smesh/src/SMESH_SWIG/SMESH_mechanic_tetra.py

255 lines
7.6 KiB
Python
Raw Normal View History

# Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
# CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org
#
#
#
# File : SMESH_withHole.py
# Author : Lucien PIGNOLONI
# Module : SMESH
# $Header$
import SMESH
import smeshpy
import salome
from salome import sg
import math
import geompy
# ---------------------------- GEOM --------------------------------------
geom = salome.lcc.FindOrLoadComponent("FactoryServer", "GEOM")
myBuilder = salome.myStudy.NewBuilder()
#from geompy import gg
smeshgui = salome.ImportComponentGUI("SMESH")
smeshgui.Init(salome.myStudyId)
ShapeTypeCompSolid = 1
ShapeTypeSolid = 2
ShapeTypeShell = 3
ShapeTypeFace = 4
ShapeTypeWire = 5
ShapeTypeEdge = 6
ShapeTypeVertex = 7
# ---- define contigous arcs and segment to define a closed wire
p1 = geom.MakePointStruct( 100.0, 0.0, 0.0 )
p2 = geom.MakePointStruct( 50.0, 50.0, 0.0 )
p3 = geom.MakePointStruct( 100.0, 100.0, 0.0 )
arc1 = geom.MakeArc( p1, p2, p3 )
p4 = geom.MakePointStruct( 170.0, 100.0, 0.0 )
seg1 = geom.MakeVector( p3, p4 )
p5 = geom.MakePointStruct( 200.0, 70.0, 0.0 )
p6 = geom.MakePointStruct( 170.0, 40.0, 0.0 )
arc2 = geom.MakeArc( p4, p5, p6 )
p7 = geom.MakePointStruct( 120.0, 30.0, 0.0 )
arc3 = geom.MakeArc( p6, p7, p1 )
# ---- define a closed wire with arcs and segment
List1 = []
List1.append( arc1 )
List1.append( seg1 )
List1.append( arc2 )
List1.append( arc3 )
ListIOR1 = []
for S in List1 :
ListIOR1.append( S._get_Name() )
wire1 = geom.MakeWire( ListIOR1 )
# ---- define a planar face with wire
WantPlanarFace = 1 #True
face1 = geom.MakeFace( wire1, WantPlanarFace )
# ---- create a shape by extrusion
pO = geom.MakePointStruct( 0.0, 0.0, 0.0 )
pz = geom.MakePointStruct( 0.0, 0.0, 100.0 )
prism1 = geom.MakePrism( face1, pO, pz )
# ---- create two cylinders
pc1 = geom.MakePointStruct( 90.0, 50.0, -40.0 )
pc2 = geom.MakePointStruct( 170.0, 70.0, -40.0 )
vz = geom.MakeDirection( pz )
radius = 20.0
height = 180.0
cyl1 = geom.MakeCylinder( pc1, vz, radius, height )
cyl2 = geom.MakeCylinder( pc2, vz, radius, height )
# ---- cut with cyl1
shape = geom.MakeBoolean( prism1, cyl1, 2 )
# ---- fuse with cyl2 to obtain the final mechanic piece :)
mechanic = geom.MakeBoolean( shape, cyl2, 3 )
idMechanic = geompy.addToStudy( mechanic, "mechanic")
# ---- Analysis of the geometry
print "Analysis of the geometry mechanic :"
subShellList=geompy.SubShapeAll(mechanic,ShapeTypeShell)
subFaceList=geompy.SubShapeAll(mechanic,ShapeTypeFace)
subEdgeList=geompy.SubShapeAll(mechanic,ShapeTypeEdge)
print "number of Shells in mechanic : ",len(subShellList)
print "number of Faces in mechanic : ",len(subFaceList)
print "number of Edges in mechanic : ",len(subEdgeList)
### ---------------------------- SMESH --------------------------------------
# ---- launch SMESH, init a Mesh with shape 'mechanic'
gen = smeshpy.smeshpy()
mesh = gen.Init( idMechanic )
idmesh = smeshgui.AddNewMesh( salome.orb.object_to_string(mesh) )
smeshgui.SetName( idmesh, "Mesh_mechanic" )
smeshgui.SetShape( idMechanic, idmesh )
print "-------------------------- NumberOfSegments"
numberOfSegment = 10
hypNumberOfSegment = gen.CreateHypothesis( "NumberOfSegments" )
hypNbSeg = hypNumberOfSegment._narrow( SMESH.SMESH_NumberOfSegments )
hypNbSeg.SetNumberOfSegments(numberOfSegment)
print hypNbSeg.GetName()
print hypNbSeg.GetId()
print hypNbSeg.GetNumberOfSegments()
idSeg = smeshgui.AddNewHypothesis( salome.orb.object_to_string(hypNbSeg) )
smeshgui.SetName(idSeg, "NumberOfSegments")
print "-------------------------- MaxElementArea"
maxElementArea = 20
hypMaxElementArea = gen.CreateHypothesis( "MaxElementArea" )
hypArea = hypMaxElementArea._narrow( SMESH.SMESH_MaxElementArea )
hypArea.SetMaxElementArea(maxElementArea)
print hypArea.GetName()
print hypArea.GetId()
print hypArea.GetMaxElementArea()
idArea = smeshgui.AddNewHypothesis( salome.orb.object_to_string(hypArea) )
smeshgui.SetName(idArea, "MaxElementArea")
print "-------------------------- MaxElementVolume"
maxElementVolume = 20
hypMaxElementVolume = gen.CreateHypothesis( "MaxElementVolume" )
hypVolume = hypMaxElementVolume._narrow( SMESH.SMESH_MaxElementVolume )
hypVolume.SetMaxElementVolume(maxElementVolume)
print hypVolume.GetName()
print hypVolume.GetId()
print hypVolume.GetMaxElementVolume()
idVolume = smeshgui.AddNewHypothesis( salome.orb.object_to_string(hypVolume) )
smeshgui.SetName(idVolume, "MaxElementArea")
print "-------------------------- Regular_1D"
alg1D = gen.CreateHypothesis( "Regular_1D" )
algo1D = alg1D._narrow( SMESH.SMESH_Algo )
listHyp =algo1D.GetCompatibleHypothesis()
for hyp in listHyp:
print hyp
algoReg1D = alg1D._narrow( SMESH.SMESH_Regular_1D )
print algoReg1D.GetName()
print algoReg1D.GetId()
idReg1D = smeshgui.AddNewAlgorithms( salome.orb.object_to_string(algoReg1D) )
smeshgui.SetName( idReg1D, "Regular_1D" )
print "-------------------------- MEFISTO_2D"
alg2D = gen.CreateHypothesis( "MEFISTO_2D" )
algo2D = alg2D._narrow( SMESH.SMESH_Algo )
listHyp = algo2D.GetCompatibleHypothesis()
for hyp in listHyp:
print hyp
algoMef = alg2D._narrow( SMESH.SMESH_MEFISTO_2D )
print algoMef.GetName()
print algoMef.GetId()
idMef = smeshgui.AddNewAlgorithms( salome.orb.object_to_string(algoMef) )
smeshgui.SetName( idMef, "MEFISTO_2D" )
print "-------------------------- NETGEN_3D"
alg3D = gen.CreateHypothesis( "NETGEN_3D" )
algo3D = alg3D._narrow( SMESH.SMESH_Algo )
listHyp = algo3D.GetCompatibleHypothesis()
for hyp in listHyp:
print hyp
algoNg = alg3D._narrow( SMESH.SMESH_NETGEN_3D )
print algoNg.GetName()
print algoNg.GetId()
idNg = smeshgui.AddNewAlgorithms( salome.orb.object_to_string(algoNg) )
smeshgui.SetName( idNg, "NETGEN_2D" )
print "-------------------------- add hypothesis to main mechanic"
shape_mesh = salome.IDToObject( idMechanic )
submesh = mesh.GetElementsOnShape( shape_mesh )
ret = mesh.AddHypothesis( shape_mesh, algoReg1D ) # Regular 1D/wire discretisation
print ret
ret = mesh.AddHypothesis( shape_mesh, algoMef ) # MEFISTO 2D
print ret
ret = mesh.AddHypothesis( shape_mesh, algoNg ) # NETGEN 3D
print ret
ret = mesh.AddHypothesis( shape_mesh, hypNbSeg ) # nb segments
print ret
ret = mesh.AddHypothesis( shape_mesh, hypArea ) # max area
print ret
ret = mesh.AddHypothesis( shape_mesh, hypVolume ) # max volume
print ret
smeshgui.SetAlgorithms( idmesh, idReg1D ); # Regular 1D/wire discretisation
smeshgui.SetAlgorithms( idmesh, idMef ); # MEFISTO 2D
smeshgui.SetAlgorithms( idmesh, idNg ); # NETGEN 3D
smeshgui.SetHypothesis( idmesh, idSeg ); # nb segments
smeshgui.SetHypothesis( idmesh, idArea ); # max area
smeshgui.SetHypothesis( idmesh, idVolume ); # max volume
sg.updateObjBrowser(1);
print "-------------------------- compute the mesh of the mechanic piece"
ret=gen.Compute(mesh,idMechanic)
print ret
log=mesh.GetLog(0) # no erase trace
for linelog in log:
print linelog
sg.updateObjBrowser(1)