smesh/doc/salome/gui/SMESH/input/tui_modifying_meshes.doc

972 lines
24 KiB
Plaintext
Raw Normal View History

/*!
\page tui_modifying_meshes_page Modifying Meshes
<br>
\anchor tui_adding_nodes_and_elements
<h2>Adding Nodes and Elements</h2>
<br>
\anchor tui_add_node
<h3>Add Node</h3>
\code
import SMESH_mechanic
mesh = SMESH_mechanic.mesh
# add node
new_id = mesh.AddNode(50, 10, 0)
print ""
if new_id == 0: print "KO node addition."
else: print "New Node has been added with ID ", new_id
\endcode
2012-08-09 16:03:55 +06:00
<br>
\anchor tui_add_0DElement
<h3>Add 0D Element</h3>
\code
import SMESH_mechanic
mesh = SMESH_mechanic.mesh
# add node
node_id = mesh.AddNode(50, 10, 0)
# add 0D Element
new_id = mesh.Add0DElement(node_id)
print ""
if new_id == 0: print "KO node addition."
else: print "New 0D Element has been added with ID ", new_id
\endcode
<br>
\anchor tui_add_edge
<h3>Add Edge</h3>
\code
import SMESH_mechanic
mesh = SMESH_mechanic.mesh
print ""
# add node
n1 = mesh.AddNode(50, 10, 0)
if n1 == 0: print "KO node addition."
# add edge
e1 = mesh.AddEdge([n1, 38])
if e1 == 0: print "KO edge addition."
else: print "New Edge has been added with ID ", e1
\endcode
<br>
\anchor tui_add_triangle
<h3>Add Triangle</h3>
\code
import SMESH_mechanic
mesh = SMESH_mechanic.mesh
print ""
# add node
n1 = mesh.AddNode(50, 10, 0)
if n1 == 0: print "KO node addition."
# add triangle
t1 = mesh.AddFace([n1, 38, 39])
if t1 == 0: print "KO triangle addition."
else: print "New Triangle has been added with ID ", t1
\endcode
<br>
\anchor tui_add_quadrangle
<h3>Add Quadrangle</h3>
\code
import SMESH_mechanic
mesh = SMESH_mechanic.mesh
print ""
# add node
n1 = mesh.AddNode(50, 10, 0)
if n1 == 0: print "KO node addition."
n2 = mesh.AddNode(40, 20, 0)
if n2 == 0: print "KO node addition."
# add quadrangle
q1 = mesh.AddFace([n2, n1, 38, 39])
if q1 == 0: print "KO quadrangle addition."
else: print "New Quadrangle has been added with ID ", q1
\endcode
<br>
\anchor tui_add_tetrahedron
<h3>Add Tetrahedron</h3>
\code
import SMESH_mechanic
mesh = SMESH_mechanic.mesh
print ""
# add node
n1 = mesh.AddNode(50, 10, 0)
if n1 == 0: print "KO node addition."
# add tetrahedron
t1 = mesh.AddVolume([n1, 38, 39, 246])
if t1 == 0: print "KO tetrahedron addition."
else: print "New Tetrahedron has been added with ID ", t1
\endcode
<br>
\anchor tui_add_hexahedron
<h3>Add Hexahedron</h3>
\code
import SMESH_mechanic
mesh = SMESH_mechanic.mesh
print ""
# add nodes
nId1 = mesh.AddNode(50, 10, 0)
nId2 = mesh.AddNode(47, 12, 0)
nId3 = mesh.AddNode(50, 10, 10)
nId4 = mesh.AddNode(47, 12, 10)
if nId1 == 0 or nId2 == 0 or nId3 == 0 or nId4 == 0: print "KO node addition."
# add hexahedron
vId = mesh.AddVolume([nId2, nId1, 38, 39, nId4, nId3, 245, 246])
if vId == 0: print "KO Hexahedron addition."
else: print "New Hexahedron has been added with ID ", vId
\endcode
<br>
\anchor tui_add_polygon
<h3>Add Polygon</h3>
\code
import math
import salome
import smesh
# create an empty mesh structure
mesh = smesh.Mesh()
# a method to build a polygonal mesh element with <nb_vert> angles:
def MakePolygon (a_mesh, x0, y0, z0, radius, nb_vert):
al = 2.0 * math.pi / nb_vert
node_ids = []
# Create nodes for a polygon
for ii in range(nb_vert):
nid = mesh.AddNode(x0 + radius * math.cos(ii*al),
y0 + radius * math.sin(ii*al),
z0)
node_ids.append(nid)
pass
# Create a polygon
return mesh.AddPolygonalFace(node_ids)
# Create three polygons
f1 = MakePolygon(mesh, 0, 0, 0, 30, 13)
f2 = MakePolygon(mesh, 0, 0, 10, 21, 9)
f3 = MakePolygon(mesh, 0, 0, 20, 13, 6)
salome.sg.updateObjBrowser(1)
\endcode
<br>
\anchor tui_add_polyhedron
<h3>Add Polyhedron</h3>
\code
import salome
import math
# create an empty mesh structure
mesh = smesh.Mesh()
# Create nodes for 12-hedron with pentagonal faces
al = 2 * math.pi / 5.0
cosal = math.cos(al)
aa = 13
rr = aa / (2.0 * math.sin(al/2.0))
dr = 2.0 * rr * cosal
r1 = rr + dr
dh = rr * math.sqrt(2.0 * (1.0 - cosal * (1.0 + 2.0 * cosal)))
hh = 2.0 * dh - dr * (rr*(cosal - 1) + (rr + dr)*(math.cos(al/2) - 1)) / dh
dd = [] # top
cc = [] # below top
bb = [] # above bottom
aa = [] # bottom
for i in range(5):
cos_bot = math.cos(i*al)
sin_bot = math.sin(i*al)
cos_top = math.cos(i*al + al/2.0)
sin_top = math.sin(i*al + al/2.0)
nd = mesh.AddNode(rr * cos_top, rr * sin_top, hh ) # top
nc = mesh.AddNode(r1 * cos_top, r1 * sin_top, hh - dh) # below top
nb = mesh.AddNode(r1 * cos_bot, r1 * sin_bot, dh) # above bottom
na = mesh.AddNode(rr * cos_bot, rr * sin_bot, 0) # bottom
dd.append(nd) # top
cc.append(nc) # below top
bb.append(nb) # above bottom
aa.append(na) # bottom
pass
# Create a polyhedral volume (12-hedron with pentagonal faces)
MeshEditor.AddPolyhedralVolume([dd[0], dd[1], dd[2], dd[3], dd[4], # top
dd[0], cc[0], bb[1], cc[1], dd[1], # -
dd[1], cc[1], bb[2], cc[2], dd[2], # -
dd[2], cc[2], bb[3], cc[3], dd[3], # - below top
dd[3], cc[3], bb[4], cc[4], dd[4], # -
dd[4], cc[4], bb[0], cc[0], dd[0], # -
aa[4], bb[4], cc[4], bb[0], aa[0], # .
aa[3], bb[3], cc[3], bb[4], aa[4], # .
aa[2], bb[2], cc[2], bb[3], aa[3], # . above bottom
aa[1], bb[1], cc[1], bb[2], aa[2], # .
aa[0], bb[0], cc[0], bb[1], aa[1], # .
aa[0], aa[1], aa[2], aa[3], aa[4]], # bottom
[5,5,5,5,5,5,5,5,5,5,5,5])
salome.sg.updateObjBrowser(1)
\endcode
<br>
\anchor tui_removing_nodes_and_elements
<h2>Removing Nodes and Elements</h2>
<br>
\anchor tui_removing_nodes
<h3>Removing Nodes</h3>
\code
import SMESH_mechanic
mesh = SMESH_mechanic.mesh
# remove nodes #246 and #255
res = mesh.RemoveNodes([246, 255])
if res == 1: print "Nodes removing is OK!"
else: print "KO nodes removing."
\endcode
<br>
\anchor tui_removing_elements
<h3>Removing Elements</h3>
\code
import SMESH_mechanic
mesh = SMESH_mechanic.mesh
# remove three elements: #850, #859 and #814
res = mesh.RemoveElements([850, 859, 814])
if res == 1: print "Elements removing is OK!"
else: print "KO Elements removing."
\endcode
<br>
2012-08-09 16:03:55 +06:00
\anchor tui_removing_orphan_nodes
<h3>Removing Orphan Nodes</h3>
\code
import SMESH_mechanic
mesh = SMESH_mechanic.mesh
2012-08-09 16:03:55 +06:00
# add orphan nodes
mesh.AddNode(0,0,0)
mesh.AddNode(1,1,1)
# remove just created orphan nodes
res = mesh.RemoveOrphanNodes()
if res == 1: print "Removed %d nodes!" % res
else: print "KO nodes removing."
\endcode
<br>
2012-08-09 16:03:55 +06:00
\anchor tui_renumbering_nodes_and_elements
<h2>Renumbering Nodes and Elements</h2>
\code
import SMESH_mechanic
mesh = SMESH_mechanic.mesh
2012-08-09 16:03:55 +06:00
mesh.RenumberNodes()
mesh.RenumberElements()
\endcode
<br>
2012-08-09 16:03:55 +06:00
\anchor tui_moving_nodes
<h2>Moving Nodes</h2>
\code
from geompy import *
from smesh import *
box = MakeBoxDXDYDZ(200, 200, 200)
mesh = Mesh( box )
mesh.Segment().AutomaticLength(0.1)
mesh.Quadrangle()
mesh.Compute()
# find node at (0,0,0)
node000 = None
for vId in SubShapeAllIDs( box, ShapeType["VERTEX"]):
if node000: break
nodeIds = mesh.GetSubMeshNodesId( vId, True )
for node in nodeIds:
xyz = mesh.GetNodeXYZ( node )
if xyz[0] == 0 and xyz[1] == 0 and xyz[2] == 0 :
node000 = node
pass
pass
pass
if not node000:
raise "node000 not found"
# find node000 using the tested function
n = mesh.FindNodeClosestTo( -1,-1,-1 )
if not n == node000:
raise "FindNodeClosestTo() returns " + str( n ) + " != " + str( node000 )
# move node000 to a new location
x,y,z = -10, -10, -10
2012-08-09 16:03:55 +06:00
n = mesh.MoveNode( n,x,y,z )
if not n:
raise "MoveNode() returns " + n
# check the coordinates of the node000
xyz = mesh.GetNodeXYZ( node000 )
if not ( xyz[0] == x and xyz[1] == y and xyz[2] == z) :
raise "Wrong coordinates: " + str( xyz ) + " != " + str( [x,y,z] )
\endcode
<br>
\anchor tui_diagonal_inversion
<h2>Diagonal Inversion</h2>
\code
import salome
import smesh
# create an empty mesh structure
mesh = smesh.Mesh()
# create the following mesh:
# .----.----.----.
# | /| /| /|
# | / | / | / |
# | / | / | / |
# |/ |/ |/ |
# .----.----.----.
bb = [0, 0, 0, 0]
tt = [0, 0, 0, 0]
ff = [0, 0, 0, 0, 0, 0]
bb[0] = mesh.AddNode( 0., 0., 0.)
bb[1] = mesh.AddNode(10., 0., 0.)
bb[2] = mesh.AddNode(20., 0., 0.)
bb[3] = mesh.AddNode(30., 0., 0.)
tt[0] = mesh.AddNode( 0., 15., 0.)
tt[1] = mesh.AddNode(10., 15., 0.)
tt[2] = mesh.AddNode(20., 15., 0.)
tt[3] = mesh.AddNode(30., 15., 0.)
ff[0] = mesh.AddFace([bb[0], bb[1], tt[1]])
ff[1] = mesh.AddFace([bb[0], tt[1], tt[0]])
ff[2] = mesh.AddFace([bb[1], bb[2], tt[2]])
ff[3] = mesh.AddFace([bb[1], tt[2], tt[1]])
ff[4] = mesh.AddFace([bb[2], bb[3], tt[3]])
ff[5] = mesh.AddFace([bb[2], tt[3], tt[2]])
# inverse the diagonal bb[1] - tt[2]
print "\nDiagonal inversion ... ",
res = mesh.InverseDiag(bb[1], tt[2])
if not res: print "failed!"
else: print "done."
salome.sg.updateObjBrowser(1)
\endcode
<br>
\anchor tui_uniting_two_triangles
<h2>Uniting two Triangles</h2>
\code
import salome
import smesh
# create an empty mesh structure
mesh = smesh.Mesh()
# create the following mesh:
# .----.----.----.
# | /| /| /|
# | / | / | / |
# | / | / | / |
# |/ |/ |/ |
# .----.----.----.
bb = [0, 0, 0, 0]
tt = [0, 0, 0, 0]
ff = [0, 0, 0, 0, 0, 0]
bb[0] = mesh.AddNode( 0., 0., 0.)
bb[1] = mesh.AddNode(10., 0., 0.)
bb[2] = mesh.AddNode(20., 0., 0.)
bb[3] = mesh.AddNode(30., 0., 0.)
tt[0] = mesh.AddNode( 0., 15., 0.)
tt[1] = mesh.AddNode(10., 15., 0.)
tt[2] = mesh.AddNode(20., 15., 0.)
tt[3] = mesh.AddNode(30., 15., 0.)
ff[0] = mesh.AddFace([bb[0], bb[1], tt[1]])
ff[1] = mesh.AddFace([bb[0], tt[1], tt[0]])
ff[2] = mesh.AddFace([bb[1], bb[2], tt[2]])
ff[3] = mesh.AddFace([bb[1], tt[2], tt[1]])
ff[4] = mesh.AddFace([bb[2], bb[3], tt[3]])
ff[5] = mesh.AddFace([bb[2], tt[3], tt[2]])
# delete the diagonal bb[1] - tt[2]
print "\nUnite two triangles ... ",
res = mesh.DeleteDiag(bb[1], tt[2])
if not res: print "failed!"
else: print "done."
salome.sg.updateObjBrowser(1)
\endcode
<br>
\anchor tui_uniting_set_of_triangles
<h2>Uniting a Set of Triangles</h2>
\code
import salome
import smesh
# create an empty mesh structure
mesh = smesh.Mesh()
# create the following mesh:
# .----.----.----.
# | /| /| /|
# | / | / | / |
# | / | / | / |
# |/ |/ |/ |
# .----.----.----.
bb = [0, 0, 0, 0]
tt = [0, 0, 0, 0]
ff = [0, 0, 0, 0, 0, 0]
bb[0] = mesh.AddNode( 0., 0., 0.)
bb[1] = mesh.AddNode(10., 0., 0.)
bb[2] = mesh.AddNode(20., 0., 0.)
bb[3] = mesh.AddNode(30., 0., 0.)
tt[0] = mesh.AddNode( 0., 15., 0.)
tt[1] = mesh.AddNode(10., 15., 0.)
tt[2] = mesh.AddNode(20., 15., 0.)
tt[3] = mesh.AddNode(30., 15., 0.)
ff[0] = mesh.AddFace([bb[0], bb[1], tt[1]])
ff[1] = mesh.AddFace([bb[0], tt[1], tt[0]])
ff[2] = mesh.AddFace([bb[1], bb[2], tt[2]])
ff[3] = mesh.AddFace([bb[1], tt[2], tt[1]])
ff[4] = mesh.AddFace([bb[2], bb[3], tt[3]])
ff[5] = mesh.AddFace([bb[2], tt[3], tt[2]])
# unite a set of triangles
print "\nUnite a set of triangles ... ",
res = mesh.TriToQuad([ff[2], ff[3], ff[4], ff[5]], smesh.FT_MinimumAngle, 60.)
if not res: print "failed!"
else: print "done."
salome.sg.updateObjBrowser(1)
\endcode
<br>
\anchor tui_orientation
<h2>Orientation</h2>
\code
import salome
import smesh
# create an empty mesh structure
mesh = smesh.Mesh()
# build five quadrangles:
dx = 10
dy = 20
n1 = mesh.AddNode(0.0 * dx, 0, 0)
n2 = mesh.AddNode(1.0 * dx, 0, 0)
n3 = mesh.AddNode(2.0 * dx, 0, 0)
n4 = mesh.AddNode(3.0 * dx, 0, 0)
n5 = mesh.AddNode(4.0 * dx, 0, 0)
n6 = mesh.AddNode(5.0 * dx, 0, 0)
n7 = mesh.AddNode(0.0 * dx, dy, 0)
n8 = mesh.AddNode(1.0 * dx, dy, 0)
n9 = mesh.AddNode(2.0 * dx, dy, 0)
n10 = mesh.AddNode(3.0 * dx, dy, 0)
n11 = mesh.AddNode(4.0 * dx, dy, 0)
n12 = mesh.AddNode(5.0 * dx, dy, 0)
f1 = mesh.AddFace([n1, n2, n8 , n7 ])
f2 = mesh.AddFace([n2, n3, n9 , n8 ])
f3 = mesh.AddFace([n3, n4, n10, n9 ])
f4 = mesh.AddFace([n4, n5, n11, n10])
f5 = mesh.AddFace([n5, n6, n12, n11])
# Change the orientation of the second and the fourth faces.
mesh.Reorient([2, 4])
salome.sg.updateObjBrowser(1)
\endcode
<br>
\anchor tui_cutting_quadrangles
<h2>Cutting Quadrangles</h2>
\code
import SMESH_mechanic
smesh = SMESH_mechanic.smesh
mesh = SMESH_mechanic.mesh
# cut two quadrangles: 405 and 406
mesh.QuadToTri([405, 406], smesh.FT_MinimumAngle)
\endcode
<br>
\anchor tui_smoothing
<h2>Smoothing</h2>
\code
import salome
import geompy
import SMESH_mechanic
smesh = SMESH_mechanic.smesh
mesh = SMESH_mechanic.mesh
# select the top face
faces = geompy.SubShapeAllSorted(SMESH_mechanic.shape_mesh, geompy.ShapeType["FACE"])
face = faces[3]
geompy.addToStudyInFather(SMESH_mechanic.shape_mesh, face, "face planar with hole")
# create a group of faces to be smoothed
GroupSmooth = mesh.GroupOnGeom(face, "Group of faces (smooth)", smesh.FACE)
# perform smoothing
# boolean SmoothObject(Object, IDsOfFixedNodes, MaxNbOfIterations, MaxAspectRatio, Method)
res = mesh.SmoothObject(GroupSmooth, [], 20, 2., smesh.CENTROIDAL_SMOOTH)
print "\nSmoothing ... ",
if not res: print "failed!"
else: print "done."
salome.sg.updateObjBrowser(1)
\endcode
<br>
\anchor tui_extrusion
<h2>Extrusion</h2>
\code
import salome
import geompy
import SMESH_mechanic
smesh = SMESH_mechanic.smesh
mesh = SMESH_mechanic.mesh
# select the top face
faces = geompy.SubShapeAllSorted(SMESH_mechanic.shape_mesh, geompy.ShapeType["FACE"])
face = faces[7]
geompy.addToStudyInFather(SMESH_mechanic.shape_mesh, face, "face circular top")
# create a vector for extrusion
point = smesh.PointStruct(0., 0., 5.)
vector = smesh.DirStruct(point)
# create a group to be extruded
GroupTri = mesh.GroupOnGeom(face, "Group of faces (extrusion)", smesh.FACE)
# perform extrusion of the group
mesh.ExtrusionSweepObject(GroupTri, vector, 5)
salome.sg.updateObjBrowser(1)
\endcode
<br>
\anchor tui_extrusion_along_path
<h2>Extrusion along a Path</h2>
\code
import math
import salome
# Geometry
import geompy
# 1. Create points
points = [[0, 0], [50, 30], [50, 110], [0, 150], [-80, 150], [-130, 70], [-130, -20]]
iv = 1
vertices = []
for point in points:
vert = geompy.MakeVertex(point[0], point[1], 0)
geompy.addToStudy(vert, "Vertex_" + `iv`)
vertices.append(vert)
iv += 1
pass
# 2. Create edges and wires
Edge_straight = geompy.MakeEdge(vertices[0], vertices[4])
Edge_bezierrr = geompy.MakeBezier(vertices)
Wire_polyline = geompy.MakePolyline(vertices)
Edge_Circle = geompy.MakeCircleThreePnt(vertices[0], vertices[1], vertices[2])
geompy.addToStudy(Edge_straight, "Edge_straight")
geompy.addToStudy(Edge_bezierrr, "Edge_bezierrr")
geompy.addToStudy(Wire_polyline, "Wire_polyline")
geompy.addToStudy(Edge_Circle , "Edge_Circle")
# 3. Explode wire on edges, as they will be used for mesh extrusion
Wire_polyline_edges = geompy.SubShapeAll(Wire_polyline, geompy.ShapeType["EDGE"])
for ii in range(len(Wire_polyline_edges)):
geompy.addToStudyInFather(Wire_polyline, Wire_polyline_edges[ii], "Edge_" + `ii + 1`)
pass
# Mesh
import smesh
# Mesh the given shape with the given 1d hypothesis
def Mesh1D(shape1d, nbSeg, name):
mesh1d_tool = smesh.Mesh(shape1d, name)
algo = mesh1d_tool.Segment()
hyp = algo.NumberOfSegments(nbSeg)
isDone = mesh1d_tool.Compute()
if not isDone: print 'Mesh ', name, ': computation failed'
return mesh1d_tool
# Create a mesh with six nodes, seven edges and two quadrangle faces
def MakeQuadMesh2(mesh_name):
quad_1 = smesh.Mesh(name = mesh_name)
# six nodes
n1 = quad_1.AddNode(0, 20, 10)
n2 = quad_1.AddNode(0, 40, 10)
n3 = quad_1.AddNode(0, 40, 30)
n4 = quad_1.AddNode(0, 20, 30)
n5 = quad_1.AddNode(0, 0, 30)
n6 = quad_1.AddNode(0, 0, 10)
# seven edges
quad_1.AddEdge([n1, n2]) # 1
quad_1.AddEdge([n2, n3]) # 2
quad_1.AddEdge([n3, n4]) # 3
quad_1.AddEdge([n4, n1]) # 4
quad_1.AddEdge([n4, n5]) # 5
quad_1.AddEdge([n5, n6]) # 6
quad_1.AddEdge([n6, n1]) # 7
# two quadrangle faces
quad_1.AddFace([n1, n2, n3, n4]) # 8
quad_1.AddFace([n1, n4, n5, n6]) # 9
return [quad_1, [1,2,3,4,5,6,7], [8,9]]
# Path meshes
Edge_straight_mesh = Mesh1D(Edge_straight, 7, "Edge_straight")
Edge_bezierrr_mesh = Mesh1D(Edge_bezierrr, 7, "Edge_bezierrr")
Wire_polyline_mesh = Mesh1D(Wire_polyline, 3, "Wire_polyline")
Edge_Circle_mesh = Mesh1D(Edge_Circle , 8, "Edge_Circle")
# Initial meshes (to be extruded)
[quad_1, ee_1, ff_1] = MakeQuadMesh2("quad_1")
[quad_2, ee_2, ff_2] = MakeQuadMesh2("quad_2")
[quad_3, ee_3, ff_3] = MakeQuadMesh2("quad_3")
[quad_4, ee_4, ff_4] = MakeQuadMesh2("quad_4")
[quad_5, ee_5, ff_5] = MakeQuadMesh2("quad_5")
[quad_6, ee_6, ff_6] = MakeQuadMesh2("quad_6")
[quad_7, ee_7, ff_7] = MakeQuadMesh2("quad_7")
# ExtrusionAlongPath
# IDsOfElements, PathMesh, PathShape, NodeStart,
# HasAngles, Angles, HasRefPoint, RefPoint
refPoint = smesh.PointStruct(0, 0, 0)
a10 = 10.0*math.pi/180.0
a45 = 45.0*math.pi/180.0
# 1. Extrusion of two mesh edges along a straight path
error = quad_1.ExtrusionAlongPath([1,2], Edge_straight_mesh, Edge_straight, 1,
0, [], 0, refPoint)
# 2. Extrusion of one mesh edge along a curved path
error = quad_2.ExtrusionAlongPath([2], Edge_bezierrr_mesh, Edge_bezierrr, 1,
0, [], 0, refPoint)
# 3. Extrusion of one mesh edge along a curved path with usage of angles
error = quad_3.ExtrusionAlongPath([2], Edge_bezierrr_mesh, Edge_bezierrr, 1,
1, [a45, a45, a45, 0, -a45, -a45, -a45], 0, refPoint)
# 4. Extrusion of one mesh edge along the path, which is a part of a meshed wire
error = quad_4.ExtrusionAlongPath([4], Wire_polyline_mesh, Wire_polyline_edges[0], 1,
1, [a10, a10, a10], 0, refPoint)
# 5. Extrusion of two mesh faces along the path, which is a part of a meshed wire
error = quad_5.ExtrusionAlongPath(ff_5 , Wire_polyline_mesh, Wire_polyline_edges[2], 4,
0, [], 0, refPoint)
# 6. Extrusion of two mesh faces along a closed path
error = quad_6.ExtrusionAlongPath(ff_6 , Edge_Circle_mesh, Edge_Circle, 1,
0, [], 0, refPoint)
# 7. Extrusion of two mesh faces along a closed path with usage of angles
error = quad_7.ExtrusionAlongPath(ff_7, Edge_Circle_mesh, Edge_Circle, 1,
1, [a45, -a45, a45, -a45, a45, -a45, a45, -a45], 0, refPoint)
salome.sg.updateObjBrowser(1)
\endcode
<br>
\anchor tui_revolution
<h2>Revolution</h2>
\code
import math
2009-02-17 10:27:49 +05:00
import SMESH
import SMESH_mechanic
mesh = SMESH_mechanic.mesh
smesh = SMESH_mechanic.smesh
# create a group of faces to be revolved
FacesRotate = [492, 493, 502, 503]
2009-02-17 10:27:49 +05:00
GroupRotate = mesh.CreateEmptyGroup(SMESH.FACE,"Group of faces (rotate)")
GroupRotate.Add(FacesRotate)
# define revolution angle and axis
angle45 = 45 * math.pi / 180
axisXYZ = SMESH.AxisStruct(-38.3128, -73.3658, -23.321, -13.3402, -13.3265, 6.66632)
# perform revolution of an object
mesh.RotationSweepObject(GroupRotate, axisXYZ, angle45, 4, 1e-5)
\endcode
<br>
\anchor tui_pattern_mapping
<h2>Pattern Mapping</h2>
\code
import geompy
import smesh
# define the geometry
Box_1 = geompy.MakeBoxDXDYDZ(200., 200., 200.)
geompy.addToStudy(Box_1, "Box_1")
faces = geompy.SubShapeAll(Box_1, geompy.ShapeType["FACE"])
Face_1 = faces[0]
Face_2 = faces[1]
geompy.addToStudyInFather(Box_1, Face_1, "Face_1")
geompy.addToStudyInFather(Box_1, Face_2, "Face_2")
# build a quadrangle mesh 3x3 on Face_1
Mesh_1 = smesh.Mesh(Face_1)
algo1D = Mesh_1.Segment()
algo1D.NumberOfSegments(3)
Mesh_1.Quadrangle()
isDone = Mesh_1.Compute()
if not isDone: print 'Mesh Mesh_1 : computation failed'
# build a triangle mesh on Face_2
Mesh_2 = smesh.Mesh(Face_2)
algo1D = Mesh_2.Segment()
algo1D.NumberOfSegments(1)
algo2D = Mesh_2.Triangle()
algo2D.MaxElementArea(240)
isDone = Mesh_2.Compute()
if not isDone: print 'Mesh Mesh_2 : computation failed'
2012-08-09 16:03:55 +06:00
# create a 2d pattern
pattern = smesh.GetPattern()
isDone = pattern.LoadFromFace(Mesh_2.GetMesh(), Face_2, 0)
if (isDone != 1): print 'LoadFromFace :', pattern.GetErrorCode()
# apply the pattern to a face of the first mesh
2012-08-09 16:03:55 +06:00
facesToSplit = Mesh_1.GetElementsByType(smesh.SMESH.FACE)
print "Splitting %d rectangular face(s) to %d triangles..."%(len(facesToSplit), 2*len(facesToSplit))
pattern.ApplyToMeshFaces(Mesh_1.GetMesh(), facesToSplit, 0, 0)
isDone = pattern.MakeMesh(Mesh_1.GetMesh(), 0, 0)
if (isDone != 1): print 'MakeMesh :', pattern.GetErrorCode()
2012-08-09 16:03:55 +06:00
# create quadrangle mesh
Mesh_3 = smesh.Mesh(Box_1)
Mesh_3.Segment().NumberOfSegments(1)
Mesh_3.Quadrangle()
Mesh_3.Hexahedron()
isDone = Mesh_3.Compute()
if not isDone: print 'Mesh Mesh_3 : computation failed'
# create a 3d pattern (hexahedrons)
pattern_hexa = smesh.GetPattern()
smp_hexa = """!!! Nb of points:
15
0 0 0 !- 0
1 0 0 !- 1
0 1 0 !- 2
1 1 0 !- 3
0 0 1 !- 4
1 0 1 !- 5
0 1 1 !- 6
1 1 1 !- 7
0.5 0 0.5 !- 8
0.5 0 1 !- 9
0.5 0.5 0.5 !- 10
0.5 0.5 1 !- 11
1 0 0.5 !- 12
1 0.5 0.5 !- 13
1 0.5 1 !- 14
!!! Indices of points of 4 elements:
8 12 5 9 10 13 14 11
0 8 9 4 2 10 11 6
2 10 11 6 3 13 14 7
0 1 12 8 2 3 13 10"""
pattern_hexa.LoadFromFile(smp_hexa)
# apply the pattern to a mesh
volsToSplit = Mesh_3.GetElementsByType(smesh.SMESH.VOLUME)
print "Splitting %d hexa volume(s) to %d hexas..."%(len(volsToSplit), 4*len(volsToSplit))
pattern_hexa.ApplyToHexahedrons(Mesh_3.GetMesh(), volsToSplit,0,3)
isDone = pattern_hexa.MakeMesh(Mesh_3.GetMesh(), True, True)
if (isDone != 1): print 'MakeMesh :', pattern_hexa.GetErrorCode()
# create one more quadrangle mesh
Mesh_4 = smesh.Mesh(Box_1)
Mesh_4.Segment().NumberOfSegments(1)
Mesh_4.Quadrangle()
Mesh_4.Hexahedron()
isDone = Mesh_4.Compute()
if not isDone: print 'Mesh Mesh_4 : computation failed'
# create another 3d pattern (pyramids)
pattern_pyra = smesh.GetPattern()
smp_pyra = """!!! Nb of points:
9
0 0 0 !- 0
1 0 0 !- 1
0 1 0 !- 2
1 1 0 !- 3
0 0 1 !- 4
1 0 1 !- 5
0 1 1 !- 6
1 1 1 !- 7
0.5 0.5 0.5 !- 8
!!! Indices of points of 6 elements:
0 1 5 4 8
7 5 1 3 8
3 2 6 7 8
2 0 4 6 8
0 2 3 1 8
4 5 7 6 8"""
pattern_pyra.LoadFromFile(smp_pyra)
# apply the pattern to a face mesh
volsToSplit = Mesh_4.GetElementsByType(smesh.SMESH.VOLUME)
print "Splitting %d hexa volume(s) to %d hexas..."%(len(volsToSplit), 6*len(volsToSplit))
pattern_pyra.ApplyToHexahedrons(Mesh_4.GetMesh(), volsToSplit,1,0)
isDone = pattern_pyra.MakeMesh(Mesh_4.GetMesh(), True, True)
if (isDone != 1): print 'MakeMesh :', pattern_pyra.GetErrorCode()
\endcode
<br>
\anchor tui_quadratic
<h2>Convert mesh to/from quadratic</h2>
\code
import geompy
import smesh
# create sphere of radius 100
Sphere = geompy.MakeSphereR( 100 )
geompy.addToStudy( Sphere, "Sphere" )
# create simple trihedral mesh
Mesh = smesh.Mesh(Sphere)
Regular_1D = Mesh.Segment()
Nb_Segments = Regular_1D.NumberOfSegments(5)
MEFISTO_2D = Mesh.Triangle()
Tetrahedron = Mesh.Tetrahedron()
# compute mesh
isDone = Mesh.Compute()
# convert to quadratic
# theForce3d = 1; this results in the medium node lying at the
# middle of the line segments connecting start and end node of a mesh
# element
Mesh.ConvertToQuadratic( theForce3d=1 )
# revert back to the non-quadratic mesh
Mesh.ConvertFromQuadratic()
# convert to quadratic
# theForce3d = 0; this results in the medium node lying at the
# geometrical edge from which the mesh element is built
Mesh.ConvertToQuadratic( theForce3d=0 )
# to convert not the whole mesh but a sub-mesh, provide it as
# an additional argument to the functions:
# Mesh.ConvertToQuadratic( 0, subMesh )
# Mesh.ConvertFromQuadratic( subMesh )
#
# Note that the mesh becomes non-conformal at conversion of sub-mesh.
\endcode
2012-08-09 16:03:55 +06:00
*/