smesh/src/Controls/SMESH_Controls.cxx

1763 lines
43 KiB
C++
Raw Normal View History

2004-12-01 15:48:31 +05:00
// Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org
#include "SMESH_Controls.hxx"
#include <set>
#include <BRep_Tool.hxx>
#include <gp_Ax3.hxx>
#include <gp_Cylinder.hxx>
#include <gp_Dir.hxx>
#include <gp_Pnt.hxx>
#include <gp_Pln.hxx>
#include <gp_Vec.hxx>
#include <gp_XYZ.hxx>
#include <Geom_Plane.hxx>
#include <Geom_CylindricalSurface.hxx>
#include <Precision.hxx>
#include <TColgp_Array1OfXYZ.hxx>
#include <TColgp_SequenceOfXYZ.hxx>
#include <TColStd_MapOfInteger.hxx>
#include <TColStd_SequenceOfAsciiString.hxx>
#include <TColStd_MapIteratorOfMapOfInteger.hxx>
#include <TopAbs.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Shape.hxx>
#include "SMDS_Mesh.hxx"
#include "SMDS_Iterator.hxx"
#include "SMDS_MeshElement.hxx"
#include "SMDS_MeshNode.hxx"
/*
AUXILIARY METHODS
*/
static inline double getAngle( const gp_XYZ& P1, const gp_XYZ& P2, const gp_XYZ& P3 )
{
gp_Vec v1( P1 - P2 ), v2( P3 - P2 );
return v1.Magnitude() < gp::Resolution() ||
v2.Magnitude() < gp::Resolution() ? 0 : v1.Angle( v2 );
}
static inline double getArea( const gp_XYZ& P1, const gp_XYZ& P2, const gp_XYZ& P3 )
{
gp_Vec aVec1( P2 - P1 );
gp_Vec aVec2( P3 - P1 );
return ( aVec1 ^ aVec2 ).Magnitude() * 0.5;
}
static inline double getArea( const gp_Pnt& P1, const gp_Pnt& P2, const gp_Pnt& P3 )
{
return getArea( P1.XYZ(), P2.XYZ(), P3.XYZ() );
}
static inline double getDistance( const gp_XYZ& P1, const gp_XYZ& P2 )
{
double aDist = gp_Pnt( P1 ).Distance( gp_Pnt( P2 ) );
return aDist;
}
static int getNbMultiConnection( SMDS_Mesh* theMesh, const int theId )
{
if ( theMesh == 0 )
return 0;
const SMDS_MeshElement* anEdge = theMesh->FindElement( theId );
if ( anEdge == 0 || anEdge->GetType() != SMDSAbs_Edge || anEdge->NbNodes() != 2 )
return 0;
TColStd_MapOfInteger aMap;
int aResult = 0;
SMDS_ElemIteratorPtr anIter = anEdge->nodesIterator();
if ( anIter != 0 )
{
while( anIter->more() )
{
const SMDS_MeshNode* aNode = (SMDS_MeshNode*)anIter->next();
if ( aNode == 0 )
return 0;
SMDS_ElemIteratorPtr anElemIter = aNode->GetInverseElementIterator();
while( anElemIter->more() )
{
const SMDS_MeshElement* anElem = anElemIter->next();
if ( anElem != 0 && anElem->GetType() != SMDSAbs_Edge )
{
int anId = anElem->GetID();
if ( anIter->more() ) // i.e. first node
aMap.Add( anId );
else if ( aMap.Contains( anId ) )
aResult++;
}
}
}
}
return aResult;
}
using namespace SMESH::Controls;
/*
FUNCTORS
*/
/*
Class : NumericalFunctor
Description : Base class for numerical functors
*/
NumericalFunctor::NumericalFunctor():
myMesh(NULL)
{
myPrecision = -1;
}
void NumericalFunctor::SetMesh( SMDS_Mesh* theMesh )
{
myMesh = theMesh;
}
bool NumericalFunctor::GetPoints(const int theId,
TColgp_SequenceOfXYZ& theRes ) const
{
theRes.Clear();
if ( myMesh == 0 )
return false;
return GetPoints( myMesh->FindElement( theId ), theRes );
}
bool NumericalFunctor::GetPoints(const SMDS_MeshElement* anElem,
TColgp_SequenceOfXYZ& theRes )
{
theRes.Clear();
if ( anElem == 0)
return false;
// Get nodes of the element
SMDS_ElemIteratorPtr anIter = anElem->nodesIterator();
if ( anIter != 0 )
{
while( anIter->more() )
{
const SMDS_MeshNode* aNode = (SMDS_MeshNode*)anIter->next();
if ( aNode != 0 )
theRes.Append( gp_XYZ( aNode->X(), aNode->Y(), aNode->Z() ) );
}
}
return true;
}
long NumericalFunctor::GetPrecision() const
{
return myPrecision;
}
void NumericalFunctor::SetPrecision( const long thePrecision )
{
myPrecision = thePrecision;
}
double NumericalFunctor::GetValue( long theId )
{
TColgp_SequenceOfXYZ P;
if ( GetPoints( theId, P ))
{
double aVal = GetValue( P );
if ( myPrecision >= 0 )
{
double prec = pow( 10., (double)( myPrecision ) );
aVal = floor( aVal * prec + 0.5 ) / prec;
}
return aVal;
}
return 0.;
}
/*
Class : MinimumAngle
Description : Functor for calculation of minimum angle
*/
double MinimumAngle::GetValue( const TColgp_SequenceOfXYZ& P )
{
double aMin;
if ( P.Length() == 3 )
{
double A0 = getAngle( P( 3 ), P( 1 ), P( 2 ) );
double A1 = getAngle( P( 1 ), P( 2 ), P( 3 ) );
double A2 = getAngle( P( 2 ), P( 3 ), P( 1 ) );
aMin = Min( A0, Min( A1, A2 ) );
}
else if ( P.Length() == 4 )
{
double A0 = getAngle( P( 4 ), P( 1 ), P( 2 ) );
double A1 = getAngle( P( 1 ), P( 2 ), P( 3 ) );
double A2 = getAngle( P( 2 ), P( 3 ), P( 4 ) );
double A3 = getAngle( P( 3 ), P( 4 ), P( 1 ) );
aMin = Min( Min( A0, A1 ), Min( A2, A3 ) );
}
else
return 0.;
return aMin * 180 / PI;
}
double MinimumAngle::GetBadRate( double Value, int nbNodes ) const
{
const double aBestAngle = PI / nbNodes;
return ( fabs( aBestAngle - Value ));
}
SMDSAbs_ElementType MinimumAngle::GetType() const
{
return SMDSAbs_Face;
}
/*
Class : AspectRatio
Description : Functor for calculating aspect ratio
*/
double AspectRatio::GetValue( const TColgp_SequenceOfXYZ& P )
{
int nbNodes = P.Length();
if ( nbNodes != 3 && nbNodes != 4 )
return 0;
// Compute lengths of the sides
double aLen[ nbNodes ];
for ( int i = 0; i < nbNodes - 1; i++ )
aLen[ i ] = getDistance( P( i + 1 ), P( i + 2 ) );
aLen[ nbNodes - 1 ] = getDistance( P( 1 ), P( nbNodes ) );
// Compute aspect ratio
if ( nbNodes == 3 )
{
double anArea = getArea( P( 1 ), P( 2 ), P( 3 ) );
if ( anArea <= Precision::Confusion() )
return 0.;
double aMaxLen = Max( aLen[ 0 ], Max( aLen[ 1 ], aLen[ 2 ] ) );
static double aCoef = sqrt( 3. ) / 4;
return aCoef * aMaxLen * aMaxLen / anArea;
}
else
{
double aMinLen = Min( Min( aLen[ 0 ], aLen[ 1 ] ), Min( aLen[ 2 ], aLen[ 3 ] ) );
if ( aMinLen <= Precision::Confusion() )
return 0.;
double aMaxLen = Max( Max( aLen[ 0 ], aLen[ 1 ] ), Max( aLen[ 2 ], aLen[ 3 ] ) );
return aMaxLen / aMinLen;
}
}
double AspectRatio::GetBadRate( double Value, int /*nbNodes*/ ) const
{
// the aspect ratio is in the range [1.0,infinity]
// 1.0 = good
// infinity = bad
return Value / 1000.;
}
SMDSAbs_ElementType AspectRatio::GetType() const
{
return SMDSAbs_Face;
}
/*
Class : AspectRatio3D
Description : Functor for calculating aspect ratio
*/
static inline double getHalfPerimeter(double theTria[3]){
return (theTria[0] + theTria[1] + theTria[2])/2.0;
}
static inline double getArea(double theHalfPerim, double theTria[3]){
return sqrt(theHalfPerim*
(theHalfPerim-theTria[0])*
(theHalfPerim-theTria[1])*
(theHalfPerim-theTria[2]));
}
static inline double getVolume(double theLen[6]){
double a2 = theLen[0]*theLen[0];
double b2 = theLen[1]*theLen[1];
double c2 = theLen[2]*theLen[2];
double d2 = theLen[3]*theLen[3];
double e2 = theLen[4]*theLen[4];
double f2 = theLen[5]*theLen[5];
double P = 4.0*a2*b2*d2;
double Q = a2*(b2+d2-e2)-b2*(a2+d2-f2)-d2*(a2+b2-c2);
double R = (b2+d2-e2)*(a2+d2-f2)*(a2+d2-f2);
return sqrt(P-Q+R)/12.0;
}
static inline double getHeight( const gp_Pnt& P1, const gp_Pnt& P2,
const gp_Pnt& P3, const gp_Pnt& P4)
{
gp_Vec aVec1( P2.XYZ() - P1.XYZ() );
gp_Vec aVec2( P3.XYZ() - P1.XYZ() );
gp_Vec aNorm = aVec1 ^ aVec2;
aNorm /= aNorm.Magnitude();
gp_Vec aVec3( P4.XYZ() - P1.XYZ() );
double aDist = aVec1 * aVec2;
return fabs( aDist );
}
static inline double getMaxHeight( const TColgp_SequenceOfXYZ& P )
{
double aHeight = getHeight(P(1),P(2),P(3),P(4));
aHeight = max(aHeight,getHeight(P(1),P(2),P(4),P(3)));
aHeight = max(aHeight,getHeight(P(1),P(3),P(4),P(2)));
aHeight = max(aHeight,getHeight(P(2),P(3),P(4),P(1)));
return aHeight;
}
double AspectRatio3D::GetValue( const TColgp_SequenceOfXYZ& P )
{
double aQuality = 0.0;
int nbNodes = P.Length();
switch(nbNodes){
case 4:{
double aLen[6] = {
getDistance(P(1),P(2)), // a
getDistance(P(2),P(3)), // b
getDistance(P(3),P(1)), // c
getDistance(P(2),P(4)), // d
getDistance(P(3),P(4)), // e
getDistance(P(1),P(4)) // f
};
double aTria[4][3] = {
{aLen[0],aLen[1],aLen[2]}, // abc
{aLen[0],aLen[3],aLen[5]}, // adf
{aLen[1],aLen[3],aLen[4]}, // bde
{aLen[2],aLen[4],aLen[5]} // cef
};
double aHalfPerim = getHalfPerimeter(aTria[0]);
double anArea = getArea(aHalfPerim,aTria[0]);
aHalfPerim = getHalfPerimeter(aTria[1]);
anArea += getArea(aHalfPerim,aTria[1]);
aHalfPerim = getHalfPerimeter(aTria[2]);
anArea += getArea(aHalfPerim,aTria[2]);
double aVolume = getVolume(aLen);
double aHeight = getMaxHeight(P);
aQuality = 1.0/3.0*aHeight*anArea/aVolume;
break;
}
}
return aQuality;
}
double AspectRatio3D::GetBadRate( double Value, int /*nbNodes*/ ) const
{
// the aspect ratio is in the range [1.0,infinity]
// 1.0 = good
// infinity = bad
return Value / 1000.;
}
SMDSAbs_ElementType AspectRatio3D::GetType() const
{
return SMDSAbs_Volume;
}
/*
Class : Warping
Description : Functor for calculating warping
*/
double Warping::GetValue( const TColgp_SequenceOfXYZ& P )
{
if ( P.Length() != 4 )
return 0;
gp_XYZ G = ( P( 1 ) + P( 2 ) + P( 3 ) + P( 4 ) ) / 4;
double A1 = ComputeA( P( 1 ), P( 2 ), P( 3 ), G );
double A2 = ComputeA( P( 2 ), P( 3 ), P( 4 ), G );
double A3 = ComputeA( P( 3 ), P( 4 ), P( 1 ), G );
double A4 = ComputeA( P( 4 ), P( 1 ), P( 2 ), G );
return Max( Max( A1, A2 ), Max( A3, A4 ) );
}
double Warping::ComputeA( const gp_XYZ& thePnt1,
const gp_XYZ& thePnt2,
const gp_XYZ& thePnt3,
const gp_XYZ& theG ) const
{
double aLen1 = gp_Pnt( thePnt1 ).Distance( gp_Pnt( thePnt2 ) );
double aLen2 = gp_Pnt( thePnt2 ).Distance( gp_Pnt( thePnt3 ) );
double L = Min( aLen1, aLen2 ) * 0.5;
if ( L < Precision::Confusion())
return 0.;
gp_XYZ GI = ( thePnt2 - thePnt1 ) / 2. - theG;
gp_XYZ GJ = ( thePnt3 - thePnt2 ) / 2. - theG;
gp_XYZ N = GI.Crossed( GJ );
if ( N.Modulus() < gp::Resolution() )
return PI / 2;
N.Normalize();
double H = ( thePnt2 - theG ).Dot( N );
return asin( fabs( H / L ) ) * 180 / PI;
}
double Warping::GetBadRate( double Value, int /*nbNodes*/ ) const
{
// the warp is in the range [0.0,PI/2]
// 0.0 = good (no warp)
// PI/2 = bad (face pliee)
return Value;
}
SMDSAbs_ElementType Warping::GetType() const
{
return SMDSAbs_Face;
}
/*
Class : Taper
Description : Functor for calculating taper
*/
double Taper::GetValue( const TColgp_SequenceOfXYZ& P )
{
if ( P.Length() != 4 )
return 0;
// Compute taper
double J1 = getArea( P( 4 ), P( 1 ), P( 2 ) ) / 2;
double J2 = getArea( P( 3 ), P( 1 ), P( 2 ) ) / 2;
double J3 = getArea( P( 2 ), P( 3 ), P( 4 ) ) / 2;
double J4 = getArea( P( 3 ), P( 4 ), P( 1 ) ) / 2;
double JA = 0.25 * ( J1 + J2 + J3 + J4 );
if ( JA <= Precision::Confusion() )
return 0.;
double T1 = fabs( ( J1 - JA ) / JA );
double T2 = fabs( ( J2 - JA ) / JA );
double T3 = fabs( ( J3 - JA ) / JA );
double T4 = fabs( ( J4 - JA ) / JA );
return Max( Max( T1, T2 ), Max( T3, T4 ) );
}
double Taper::GetBadRate( double Value, int /*nbNodes*/ ) const
{
// the taper is in the range [0.0,1.0]
// 0.0 = good (no taper)
// 1.0 = bad (les cotes opposes sont allignes)
return Value;
}
SMDSAbs_ElementType Taper::GetType() const
{
return SMDSAbs_Face;
}
/*
Class : Skew
Description : Functor for calculating skew in degrees
*/
static inline double skewAngle( const gp_XYZ& p1, const gp_XYZ& p2, const gp_XYZ& p3 )
{
gp_XYZ p12 = ( p2 + p1 ) / 2;
gp_XYZ p23 = ( p3 + p2 ) / 2;
gp_XYZ p31 = ( p3 + p1 ) / 2;
gp_Vec v1( p31 - p2 ), v2( p12 - p23 );
return v1.Magnitude() < gp::Resolution() || v2.Magnitude() < gp::Resolution() ? 0 : v1.Angle( v2 );
}
double Skew::GetValue( const TColgp_SequenceOfXYZ& P )
{
if ( P.Length() != 3 && P.Length() != 4 )
return 0;
// Compute skew
static double PI2 = PI / 2;
if ( P.Length() == 3 )
{
double A0 = fabs( PI2 - skewAngle( P( 3 ), P( 1 ), P( 2 ) ) );
double A1 = fabs( PI2 - skewAngle( P( 1 ), P( 2 ), P( 3 ) ) );
double A2 = fabs( PI2 - skewAngle( P( 2 ), P( 3 ), P( 1 ) ) );
return Max( A0, Max( A1, A2 ) ) * 180 / PI;
}
else
{
gp_XYZ p12 = ( P( 1 ) + P( 2 ) ) / 2;
gp_XYZ p23 = ( P( 2 ) + P( 3 ) ) / 2;
gp_XYZ p34 = ( P( 3 ) + P( 4 ) ) / 2;
gp_XYZ p41 = ( P( 4 ) + P( 1 ) ) / 2;
gp_Vec v1( p34 - p12 ), v2( p23 - p41 );
double A = v1.Magnitude() <= gp::Resolution() || v2.Magnitude() <= gp::Resolution()
? 0 : fabs( PI2 - v1.Angle( v2 ) );
return A * 180 / PI;
}
}
double Skew::GetBadRate( double Value, int /*nbNodes*/ ) const
{
// the skew is in the range [0.0,PI/2].
// 0.0 = good
// PI/2 = bad
return Value;
}
SMDSAbs_ElementType Skew::GetType() const
{
return SMDSAbs_Face;
}
/*
Class : Area
Description : Functor for calculating area
*/
double Area::GetValue( const TColgp_SequenceOfXYZ& P )
{
if ( P.Length() == 3 )
return getArea( P( 1 ), P( 2 ), P( 3 ) );
else if ( P.Length() == 4 )
return getArea( P( 1 ), P( 2 ), P( 3 ) ) + getArea( P( 1 ), P( 3 ), P( 4 ) );
else
return 0;
}
double Area::GetBadRate( double Value, int /*nbNodes*/ ) const
{
return Value;
}
SMDSAbs_ElementType Area::GetType() const
{
return SMDSAbs_Face;
}
/*
Class : Length
Description : Functor for calculating length off edge
*/
double Length::GetValue( const TColgp_SequenceOfXYZ& P )
{
return ( P.Length() == 2 ? getDistance( P( 1 ), P( 2 ) ) : 0 );
}
double Length::GetBadRate( double Value, int /*nbNodes*/ ) const
{
return Value;
}
SMDSAbs_ElementType Length::GetType() const
{
return SMDSAbs_Edge;
}
/*
Class : MultiConnection
Description : Functor for calculating number of faces conneted to the edge
*/
double MultiConnection::GetValue( const TColgp_SequenceOfXYZ& P )
{
return 0;
}
double MultiConnection::GetValue( long theId )
{
return getNbMultiConnection( myMesh, theId );
}
double MultiConnection::GetBadRate( double Value, int /*nbNodes*/ ) const
{
return Value;
}
SMDSAbs_ElementType MultiConnection::GetType() const
{
return SMDSAbs_Edge;
}
/*
PREDICATES
*/
/*
Class : FreeBorders
Description : Predicate for free borders
*/
FreeBorders::FreeBorders()
{
myMesh = 0;
}
void FreeBorders::SetMesh( SMDS_Mesh* theMesh )
{
myMesh = theMesh;
}
bool FreeBorders::IsSatisfy( long theId )
{
return getNbMultiConnection( myMesh, theId ) == 1;
}
SMDSAbs_ElementType FreeBorders::GetType() const
{
return SMDSAbs_Edge;
}
/*
Class : FreeEdges
Description : Predicate for free Edges
*/
FreeEdges::FreeEdges()
{
myMesh = 0;
}
void FreeEdges::SetMesh( SMDS_Mesh* theMesh )
{
myMesh = theMesh;
}
bool FreeEdges::IsFreeEdge( const SMDS_MeshNode** theNodes, const int theFaceId )
{
TColStd_MapOfInteger aMap;
for ( int i = 0; i < 2; i++ )
{
SMDS_ElemIteratorPtr anElemIter = theNodes[ i ]->GetInverseElementIterator();
while( anElemIter->more() )
{
const SMDS_MeshElement* anElem = anElemIter->next();
if ( anElem != 0 && anElem->GetType() == SMDSAbs_Face )
{
int anId = anElem->GetID();
if ( i == 0 )
aMap.Add( anId );
else if ( aMap.Contains( anId ) && anId != theFaceId )
return false;
}
}
}
return true;
}
bool FreeEdges::IsSatisfy( long theId )
{
if ( myMesh == 0 )
return false;
const SMDS_MeshElement* aFace = myMesh->FindElement( theId );
if ( aFace == 0 || aFace->GetType() != SMDSAbs_Face || aFace->NbNodes() < 3 )
return false;
int nbNodes = aFace->NbNodes();
const SMDS_MeshNode* aNodes[ nbNodes ];
int i = 0;
SMDS_ElemIteratorPtr anIter = aFace->nodesIterator();
if ( anIter != 0 )
{
while( anIter->more() )
{
const SMDS_MeshNode* aNode = (SMDS_MeshNode*)anIter->next();
if ( aNode == 0 )
return false;
aNodes[ i++ ] = aNode;
}
}
for ( int i = 0; i < nbNodes - 1; i++ )
if ( IsFreeEdge( &aNodes[ i ], theId ) )
return true;
aNodes[ 1 ] = aNodes[ nbNodes - 1 ];
return IsFreeEdge( &aNodes[ 0 ], theId );
}
SMDSAbs_ElementType FreeEdges::GetType() const
{
return SMDSAbs_Face;
}
FreeEdges::Border::Border(long theElemId, long thePntId1, long thePntId2):
myElemId(theElemId)
{
myPntId[0] = thePntId1; myPntId[1] = thePntId2;
if(thePntId1 > thePntId2){
myPntId[1] = thePntId1; myPntId[0] = thePntId2;
}
}
bool FreeEdges::Border::operator<(const FreeEdges::Border& x) const{
if(myPntId[0] < x.myPntId[0]) return true;
if(myPntId[0] == x.myPntId[0])
if(myPntId[1] < x.myPntId[1]) return true;
return false;
}
inline void UpdateBorders(const FreeEdges::Border& theBorder,
FreeEdges::TBorders& theRegistry,
FreeEdges::TBorders& theContainer)
{
if(theRegistry.find(theBorder) == theRegistry.end()){
theRegistry.insert(theBorder);
theContainer.insert(theBorder);
}else{
theContainer.erase(theBorder);
}
}
void FreeEdges::GetBoreders(TBorders& theBorders)
{
TBorders aRegistry;
SMDS_FaceIteratorPtr anIter = myMesh->facesIterator();
for(; anIter->more(); ){
const SMDS_MeshFace* anElem = anIter->next();
long anElemId = anElem->GetID();
SMDS_ElemIteratorPtr aNodesIter = anElem->nodesIterator();
long aNodeId[2];
const SMDS_MeshElement* aNode;
if(aNodesIter->more()){
aNode = aNodesIter->next();
aNodeId[0] = aNodeId[1] = aNode->GetID();
}
for(; aNodesIter->more(); ){
aNode = aNodesIter->next();
long anId = aNode->GetID();
Border aBorder(anElemId,aNodeId[1],anId);
aNodeId[1] = anId;
//std::cout<<aBorder.myPntId[0]<<"; "<<aBorder.myPntId[1]<<"; "<<aBorder.myElemId<<endl;
UpdateBorders(aBorder,aRegistry,theBorders);
}
Border aBorder(anElemId,aNodeId[0],aNodeId[1]);
//std::cout<<aBorder.myPntId[0]<<"; "<<aBorder.myPntId[1]<<"; "<<aBorder.myElemId<<endl;
UpdateBorders(aBorder,aRegistry,theBorders);
}
//std::cout<<"theBorders.size() = "<<theBorders.size()<<endl;
}
/*
Class : RangeOfIds
Description : Predicate for Range of Ids.
Range may be specified with two ways.
1. Using AddToRange method
2. With SetRangeStr method. Parameter of this method is a string
like as "1,2,3,50-60,63,67,70-"
*/
//=======================================================================
// name : RangeOfIds
// Purpose : Constructor
//=======================================================================
RangeOfIds::RangeOfIds()
{
myMesh = 0;
myType = SMDSAbs_All;
}
//=======================================================================
// name : SetMesh
// Purpose : Set mesh
//=======================================================================
void RangeOfIds::SetMesh( SMDS_Mesh* theMesh )
{
myMesh = theMesh;
}
//=======================================================================
// name : AddToRange
// Purpose : Add ID to the range
//=======================================================================
bool RangeOfIds::AddToRange( long theEntityId )
{
myIds.Add( theEntityId );
return true;
}
//=======================================================================
// name : GetRangeStr
// Purpose : Get range as a string.
// Example: "1,2,3,50-60,63,67,70-"
//=======================================================================
void RangeOfIds::GetRangeStr( TCollection_AsciiString& theResStr )
{
theResStr.Clear();
TColStd_SequenceOfInteger anIntSeq;
TColStd_SequenceOfAsciiString aStrSeq;
TColStd_MapIteratorOfMapOfInteger anIter( myIds );
for ( ; anIter.More(); anIter.Next() )
{
int anId = anIter.Key();
TCollection_AsciiString aStr( anId );
anIntSeq.Append( anId );
aStrSeq.Append( aStr );
}
for ( int i = 1, n = myMin.Length(); i <= n; i++ )
{
int aMinId = myMin( i );
int aMaxId = myMax( i );
TCollection_AsciiString aStr;
if ( aMinId != IntegerFirst() )
aStr += aMinId;
aStr += "-";
if ( aMaxId != IntegerLast() )
aStr += aMaxId;
// find position of the string in result sequence and insert string in it
if ( anIntSeq.Length() == 0 )
{
anIntSeq.Append( aMinId );
aStrSeq.Append( aStr );
}
else
{
if ( aMinId < anIntSeq.First() )
{
anIntSeq.Prepend( aMinId );
aStrSeq.Prepend( aStr );
}
else if ( aMinId > anIntSeq.Last() )
{
anIntSeq.Append( aMinId );
aStrSeq.Append( aStr );
}
else
for ( int j = 1, k = anIntSeq.Length(); j <= k; j++ )
if ( aMinId < anIntSeq( j ) )
{
anIntSeq.InsertBefore( j, aMinId );
aStrSeq.InsertBefore( j, aStr );
break;
}
}
}
if ( aStrSeq.Length() == 0 )
return;
theResStr = aStrSeq( 1 );
for ( int j = 2, k = aStrSeq.Length(); j <= k; j++ )
{
theResStr += ",";
theResStr += aStrSeq( j );
}
}
//=======================================================================
// name : SetRangeStr
// Purpose : Define range with string
// Example of entry string: "1,2,3,50-60,63,67,70-"
//=======================================================================
bool RangeOfIds::SetRangeStr( const TCollection_AsciiString& theStr )
{
myMin.Clear();
myMax.Clear();
myIds.Clear();
TCollection_AsciiString aStr = theStr;
aStr.RemoveAll( ' ' );
aStr.RemoveAll( '\t' );
for ( int aPos = aStr.Search( ",," ); aPos != -1; aPos = aStr.Search( ",," ) )
aStr.Remove( aPos, 2 );
TCollection_AsciiString tmpStr = aStr.Token( ",", 1 );
int i = 1;
while ( tmpStr != "" )
{
tmpStr = aStr.Token( ",", i++ );
int aPos = tmpStr.Search( '-' );
if ( aPos == -1 )
{
if ( tmpStr.IsIntegerValue() )
myIds.Add( tmpStr.IntegerValue() );
else
return false;
}
else
{
TCollection_AsciiString aMaxStr = tmpStr.Split( aPos );
TCollection_AsciiString aMinStr = tmpStr;
while ( aMinStr.Search( "-" ) != -1 ) aMinStr.RemoveAll( '-' );
while ( aMaxStr.Search( "-" ) != -1 ) aMaxStr.RemoveAll( '-' );
if ( !aMinStr.IsEmpty() && !aMinStr.IsIntegerValue() ||
!aMaxStr.IsEmpty() && !aMaxStr.IsIntegerValue() )
return false;
myMin.Append( aMinStr.IsEmpty() ? IntegerFirst() : aMinStr.IntegerValue() );
myMax.Append( aMaxStr.IsEmpty() ? IntegerLast() : aMaxStr.IntegerValue() );
}
}
return true;
}
//=======================================================================
// name : GetType
// Purpose : Get type of supported entities
//=======================================================================
SMDSAbs_ElementType RangeOfIds::GetType() const
{
return myType;
}
//=======================================================================
// name : SetType
// Purpose : Set type of supported entities
//=======================================================================
void RangeOfIds::SetType( SMDSAbs_ElementType theType )
{
myType = theType;
}
//=======================================================================
// name : IsSatisfy
// Purpose : Verify whether entity satisfies to this rpedicate
//=======================================================================
bool RangeOfIds::IsSatisfy( long theId )
{
if ( !myMesh )
return false;
if ( myType == SMDSAbs_Node )
{
if ( myMesh->FindNode( theId ) == 0 )
return false;
}
else
{
const SMDS_MeshElement* anElem = myMesh->FindElement( theId );
if ( anElem == 0 || myType != anElem->GetType() && myType != SMDSAbs_All )
return false;
}
if ( myIds.Contains( theId ) )
return true;
for ( int i = 1, n = myMin.Length(); i <= n; i++ )
if ( theId >= myMin( i ) && theId <= myMax( i ) )
return true;
return false;
}
/*
Class : Comparator
Description : Base class for comparators
*/
Comparator::Comparator():
myMargin(0)
{}
Comparator::~Comparator()
{}
void Comparator::SetMesh( SMDS_Mesh* theMesh )
{
if ( myFunctor )
myFunctor->SetMesh( theMesh );
}
void Comparator::SetMargin( double theValue )
{
myMargin = theValue;
}
void Comparator::SetNumFunctor( NumericalFunctorPtr theFunct )
{
myFunctor = theFunct;
}
SMDSAbs_ElementType Comparator::GetType() const
{
return myFunctor ? myFunctor->GetType() : SMDSAbs_All;
}
double Comparator::GetMargin()
{
return myMargin;
}
/*
Class : LessThan
Description : Comparator "<"
*/
bool LessThan::IsSatisfy( long theId )
{
return myFunctor && myFunctor->GetValue( theId ) < myMargin;
}
/*
Class : MoreThan
Description : Comparator ">"
*/
bool MoreThan::IsSatisfy( long theId )
{
return myFunctor && myFunctor->GetValue( theId ) > myMargin;
}
/*
Class : EqualTo
Description : Comparator "="
*/
EqualTo::EqualTo():
myToler(Precision::Confusion())
{}
bool EqualTo::IsSatisfy( long theId )
{
return myFunctor && fabs( myFunctor->GetValue( theId ) - myMargin ) < myToler;
}
void EqualTo::SetTolerance( double theToler )
{
myToler = theToler;
}
double EqualTo::GetTolerance()
{
return myToler;
}
/*
Class : LogicalNOT
Description : Logical NOT predicate
*/
LogicalNOT::LogicalNOT()
{}
LogicalNOT::~LogicalNOT()
{}
bool LogicalNOT::IsSatisfy( long theId )
{
return myPredicate && !myPredicate->IsSatisfy( theId );
}
void LogicalNOT::SetMesh( SMDS_Mesh* theMesh )
{
if ( myPredicate )
myPredicate->SetMesh( theMesh );
}
void LogicalNOT::SetPredicate( PredicatePtr thePred )
{
myPredicate = thePred;
}
SMDSAbs_ElementType LogicalNOT::GetType() const
{
return myPredicate ? myPredicate->GetType() : SMDSAbs_All;
}
/*
Class : LogicalBinary
Description : Base class for binary logical predicate
*/
LogicalBinary::LogicalBinary()
{}
LogicalBinary::~LogicalBinary()
{}
void LogicalBinary::SetMesh( SMDS_Mesh* theMesh )
{
if ( myPredicate1 )
myPredicate1->SetMesh( theMesh );
if ( myPredicate2 )
myPredicate2->SetMesh( theMesh );
}
void LogicalBinary::SetPredicate1( PredicatePtr thePredicate )
{
myPredicate1 = thePredicate;
}
void LogicalBinary::SetPredicate2( PredicatePtr thePredicate )
{
myPredicate2 = thePredicate;
}
SMDSAbs_ElementType LogicalBinary::GetType() const
{
if ( !myPredicate1 || !myPredicate2 )
return SMDSAbs_All;
SMDSAbs_ElementType aType1 = myPredicate1->GetType();
SMDSAbs_ElementType aType2 = myPredicate2->GetType();
return aType1 == aType2 ? aType1 : SMDSAbs_All;
}
/*
Class : LogicalAND
Description : Logical AND
*/
bool LogicalAND::IsSatisfy( long theId )
{
return
myPredicate1 &&
myPredicate2 &&
myPredicate1->IsSatisfy( theId ) &&
myPredicate2->IsSatisfy( theId );
}
/*
Class : LogicalOR
Description : Logical OR
*/
bool LogicalOR::IsSatisfy( long theId )
{
return
myPredicate1 &&
myPredicate2 &&
myPredicate1->IsSatisfy( theId ) ||
myPredicate2->IsSatisfy( theId );
}
/*
FILTER
*/
Filter::Filter()
{}
Filter::~Filter()
{}
void Filter::SetPredicate( PredicatePtr thePredicate )
{
myPredicate = thePredicate;
}
template<class TElement, class TIterator, class TPredicate>
void FillSequence(const TIterator& theIterator,
TPredicate& thePredicate,
Filter::TIdSequence& theSequence)
{
if ( theIterator ) {
while( theIterator->more() ) {
TElement anElem = theIterator->next();
long anId = anElem->GetID();
if ( thePredicate->IsSatisfy( anId ) )
theSequence.push_back( anId );
}
}
}
Filter::TIdSequence
Filter::GetElementsId( SMDS_Mesh* theMesh )
{
TIdSequence aSequence;
if ( !theMesh || !myPredicate ) return aSequence;
myPredicate->SetMesh( theMesh );
SMDSAbs_ElementType aType = myPredicate->GetType();
switch(aType){
case SMDSAbs_Node:{
FillSequence<const SMDS_MeshNode*>(theMesh->nodesIterator(),myPredicate,aSequence);
break;
}
case SMDSAbs_Edge:{
FillSequence<const SMDS_MeshElement*>(theMesh->edgesIterator(),myPredicate,aSequence);
break;
}
case SMDSAbs_Face:{
FillSequence<const SMDS_MeshElement*>(theMesh->facesIterator(),myPredicate,aSequence);
break;
}
case SMDSAbs_Volume:{
FillSequence<const SMDS_MeshElement*>(theMesh->volumesIterator(),myPredicate,aSequence);
break;
}
case SMDSAbs_All:{
FillSequence<const SMDS_MeshElement*>(theMesh->edgesIterator(),myPredicate,aSequence);
FillSequence<const SMDS_MeshElement*>(theMesh->facesIterator(),myPredicate,aSequence);
FillSequence<const SMDS_MeshElement*>(theMesh->volumesIterator(),myPredicate,aSequence);
break;
}
}
return aSequence;
}
/*
ManifoldPart
*/
typedef std::set<SMDS_MeshFace*> TMapOfFacePtr;
/*
Internal class Link
*/
ManifoldPart::Link::Link( SMDS_MeshNode* theNode1,
SMDS_MeshNode* theNode2 )
{
myNode1 = theNode1;
myNode2 = theNode2;
}
ManifoldPart::Link::~Link()
{
myNode1 = 0;
myNode2 = 0;
}
bool ManifoldPart::Link::IsEqual( const ManifoldPart::Link& theLink ) const
{
if ( myNode1 == theLink.myNode1 &&
myNode2 == theLink.myNode2 )
return true;
else if ( myNode1 == theLink.myNode2 &&
myNode2 == theLink.myNode1 )
return true;
else
return false;
}
bool ManifoldPart::Link::operator<( const ManifoldPart::Link& x ) const
{
if(myNode1 < x.myNode1) return true;
if(myNode1 == x.myNode1)
if(myNode2 < x.myNode2) return true;
return false;
}
bool ManifoldPart::IsEqual( const ManifoldPart::Link& theLink1,
const ManifoldPart::Link& theLink2 )
{
return theLink1.IsEqual( theLink2 );
}
ManifoldPart::ManifoldPart()
{
myMesh = 0;
myAngToler = Precision::Angular();
myIsOnlyManifold = true;
}
ManifoldPart::~ManifoldPart()
{
myMesh = 0;
}
void ManifoldPart::SetMesh( SMDS_Mesh* theMesh )
{
myMesh = theMesh;
process();
}
SMDSAbs_ElementType ManifoldPart::GetType() const
{ return SMDSAbs_Face; }
bool ManifoldPart::IsSatisfy( long theElementId )
{
return myMapIds.Contains( theElementId );
}
void ManifoldPart::SetAngleTolerance( const double theAngToler )
{ myAngToler = theAngToler; }
double ManifoldPart::GetAngleTolerance() const
{ return myAngToler; }
void ManifoldPart::SetIsOnlyManifold( const bool theIsOnly )
{ myIsOnlyManifold = theIsOnly; }
void ManifoldPart::SetStartElem( const long theStartId )
{ myStartElemId = theStartId; }
bool ManifoldPart::process()
{
myMapIds.Clear();
myMapBadGeomIds.Clear();
myAllFacePtr.clear();
myAllFacePtrIntDMap.clear();
if ( !myMesh )
return false;
// collect all faces into own map
SMDS_FaceIteratorPtr anFaceItr = myMesh->facesIterator();
for (; anFaceItr->more(); )
{
SMDS_MeshFace* aFacePtr = (SMDS_MeshFace*)anFaceItr->next();
myAllFacePtr.push_back( aFacePtr );
myAllFacePtrIntDMap[aFacePtr] = myAllFacePtr.size()-1;
}
SMDS_MeshFace* aStartFace = (SMDS_MeshFace*)myMesh->FindElement( myStartElemId );
if ( !aStartFace )
return false;
// the map of non manifold links and bad geometry
TMapOfLink aMapOfNonManifold;
TColStd_MapOfInteger aMapOfTreated;
// begin cycle on faces from start index and run on vector till the end
// and from begin to start index to cover whole vector
const int aStartIndx = myAllFacePtrIntDMap[aStartFace];
bool isStartTreat = false;
for ( int fi = aStartIndx; !isStartTreat || fi != aStartIndx ; fi++ )
{
if ( fi == aStartIndx )
isStartTreat = true;
// as result next time when fi will be equal to aStartIndx
SMDS_MeshFace* aFacePtr = myAllFacePtr[ fi ];
if ( aMapOfTreated.Contains( aFacePtr->GetID() ) )
continue;
aMapOfTreated.Add( aFacePtr->GetID() );
TColStd_MapOfInteger aResFaces;
if ( !findConnected( myAllFacePtrIntDMap, aFacePtr,
aMapOfNonManifold, aResFaces ) )
continue;
TColStd_MapIteratorOfMapOfInteger anItr( aResFaces );
for ( ; anItr.More(); anItr.Next() )
{
int aFaceId = anItr.Key();
aMapOfTreated.Add( aFaceId );
myMapIds.Add( aFaceId );
}
if ( fi == ( myAllFacePtr.size() - 1 ) )
fi = 0;
} // end run on vector of faces
return !myMapIds.IsEmpty();
}
static void getLinks( const SMDS_MeshFace* theFace,
ManifoldPart::TVectorOfLink& theLinks )
{
int aNbNode = theFace->NbNodes();
SMDS_ElemIteratorPtr aNodeItr = theFace->nodesIterator();
int i = 1;
SMDS_MeshNode* aNode = 0;
for ( ; aNodeItr->more() && i <= aNbNode; )
{
SMDS_MeshNode* aN1 = (SMDS_MeshNode*)aNodeItr->next();
if ( i == 1 )
aNode = aN1;
i++;
SMDS_MeshNode* aN2 = ( i >= aNbNode ) ? aNode : (SMDS_MeshNode*)aNodeItr->next();
i++;
ManifoldPart::Link aLink( aN1, aN2 );
theLinks.push_back( aLink );
}
}
static gp_XYZ getNormale( const SMDS_MeshFace* theFace )
{
gp_XYZ n;
int aNbNode = theFace->NbNodes();
TColgp_Array1OfXYZ anArrOfXYZ(1,4);
gp_XYZ p1, p2, p3, p4;
SMDS_ElemIteratorPtr aNodeItr = theFace->nodesIterator();
int i = 1;
for ( ; aNodeItr->more() && i <= 4; i++ )
{
SMDS_MeshNode* aNode = (SMDS_MeshNode*)aNodeItr->next();
anArrOfXYZ.SetValue(i, gp_XYZ( aNode->X(), aNode->Y(), aNode->Z() ) );
}
gp_XYZ q1 = anArrOfXYZ.Value(2) - anArrOfXYZ.Value(1);
gp_XYZ q2 = anArrOfXYZ.Value(3) - anArrOfXYZ.Value(1);
n = q1 ^ q2;
if ( aNbNode > 3 )
{
gp_XYZ q3 = anArrOfXYZ.Value(4) - anArrOfXYZ.Value(1);
n += q2 ^ q3;
}
double len = n.Modulus();
if ( len > 0 )
n /= len;
return n;
}
bool ManifoldPart::findConnected
( const ManifoldPart::TDataMapFacePtrInt& theAllFacePtrInt,
SMDS_MeshFace* theStartFace,
ManifoldPart::TMapOfLink& theNonManifold,
TColStd_MapOfInteger& theResFaces )
{
theResFaces.Clear();
if ( !theAllFacePtrInt.size() )
return false;
if ( getNormale( theStartFace ).SquareModulus() <= gp::Resolution() )
{
myMapBadGeomIds.Add( theStartFace->GetID() );
return false;
}
ManifoldPart::TMapOfLink aMapOfBoundary, aMapToSkip;
ManifoldPart::TVectorOfLink aSeqOfBoundary;
theResFaces.Add( theStartFace->GetID() );
ManifoldPart::TDataMapOfLinkFacePtr aDMapLinkFace;
expandBoundary( aMapOfBoundary, aSeqOfBoundary,
aDMapLinkFace, theNonManifold, theStartFace );
bool isDone = false;
while ( !isDone && aMapOfBoundary.size() != 0 )
{
bool isToReset = false;
ManifoldPart::TVectorOfLink::iterator pLink = aSeqOfBoundary.begin();
for ( ; !isToReset && pLink != aSeqOfBoundary.end(); ++pLink )
{
ManifoldPart::Link aLink = *pLink;
if ( aMapToSkip.find( aLink ) != aMapToSkip.end() )
continue;
// each link could be treated only once
aMapToSkip.insert( aLink );
ManifoldPart::TVectorOfFacePtr aFaces;
// find next
if ( myIsOnlyManifold &&
(theNonManifold.find( aLink ) != theNonManifold.end()) )
continue;
else
{
getFacesByLink( aLink, aFaces );
// filter the element to keep only indicated elements
ManifoldPart::TVectorOfFacePtr aFiltered;
ManifoldPart::TVectorOfFacePtr::iterator pFace = aFaces.begin();
for ( ; pFace != aFaces.end(); ++pFace )
{
SMDS_MeshFace* aFace = *pFace;
if ( myAllFacePtrIntDMap.find( aFace ) != myAllFacePtrIntDMap.end() )
aFiltered.push_back( aFace );
}
aFaces = aFiltered;
if ( aFaces.size() < 2 ) // no neihgbour faces
continue;
else if ( myIsOnlyManifold && aFaces.size() > 2 ) // non manifold case
{
theNonManifold.insert( aLink );
continue;
}
}
// compare normal with normals of neighbor element
SMDS_MeshFace* aPrevFace = aDMapLinkFace[ aLink ];
ManifoldPart::TVectorOfFacePtr::iterator pFace = aFaces.begin();
for ( ; pFace != aFaces.end(); ++pFace )
{
SMDS_MeshFace* aNextFace = *pFace;
if ( aPrevFace == aNextFace )
continue;
int anNextFaceID = aNextFace->GetID();
if ( myIsOnlyManifold && theResFaces.Contains( anNextFaceID ) )
// should not be with non manifold restriction. probably bad topology
continue;
// check if face was treated and skipped
if ( myMapBadGeomIds.Contains( anNextFaceID ) ||
!isInPlane( aPrevFace, aNextFace ) )
continue;
// add new element to connected and extend the boundaries.
theResFaces.Add( anNextFaceID );
expandBoundary( aMapOfBoundary, aSeqOfBoundary,
aDMapLinkFace, theNonManifold, aNextFace );
isToReset = true;
}
}
isDone = !isToReset;
}
return !theResFaces.IsEmpty();
}
bool ManifoldPart::isInPlane( const SMDS_MeshFace* theFace1,
const SMDS_MeshFace* theFace2 )
{
gp_Dir aNorm1 = gp_Dir( getNormale( theFace1 ) );
gp_XYZ aNorm2XYZ = getNormale( theFace2 );
if ( aNorm2XYZ.SquareModulus() <= gp::Resolution() )
{
myMapBadGeomIds.Add( theFace2->GetID() );
return false;
}
if ( aNorm1.IsParallel( gp_Dir( aNorm2XYZ ), myAngToler ) )
return true;
return false;
}
void ManifoldPart::expandBoundary
( ManifoldPart::TMapOfLink& theMapOfBoundary,
ManifoldPart::TVectorOfLink& theSeqOfBoundary,
ManifoldPart::TDataMapOfLinkFacePtr& theDMapLinkFacePtr,
ManifoldPart::TMapOfLink& theNonManifold,
SMDS_MeshFace* theNextFace ) const
{
ManifoldPart::TVectorOfLink aLinks;
getLinks( theNextFace, aLinks );
int aNbLink = aLinks.size();
for ( int i = 0; i < aNbLink; i++ )
{
ManifoldPart::Link aLink = aLinks[ i ];
if ( myIsOnlyManifold && (theNonManifold.find( aLink ) != theNonManifold.end()) )
continue;
if ( theMapOfBoundary.find( aLink ) != theMapOfBoundary.end() )
{
if ( myIsOnlyManifold )
{
// remove from boundary
theMapOfBoundary.erase( aLink );
ManifoldPart::TVectorOfLink::iterator pLink = theSeqOfBoundary.begin();
for ( ; pLink != theSeqOfBoundary.end(); ++pLink )
{
ManifoldPart::Link aBoundLink = *pLink;
if ( aBoundLink.IsEqual( aLink ) )
{
theSeqOfBoundary.erase( pLink );
break;
}
}
}
}
else
{
theMapOfBoundary.insert( aLink );
theSeqOfBoundary.push_back( aLink );
theDMapLinkFacePtr[ aLink ] = theNextFace;
}
}
}
void ManifoldPart::getFacesByLink( const ManifoldPart::Link& theLink,
ManifoldPart::TVectorOfFacePtr& theFaces ) const
{
SMDS_Mesh::SetOfFaces aSetOfFaces;
// take all faces that shared first node
SMDS_ElemIteratorPtr anItr = theLink.myNode1->facesIterator();
for ( ; anItr->more(); )
{
SMDS_MeshFace* aFace = (SMDS_MeshFace*)anItr->next();
if ( !aFace )
continue;
aSetOfFaces.insert( aFace );
}
// take all faces that shared second node
anItr = theLink.myNode2->facesIterator();
// find the common part of two sets
for ( ; anItr->more(); )
{
SMDS_MeshFace* aFace = (SMDS_MeshFace*)anItr->next();
if ( aSetOfFaces.find( aFace ) != aSetOfFaces.end() )
theFaces.push_back( aFace );
}
}
/*
ElementsOnSurface
*/
ElementsOnSurface::ElementsOnSurface()
{
myMesh = 0;
myIds.Clear();
myType = SMDSAbs_All;
mySurf.Nullify();
myToler = Precision::Confusion();
}
ElementsOnSurface::~ElementsOnSurface()
{
myMesh = 0;
}
void ElementsOnSurface::SetMesh( SMDS_Mesh* theMesh )
{
if ( myMesh == theMesh )
return;
myMesh = theMesh;
myIds.Clear();
process();
}
bool ElementsOnSurface::IsSatisfy( long theElementId )
{
return myIds.Contains( theElementId );
}
SMDSAbs_ElementType ElementsOnSurface::GetType() const
{ return myType; }
void ElementsOnSurface::SetTolerance( const double theToler )
{ myToler = theToler; }
double ElementsOnSurface::GetTolerance() const
{
return myToler;
}
void ElementsOnSurface::SetSurface( const TopoDS_Shape& theShape,
const SMDSAbs_ElementType theType )
{
myType = theType;
mySurf.Nullify();
if ( theShape.IsNull() || theShape.ShapeType() != TopAbs_FACE )
{
mySurf.Nullify();
return;
}
TopoDS_Face aFace = TopoDS::Face( theShape );
mySurf = BRep_Tool::Surface( aFace );
}
void ElementsOnSurface::process()
{
myIds.Clear();
if ( mySurf.IsNull() )
return;
if ( myMesh == 0 )
return;
if ( myType == SMDSAbs_Face || myType == SMDSAbs_All )
{
SMDS_FaceIteratorPtr anIter = myMesh->facesIterator();
for(; anIter->more(); )
process( anIter->next() );
}
if ( myType == SMDSAbs_Edge || myType == SMDSAbs_All )
{
SMDS_EdgeIteratorPtr anIter = myMesh->edgesIterator();
for(; anIter->more(); )
process( anIter->next() );
}
if ( myType == SMDSAbs_Node )
{
SMDS_NodeIteratorPtr anIter = myMesh->nodesIterator();
for(; anIter->more(); )
process( anIter->next() );
}
}
void ElementsOnSurface::process( const SMDS_MeshElement* theElemPtr )
{
SMDS_ElemIteratorPtr aNodeItr = theElemPtr->nodesIterator();
bool isSatisfy = true;
for ( ; aNodeItr->more(); )
{
SMDS_MeshNode* aNode = (SMDS_MeshNode*)aNodeItr->next();
if ( !isOnSurface( aNode ) )
{
isSatisfy = false;
break;
}
}
if ( isSatisfy )
myIds.Add( theElemPtr->GetID() );
}
bool ElementsOnSurface::isOnSurface( const SMDS_MeshNode* theNode ) const
{
if ( mySurf.IsNull() )
return false;
gp_Pnt aPnt( theNode->X(), theNode->Y(), theNode->Z() );
double aToler2 = myToler * myToler;
if ( mySurf->IsKind(STANDARD_TYPE(Geom_Plane)))
{
gp_Pln aPln = Handle(Geom_Plane)::DownCast(mySurf)->Pln();
if ( aPln.SquareDistance( aPnt ) > aToler2 )
return false;
}
else if ( mySurf->IsKind(STANDARD_TYPE(Geom_CylindricalSurface)))
{
gp_Cylinder aCyl = Handle(Geom_CylindricalSurface)::DownCast(mySurf)->Cylinder();
double aRad = aCyl.Radius();
gp_Ax3 anAxis = aCyl.Position();
gp_XYZ aLoc = aCyl.Location().XYZ();
double aXDist = anAxis.XDirection().XYZ() * ( aPnt.XYZ() - aLoc );
double aYDist = anAxis.YDirection().XYZ() * ( aPnt.XYZ() - aLoc );
if ( fabs(aXDist*aXDist + aYDist*aYDist - aRad*aRad) > aToler2 )
return false;
}
else
return false;
return true;
}