToInsert.reverse();
}
// check that not link nodes of a quadrangles are in good order
int nbFaceNodes = theFace->NbNodes();
if ( nbFaceNodes == 4 && i4 - i3 != 1 ) {
iNode = i3;
i3 = i4;
i4 = iNode;
}
// put theNodesToInsert between theBetweenNode1 and theBetweenNode2
int nbLinkNodes = 2 + theNodesToInsert.size();
const SMDS_MeshNode* linkNodes[ nbLinkNodes ];
linkNodes[ 0 ] = nodes[ il1 ];
linkNodes[ nbLinkNodes - 1 ] = nodes[ il2 ];
list<const SMDS_MeshNode*>::iterator nIt = theNodesToInsert.begin();
for ( iNode = 1; nIt != theNodesToInsert.end(); nIt++ ) {
linkNodes[ iNode++ ] = *nIt;
}
// decide how to split a quadrangle: compare possible variants
// and choose which of splits to be a quadrangle
int i1, i2, iSplit, nbSplits = nbLinkNodes - 1, iBestQuad;
if ( nbFaceNodes == 3 )
{
iBestQuad = nbSplits;
i4 = i3;
}
else if ( nbFaceNodes == 4 )
{
SMESH::Controls::NumericalFunctorPtr aCrit( new SMESH::Controls::AspectRatio);
double aBestRate = DBL_MAX;
for ( int iQuad = 0; iQuad < nbSplits; iQuad++ ) {
i1 = 0; i2 = 1;
double aBadRate = 0;
// evaluate elements quality
for ( iSplit = 0; iSplit < nbSplits; iSplit++ ) {
if ( iSplit == iQuad ) {
SMDS_FaceOfNodes quad (linkNodes[ i1++ ],
linkNodes[ i2++ ],
nodes[ i3 ],
nodes[ i4 ]);
aBadRate += getBadRate( &quad, aCrit );
}
else {
SMDS_FaceOfNodes tria (linkNodes[ i1++ ],
linkNodes[ i2++ ],
nodes[ iSplit < iQuad ? i4 : i3 ]);
aBadRate += getBadRate( &tria, aCrit );
}
}
// choice
if ( aBadRate < aBestRate ) {
iBestQuad = iQuad;
aBestRate = aBadRate;
}
}
}
// create new elements
SMESHDS_Mesh *aMesh = GetMeshDS();
int aShapeId = FindShape( theFace );
i1 = 0; i2 = 1;
for ( iSplit = 0; iSplit < nbSplits - 1; iSplit++ ) {
SMDS_MeshElement* newElem = 0;
if ( iSplit == iBestQuad )
newElem = aMesh->AddFace (linkNodes[ i1++ ],
linkNodes[ i2++ ],
nodes[ i3 ],
nodes[ i4 ]);
else
newElem = aMesh->AddFace (linkNodes[ i1++ ],
linkNodes[ i2++ ],
nodes[ iSplit < iBestQuad ? i4 : i3 ]);
if ( aShapeId && newElem )
aMesh->SetMeshElementOnShape( newElem, aShapeId );
}
// change nodes of theFace
const SMDS_MeshNode* newNodes[ 4 ];
newNodes[ 0 ] = linkNodes[ i1 ];
newNodes[ 1 ] = linkNodes[ i2 ];
newNodes[ 2 ] = nodes[ iSplit >= iBestQuad ? i3 : i4 ];
newNodes[ 3 ] = nodes[ i4 ];
aMesh->ChangeElementNodes( theFace, newNodes, iSplit == iBestQuad ? 4 : 3 );
}
//=======================================================================
//function : SewSideElements
//purpose :
//=======================================================================
SMESH_MeshEditor::Sew_Error
SMESH_MeshEditor::SewSideElements (set<const SMDS_MeshElement*>& theSide1,
set<const SMDS_MeshElement*>& theSide2,
const SMDS_MeshNode* theFirstNode1,
const SMDS_MeshNode* theFirstNode2,
const SMDS_MeshNode* theSecondNode1,
const SMDS_MeshNode* theSecondNode2)
{
MESSAGE ("::::SewSideElements()");
if ( theSide1.size() != theSide2.size() )
return SEW_DIFF_NB_OF_ELEMENTS;
Sew_Error aResult = SEW_OK;
// Algo:
// 1. Build set of faces representing each side
// 2. Find which nodes of the side 1 to merge with ones on the side 2
// 3. Replace nodes in elements of the side 1 and remove replaced nodes
// =======================================================================
// 1. Build set of faces representing each side:
// =======================================================================
// a. build set of nodes belonging to faces
// b. complete set of faces: find missing fices whose nodes are in set of nodes
// c. create temporary faces representing side of volumes if correspondent
// face does not exist
SMESHDS_Mesh* aMesh = GetMeshDS();
SMDS_Mesh aTmpFacesMesh;
set<const SMDS_MeshElement*> faceSet1, faceSet2;
set<const SMDS_MeshElement*> volSet1, volSet2;
set<const SMDS_MeshNode*> nodeSet1, nodeSet2;
set<const SMDS_MeshElement*> * faceSetPtr[] = { &faceSet1, &faceSet2 };
set<const SMDS_MeshElement*> * volSetPtr[] = { &volSet1, &volSet2 };
set<const SMDS_MeshNode*> * nodeSetPtr[] = { &nodeSet1, &nodeSet2 };
set<const SMDS_MeshElement*> * elemSetPtr[] = { &theSide1, &theSide2 };
int iSide, iFace, iNode;
for ( iSide = 0; iSide < 2; iSide++ ) {
set<const SMDS_MeshNode*> * nodeSet = nodeSetPtr[ iSide ];
set<const SMDS_MeshElement*> * elemSet = elemSetPtr[ iSide ];
set<const SMDS_MeshElement*> * faceSet = faceSetPtr[ iSide ];
set<const SMDS_MeshElement*> * volSet = volSetPtr [ iSide ];
set<const SMDS_MeshElement*>::iterator vIt, eIt;
set<const SMDS_MeshNode*>::iterator nIt;
// -----------------------------------------------------------
// 1a. Collect nodes of existing faces
// and build set of face nodes in order to detect missing
// faces corresponing to sides of volumes
// -----------------------------------------------------------
set< set <const SMDS_MeshNode*> > setOfFaceNodeSet;
// loop on the given element of a side
for (eIt = elemSet->begin(); eIt != elemSet->end(); eIt++ ) {
const SMDS_MeshElement* elem = *eIt;
if ( elem->GetType() == SMDSAbs_Face ) {
faceSet->insert( elem );
set <const SMDS_MeshNode*> faceNodeSet;
SMDS_ElemIteratorPtr nodeIt = elem->nodesIterator();
while ( nodeIt->more() ) {
const SMDS_MeshNode* n = static_cast<const SMDS_MeshNode*>( nodeIt->next() );
nodeSet->insert( n );
faceNodeSet.insert( n );
}
setOfFaceNodeSet.insert( faceNodeSet );
}
else if ( elem->GetType() == SMDSAbs_Volume )
volSet->insert( elem );
}
// ------------------------------------------------------------------------------
// 1b. Complete set of faces: find missing fices whose nodes are in set of nodes
// ------------------------------------------------------------------------------
for ( nIt = nodeSet->begin(); nIt != nodeSet->end(); nIt++ ) { // loop on nodes of iSide
SMDS_ElemIteratorPtr fIt = (*nIt)->facesIterator();
while ( fIt->more() ) { // loop on faces sharing a node
const SMDS_MeshElement* f = fIt->next();
if ( faceSet->find( f ) == faceSet->end() ) {
// check if all nodes are in nodeSet and
// complete setOfFaceNodeSet if they are
set <const SMDS_MeshNode*> faceNodeSet;
SMDS_ElemIteratorPtr nodeIt = f->nodesIterator();
bool allInSet = true;
while ( nodeIt->more() && allInSet ) { // loop on nodes of a face
const SMDS_MeshNode* n = static_cast<const SMDS_MeshNode*>( nodeIt->next() );
if ( nodeSet->find( n ) == nodeSet->end() )
allInSet = false;
else
faceNodeSet.insert( n );
}
if ( allInSet ) {
faceSet->insert( f );
setOfFaceNodeSet.insert( faceNodeSet );
}
}
}
}
// -------------------------------------------------------------------------
// 1c. Create temporary faces representing sides of volumes if correspondent
// face does not exist
// -------------------------------------------------------------------------
if ( !volSet->empty() )
{
//int nodeSetSize = nodeSet->size();
// loop on given volumes
for ( vIt = volSet->begin(); vIt != volSet->end(); vIt++ ) {
SMDS_VolumeTool vol (*vIt);
// loop on volume faces: find free faces
// --------------------------------------
list<const SMDS_MeshElement* > freeFaceList;
for ( iFace = 0; iFace < vol.NbFaces(); iFace++ ) {
if ( !vol.IsFreeFace( iFace ))
continue;
// check if there is already a face with same nodes in a face set
const SMDS_MeshElement* aFreeFace = 0;
const SMDS_MeshNode** fNodes = vol.GetFaceNodes( iFace );
int nbNodes = vol.NbFaceNodes( iFace );
set <const SMDS_MeshNode*> faceNodeSet;
vol.GetFaceNodes( iFace, faceNodeSet );
bool isNewFace = setOfFaceNodeSet.insert( faceNodeSet ).second;
if ( isNewFace ) {
// no such a face is given but it still can exist, check it
if ( nbNodes == 3 )
aFreeFace = aMesh->FindFace( fNodes[0],fNodes[1],fNodes[2] );
else
aFreeFace = aMesh->FindFace( fNodes[0],fNodes[1],fNodes[2],fNodes[3] );
}
if ( !aFreeFace ) {
// create a temporary face
if ( nbNodes == 3 )
aFreeFace = aTmpFacesMesh.AddFace( fNodes[0],fNodes[1],fNodes[2] );
else
aFreeFace = aTmpFacesMesh.AddFace( fNodes[0],fNodes[1],fNodes[2],fNodes[3] );
}
if ( aFreeFace )
freeFaceList.push_back( aFreeFace );
} // loop on faces of a volume
// choose one of several free faces
// --------------------------------------
if ( freeFaceList.size() > 1 ) {
// choose a face having max nb of nodes shared by other elems of a side
int maxNbNodes = -1/*, nbExcludedFaces = 0*/;
list<const SMDS_MeshElement* >::iterator fIt = freeFaceList.begin();
while ( fIt != freeFaceList.end() ) { // loop on free faces
int nbSharedNodes = 0;
SMDS_ElemIteratorPtr nodeIt = (*fIt)->nodesIterator();
while ( nodeIt->more() ) { // loop on free face nodes
const SMDS_MeshNode* n =
static_cast<const SMDS_MeshNode*>( nodeIt->next() );
SMDS_ElemIteratorPtr invElemIt = n->GetInverseElementIterator();
while ( invElemIt->more() ) {
const SMDS_MeshElement* e = invElemIt->next();
if ( faceSet->find( e ) != faceSet->end() )
nbSharedNodes++;
if ( elemSet->find( e ) != elemSet->end() )
nbSharedNodes++;
}
}
if ( nbSharedNodes >= maxNbNodes ) {
maxNbNodes = nbSharedNodes;
fIt++;
}
else
freeFaceList.erase( fIt++ ); // here fIt++ occures before erase
}
if ( freeFaceList.size() > 1 )
{
// could not choose one face, use another way
// choose a face most close to the bary center of the opposite side
gp_XYZ aBC( 0., 0., 0. );
set <const SMDS_MeshNode*> addedNodes;
set<const SMDS_MeshElement*> * elemSet2 = elemSetPtr[ 1 - iSide ];
eIt = elemSet2->begin();
for ( eIt = elemSet2->begin(); eIt != elemSet2->end(); eIt++ ) {
SMDS_ElemIteratorPtr nodeIt = (*eIt)->nodesIterator();
while ( nodeIt->more() ) { // loop on free face nodes
const SMDS_MeshNode* n =
static_cast<const SMDS_MeshNode*>( nodeIt->next() );
if ( addedNodes.insert( n ).second )
aBC += gp_XYZ( n->X(),n->Y(),n->Z() );
}
}
aBC /= addedNodes.size();
double minDist = DBL_MAX;
fIt = freeFaceList.begin();
while ( fIt != freeFaceList.end() ) { // loop on free faces
double dist = 0;
SMDS_ElemIteratorPtr nodeIt = (*fIt)->nodesIterator();
while ( nodeIt->more() ) { // loop on free face nodes
const SMDS_MeshNode* n =
static_cast<const SMDS_MeshNode*>( nodeIt->next() );
gp_XYZ p( n->X(),n->Y(),n->Z() );
dist += ( aBC - p ).SquareModulus();
}
if ( dist < minDist ) {
minDist = dist;
freeFaceList.erase( freeFaceList.begin(), fIt++ );
}
else
fIt = freeFaceList.erase( fIt++ );
}
}
} // choose one of several free faces of a volume
if ( freeFaceList.size() == 1 ) {
const SMDS_MeshElement* aFreeFace = freeFaceList.front();
faceSet->insert( aFreeFace );
// complete a node set with nodes of a found free face
// for ( iNode = 0; iNode < ; iNode++ )
// nodeSet->insert( fNodes[ iNode ] );
}
} // loop on volumes of a side
// // complete a set of faces if new nodes in a nodeSet appeared
// // ----------------------------------------------------------
// if ( nodeSetSize != nodeSet->size() ) {
// for ( ; nIt != nodeSet->end(); nIt++ ) { // loop on nodes of iSide
// SMDS_ElemIteratorPtr fIt = (*nIt)->facesIterator();
// while ( fIt->more() ) { // loop on faces sharing a node
// const SMDS_MeshElement* f = fIt->next();
// if ( faceSet->find( f ) == faceSet->end() ) {
// // check if all nodes are in nodeSet and
// // complete setOfFaceNodeSet if they are
// set <const SMDS_MeshNode*> faceNodeSet;
// SMDS_ElemIteratorPtr nodeIt = f->nodesIterator();
// bool allInSet = true;
// while ( nodeIt->more() && allInSet ) { // loop on nodes of a face
// const SMDS_MeshNode* n = static_cast<const SMDS_MeshNode*>( nodeIt->next() );
// if ( nodeSet->find( n ) == nodeSet->end() )
// allInSet = false;
// else
// faceNodeSet.insert( n );
// }
// if ( allInSet ) {
// faceSet->insert( f );
// setOfFaceNodeSet.insert( faceNodeSet );
// }
// }
// }
// }
// }
} // Create temporary faces, if there are volumes given
} // loop on sides
if ( faceSet1.size() != faceSet2.size() ) {
// delete temporary faces: they are in reverseElements of actual nodes
SMDS_FaceIteratorPtr tmpFaceIt = aTmpFacesMesh.facesIterator();
while ( tmpFaceIt->more() )
aTmpFacesMesh.RemoveElement( tmpFaceIt->next() );
MESSAGE("Diff nb of faces");
return SEW_TOPO_DIFF_SETS_OF_ELEMENTS;
}
// ============================================================
// 2. Find nodes to merge:
// bind a node to remove to a node to put instead
// ============================================================
TNodeNodeMap nReplaceMap; // bind a node to remove to a node to put instead
if ( theFirstNode1 != theFirstNode2 )
nReplaceMap.insert( TNodeNodeMap::value_type( theFirstNode1, theFirstNode2 ));
if ( theSecondNode1 != theSecondNode2 )
nReplaceMap.insert( TNodeNodeMap::value_type( theSecondNode1, theSecondNode2 ));
LinkID_Gen aLinkID_Gen( GetMeshDS() );
set< long > linkIdSet; // links to process
linkIdSet.insert( aLinkID_Gen.GetLinkID( theFirstNode1, theSecondNode1 ));
typedef pair< const SMDS_MeshNode*, const SMDS_MeshNode* > TPairOfNodes;
list< TPairOfNodes > linkList[2];
linkList[0].push_back( TPairOfNodes( theFirstNode1, theSecondNode1 ));
linkList[1].push_back( TPairOfNodes( theFirstNode2, theSecondNode2 ));
// loop on links in linkList; find faces by links and append links
// of the found faces to linkList
list< TPairOfNodes >::iterator linkIt[] = { linkList[0].begin(), linkList[1].begin() } ;
for ( ; linkIt[0] != linkList[0].end(); linkIt[0]++, linkIt[1]++ )
{
TPairOfNodes link[] = { *linkIt[0], *linkIt[1] };
long linkID = aLinkID_Gen.GetLinkID( link[0].first, link[0].second );
if ( linkIdSet.find( linkID ) == linkIdSet.end() )
continue;
// by links, find faces in the face sets,
// and find indices of link nodes in the found faces;
// in a face set, there is only one or no face sharing a link
// ---------------------------------------------------------------
const SMDS_MeshElement* face[] = { 0, 0 };
const SMDS_MeshNode* faceNodes[ 2 ][ 5 ];
const SMDS_MeshNode* notLinkNodes[ 2 ][ 2 ] = {{ 0, 0 },{ 0, 0 }} ;
int iLinkNode[2][2];
for ( iSide = 0; iSide < 2; iSide++ ) { // loop on 2 sides
const SMDS_MeshNode* n1 = link[iSide].first;
const SMDS_MeshNode* n2 = link[iSide].second;
set<const SMDS_MeshElement*> * faceSet = faceSetPtr[ iSide ];
set< const SMDS_MeshElement* > fMap;
for ( int i = 0; i < 2; i++ ) { // loop on 2 nodes of a link
const SMDS_MeshNode* n = i ? n1 : n2; // a node of a link
SMDS_ElemIteratorPtr fIt = n->facesIterator();
while ( fIt->more() ) { // loop on faces sharing a node
const SMDS_MeshElement* f = fIt->next();
if (faceSet->find( f ) != faceSet->end() && // f is in face set
! fMap.insert( f ).second ) // f encounters twice
{
if ( face[ iSide ] ) {
MESSAGE( "2 faces per link " );
aResult = iSide ? SEW_BAD_SIDE2_NODES : SEW_BAD_SIDE1_NODES;
break;
}
face[ iSide ] = f;
faceSet->erase( f );
// get face nodes and find ones of a link
iNode = 0;
SMDS_ElemIteratorPtr nIt = f->nodesIterator();
while ( nIt->more() ) {
const SMDS_MeshNode* n =
static_cast<const SMDS_MeshNode*>( nIt->next() );
if ( n == n1 )
iLinkNode[ iSide ][ 0 ] = iNode;
else if ( n == n2 )
iLinkNode[ iSide ][ 1 ] = iNode;
else if ( notLinkNodes[ iSide ][ 0 ] )
notLinkNodes[ iSide ][ 1 ] = n;
else
notLinkNodes[ iSide ][ 0 ] = n;
faceNodes[ iSide ][ iNode++ ] = n;
}
faceNodes[ iSide ][ iNode ] = faceNodes[ iSide ][ 0 ];
}
}
}
}
// check similarity of elements of the sides
if (aResult == SEW_OK && ( face[0] && !face[1] ) || ( !face[0] && face[1] )) {
MESSAGE("Correspondent face not found on side " << ( face[0] ? 1 : 0 ));
if ( nReplaceMap.size() == 2 ) // faces on input nodes not found
aResult = ( face[0] ? SEW_BAD_SIDE2_NODES : SEW_BAD_SIDE1_NODES );
else
aResult = SEW_TOPO_DIFF_SETS_OF_ELEMENTS;
break; // do not return because it s necessary to remove tmp faces
}
// set nodes to merge
// -------------------
if ( face[0] && face[1] )
{
int nbNodes = face[0]->NbNodes();
if ( nbNodes != face[1]->NbNodes() ) {
MESSAGE("Diff nb of face nodes");
aResult = SEW_TOPO_DIFF_SETS_OF_ELEMENTS;
break; // do not return because it s necessary to remove tmp faces
}
bool reverse[] = { false, false }; // order of notLinkNodes of quadrangle
if ( nbNodes == 3 )
nReplaceMap.insert( TNodeNodeMap::value_type
( notLinkNodes[0][0], notLinkNodes[1][0] ));
else {
for ( iSide = 0; iSide < 2; iSide++ ) { // loop on 2 sides
// analyse link orientation in faces
int i1 = iLinkNode[ iSide ][ 0 ];
int i2 = iLinkNode[ iSide ][ 1 ];
reverse[ iSide ] = Abs( i1 - i2 ) == 1 ? i1 > i2 : i2 > i1;
// if notLinkNodes are the first and the last ones, then
// their order does not correspond to the link orientation
if (( i1 == 1 && i2 == 2 ) ||
( i1 == 2 && i2 == 1 ))
reverse[ iSide ] = !reverse[ iSide ];
}
if ( reverse[0] == reverse[1] ) {
nReplaceMap.insert( TNodeNodeMap::value_type
( notLinkNodes[0][0], notLinkNodes[1][0] ));
nReplaceMap.insert( TNodeNodeMap::value_type
( notLinkNodes[0][1], notLinkNodes[1][1] ));
}
else {
nReplaceMap.insert( TNodeNodeMap::value_type
( notLinkNodes[0][0], notLinkNodes[1][1] ));
nReplaceMap.insert( TNodeNodeMap::value_type
( notLinkNodes[0][1], notLinkNodes[1][0] ));
}
}
// add other links of the faces to linkList
// -----------------------------------------
const SMDS_MeshNode** nodes = faceNodes[ 0 ];
for ( iNode = 0; iNode < nbNodes; iNode++ )
{
linkID = aLinkID_Gen.GetLinkID( nodes[iNode], nodes[iNode+1] );
pair< set<long>::iterator, bool > iter_isnew = linkIdSet.insert( linkID );
if ( !iter_isnew.second ) { // already in a set: no need to process
linkIdSet.erase( iter_isnew.first );
}
else // new in set == encountered for the first time: add
{
const SMDS_MeshNode* n1 = nodes[ iNode ];
const SMDS_MeshNode* n2 = nodes[ iNode + 1];
linkList[0].push_back ( TPairOfNodes( n1, n2 ));
linkList[1].push_back ( TPairOfNodes( nReplaceMap[n1], nReplaceMap[n2] ));
}
}
} // 2 faces found
} // loop on link lists
if ( aResult == SEW_OK &&
( linkIt[0] != linkList[0].end() ||
!faceSetPtr[0]->empty() || !faceSetPtr[1]->empty() )) {
MESSAGE( (linkIt[0] != linkList[0].end()) <<" "<< (faceSetPtr[0]->empty()) <<
" " << (faceSetPtr[1]->empty()));
aResult = SEW_TOPO_DIFF_SETS_OF_ELEMENTS;
}
// ====================================================================
// 3. Replace nodes in elements of the side 1 and remove replaced nodes
// ====================================================================
// delete temporary faces: they are in reverseElements of actual nodes
SMDS_FaceIteratorPtr tmpFaceIt = aTmpFacesMesh.facesIterator();
while ( tmpFaceIt->more() )
aTmpFacesMesh.RemoveElement( tmpFaceIt->next() );
if ( aResult != SEW_OK)
return aResult;
list< int > nodeIDsToRemove/*, elemIDsToRemove*/;
// loop on nodes replacement map
TNodeNodeMap::iterator nReplaceMapIt = nReplaceMap.begin(), nnIt;
for ( ; nReplaceMapIt != nReplaceMap.end(); nReplaceMapIt++ )
if ( (*nReplaceMapIt).first != (*nReplaceMapIt).second )
{
const SMDS_MeshNode* nToRemove = (*nReplaceMapIt).first;
nodeIDsToRemove.push_back( nToRemove->GetID() );
// loop on elements sharing nToRemove
SMDS_ElemIteratorPtr invElemIt = nToRemove->GetInverseElementIterator();
while ( invElemIt->more() ) {
const SMDS_MeshElement* e = invElemIt->next();
// get a new suite of nodes: make replacement
int nbReplaced = 0, i = 0, nbNodes = e->NbNodes();
const SMDS_MeshNode* nodes[ 8 ];
SMDS_ElemIteratorPtr nIt = e->nodesIterator();
while ( nIt->more() ) {
const SMDS_MeshNode* n =
static_cast<const SMDS_MeshNode*>( nIt->next() );
nnIt = nReplaceMap.find( n );
if ( nnIt != nReplaceMap.end() ) {
nbReplaced++;
n = (*nnIt).second;
}
nodes[ i++ ] = n;
}
// if ( nbReplaced == nbNodes && e->GetType() == SMDSAbs_Face )
// elemIDsToRemove.push_back( e->GetID() );
// else
if ( nbReplaced )
aMesh->ChangeElementNodes( e, nodes, nbNodes );
}
}
Remove( nodeIDsToRemove, true );
return aResult;
}