mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2025-01-28 00:30:33 +05:00
PAL13473 (Build repetitive mesh):
add corresponding classes and methods
This commit is contained in:
parent
e117dee711
commit
03843f8a86
@ -405,6 +405,8 @@ class Mesh_Algorithm:
|
||||
reason = "there are concurrent hypotheses on sub-shapes"
|
||||
elif status == HYP_BAD_SUBSHAPE :
|
||||
reason = "shape is neither the main one, nor its subshape, nor a valid group"
|
||||
elif status == HYP_BAD_GEOMETRY:
|
||||
reason = "geometry mismatches algorithm's expectation"
|
||||
else:
|
||||
return
|
||||
hypName = '"' + hypName + '"'
|
||||
@ -804,7 +806,202 @@ class Mesh_Netgen(Mesh_Algorithm):
|
||||
else:
|
||||
hyp = self.Hypothesis("NETGEN_Parameters_2D", [], "libNETGENEngine.so")
|
||||
return hyp
|
||||
|
||||
# Public class: Mesh_Projection1D
|
||||
# ------------------------------
|
||||
|
||||
## Class to define a projection 1D algorithm
|
||||
#
|
||||
# More details.
|
||||
class Mesh_Projection1D(Mesh_Algorithm):
|
||||
|
||||
## Private constructor.
|
||||
def __init__(self, mesh, geom=0):
|
||||
self.Create(mesh, geom, "Projection_1D")
|
||||
|
||||
## Define "Source Edge" hypothesis, specifying a meshed edge to
|
||||
# take a mesh pattern from, and optionally association of vertices
|
||||
# between the source edge and a target one (where a hipothesis is assigned to)
|
||||
# @param edge to take nodes distribution from
|
||||
# @param mesh to take nodes distribution from (optional)
|
||||
# @param srcV is vertex of \a edge to associate with \a tgtV (optional)
|
||||
# @param tgtV is vertex of \a the edge where the algorithm is assigned,
|
||||
# to associate with \a srcV (optional)
|
||||
def SourceEdge(self, edge, mesh=None, srcV=None, tgtV=None):
|
||||
hyp = self.Hypothesis("ProjectionSource1D")
|
||||
hyp.SetSourceEdge( edge )
|
||||
if not mesh is None and isinstance(mesh, Mesh):
|
||||
mesh = mesh.GetMesh()
|
||||
hyp.SetSourceMesh( mesh )
|
||||
hyp.SetVertexAssociation( srcV, tgtV )
|
||||
return hyp
|
||||
|
||||
|
||||
# Public class: Mesh_Projection2D
|
||||
# ------------------------------
|
||||
|
||||
## Class to define a projection 2D algorithm
|
||||
#
|
||||
# More details.
|
||||
class Mesh_Projection2D(Mesh_Algorithm):
|
||||
|
||||
## Private constructor.
|
||||
def __init__(self, mesh, geom=0):
|
||||
self.Create(mesh, geom, "Projection_2D")
|
||||
|
||||
## Define "Source Face" hypothesis, specifying a meshed face to
|
||||
# take a mesh pattern from, and optionally association of vertices
|
||||
# between the source face and a target one (where a hipothesis is assigned to)
|
||||
# @param face to take mesh pattern from
|
||||
# @param mesh to take mesh pattern from (optional)
|
||||
# @param srcV1 is vertex of \a face to associate with \a tgtV1 (optional)
|
||||
# @param tgtV1 is vertex of \a the face where the algorithm is assigned,
|
||||
# to associate with \a srcV1 (optional)
|
||||
# @param srcV2 is vertex of \a face to associate with \a tgtV1 (optional)
|
||||
# @param tgtV2 is vertex of \a the face where the algorithm is assigned,
|
||||
# to associate with \a srcV2 (optional)
|
||||
#
|
||||
# Note: association vertices must belong to one edge of a face
|
||||
def SourceFace(self, face, mesh=None, srcV1=None, tgtV1=None, srcV2=None, tgtV2=None):
|
||||
hyp = self.Hypothesis("ProjectionSource2D")
|
||||
hyp.SetSourceFace( face )
|
||||
if not mesh is None and isinstance(mesh, Mesh):
|
||||
mesh = mesh.GetMesh()
|
||||
hyp.SetSourceMesh( mesh )
|
||||
hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
|
||||
return hyp
|
||||
|
||||
# Public class: Mesh_Projection3D
|
||||
# ------------------------------
|
||||
|
||||
## Class to define a projection 3D algorithm
|
||||
#
|
||||
# More details.
|
||||
class Mesh_Projection3D(Mesh_Algorithm):
|
||||
|
||||
## Private constructor.
|
||||
def __init__(self, mesh, geom=0):
|
||||
self.Create(mesh, geom, "Projection_3D")
|
||||
|
||||
## Define "Source Shape 3D" hypothesis, specifying a meshed solid to
|
||||
# take a mesh pattern from, and optionally association of vertices
|
||||
# between the source solid and a target one (where a hipothesis is assigned to)
|
||||
# @param solid to take mesh pattern from
|
||||
# @param mesh to take mesh pattern from (optional)
|
||||
# @param srcV1 is vertex of \a solid to associate with \a tgtV1 (optional)
|
||||
# @param tgtV1 is vertex of \a the solid where the algorithm is assigned,
|
||||
# to associate with \a srcV1 (optional)
|
||||
# @param srcV2 is vertex of \a solid to associate with \a tgtV1 (optional)
|
||||
# @param tgtV2 is vertex of \a the solid where the algorithm is assigned,
|
||||
# to associate with \a srcV2 (optional)
|
||||
#
|
||||
# Note: association vertices must belong to one edge of a solid
|
||||
def SourceShape3D(self, solid, mesh=0, srcV1=0, tgtV1=0, srcV2=0, tgtV2=0):
|
||||
hyp = self.Hypothesis("ProjectionSource3D")
|
||||
hyp.SetSource3DShape( solid )
|
||||
if not mesh is None and isinstance(mesh, Mesh):
|
||||
mesh = mesh.GetMesh()
|
||||
hyp.SetSourceMesh( mesh )
|
||||
hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
|
||||
return hyp
|
||||
|
||||
|
||||
# Public class: Mesh_Prism
|
||||
# ------------------------
|
||||
|
||||
## Class to define a Prism 3D algorithm
|
||||
#
|
||||
# More details.
|
||||
class Mesh_Prism3D(Mesh_Algorithm):
|
||||
|
||||
## Private constructor.
|
||||
def __init__(self, mesh, geom=0):
|
||||
self.Create(mesh, geom, "Prism_3D")
|
||||
|
||||
# Public class: Mesh_RadialPrism
|
||||
# -------------------------------
|
||||
|
||||
## Class to define a Radial Prism 3D algorithm
|
||||
#
|
||||
# More details.
|
||||
class Mesh_RadialPrism3D(Mesh_Algorithm):
|
||||
|
||||
## Private constructor.
|
||||
def __init__(self, mesh, geom=0):
|
||||
self.Create(mesh, geom, "RadialPrism_3D")
|
||||
self.distribHyp = self.Hypothesis( "LayerDistribution" )
|
||||
|
||||
## Return 3D hypothesis holding the 1D one
|
||||
def Get3DHypothesis(self):
|
||||
return self.distribHyp
|
||||
|
||||
## Private method creating 1D hypothes and storing it in the LayerDistribution
|
||||
# hypothes. Returns the created hypothes
|
||||
def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"):
|
||||
study = GetCurrentStudy() # prevent publishing of own 1D hypothesis
|
||||
hyp = smesh.CreateHypothesis(hypType, so)
|
||||
SetCurrentStudy( study ) # anable publishing
|
||||
self.distribHyp.SetLayerDistribution( hyp )
|
||||
return hyp
|
||||
|
||||
## Define "NumberOfLayers" hypothesis, specifying a number of layers of
|
||||
# prisms to build between the inner and outer shells
|
||||
def NumberOfLayers(self, n ):
|
||||
hyp = self.Hypothesis("NumberOfLayers")
|
||||
hyp.SetNumberOfLayers( n )
|
||||
return hyp
|
||||
|
||||
## Define "LocalLength" hypothesis, specifying segment length
|
||||
# to build between the inner and outer shells
|
||||
# @param l for the length of segments
|
||||
def LocalLength(self, l):
|
||||
hyp = self.OwnHypothesis("LocalLength", [l])
|
||||
hyp.SetLength(l)
|
||||
return hyp
|
||||
|
||||
## Define "NumberOfSegments" hypothesis, specifying a number of layers of
|
||||
# prisms to build between the inner and outer shells
|
||||
# @param n for the number of segments
|
||||
# @param s for the scale factor (optional)
|
||||
def NumberOfSegments(self, n, s=[]):
|
||||
if s == []:
|
||||
hyp = self.OwnHypothesis("NumberOfSegments", [n])
|
||||
else:
|
||||
hyp = self.OwnHypothesis("NumberOfSegments", [n,s])
|
||||
hyp.SetDistrType( 1 )
|
||||
hyp.SetScaleFactor(s)
|
||||
hyp.SetNumberOfSegments(n)
|
||||
return hyp
|
||||
|
||||
## Define "Arithmetic1D" hypothesis, specifying distribution of segments
|
||||
# to build between the inner and outer shells as arithmetic length increasing
|
||||
# @param start for the length of the first segment
|
||||
# @param end for the length of the last segment
|
||||
def Arithmetic1D(self, start, end):
|
||||
hyp = self.OwnHypothesis("Arithmetic1D", [start, end])
|
||||
hyp.SetLength(start, 1)
|
||||
hyp.SetLength(end , 0)
|
||||
return hyp
|
||||
|
||||
## Define "StartEndLength" hypothesis, specifying distribution of segments
|
||||
# to build between the inner and outer shells as geometric length increasing
|
||||
# @param start for the length of the first segment
|
||||
# @param end for the length of the last segment
|
||||
def StartEndLength(self, start, end):
|
||||
hyp = self.OwnHypothesis("StartEndLength", [start, end])
|
||||
hyp.SetLength(start, 1)
|
||||
hyp.SetLength(end , 0)
|
||||
return hyp
|
||||
|
||||
## Define "AutomaticLength" hypothesis, specifying number of segments
|
||||
# to build between the inner and outer shells
|
||||
# @param fineness for the fineness [0-1]
|
||||
def AutomaticLength(self, fineness=0):
|
||||
hyp = self.OwnHypothesis("AutomaticLength")
|
||||
hyp.SetFineness( fineness )
|
||||
return hyp
|
||||
|
||||
|
||||
# Public class: Mesh
|
||||
# ==================
|
||||
|
||||
@ -976,7 +1173,42 @@ class Mesh:
|
||||
## Deprecated, only for compatibility!
|
||||
def Netgen(self, is3D, geom=0):
|
||||
return Mesh_Netgen(self, is3D, geom)
|
||||
|
||||
|
||||
## Creates a projection 1D algorithm for edges.
|
||||
# If the optional \a geom parameter is not sets, this algorithm is global.
|
||||
# Otherwise, this algorithm define a submesh based on \a geom subshape.
|
||||
# @param geom If defined, subshape to be meshed
|
||||
def Projection1D(self, geom=0):
|
||||
return Mesh_Projection1D(self, geom)
|
||||
|
||||
## Creates a projection 2D algorithm for faces.
|
||||
# If the optional \a geom parameter is not sets, this algorithm is global.
|
||||
# Otherwise, this algorithm define a submesh based on \a geom subshape.
|
||||
# @param geom If defined, subshape to be meshed
|
||||
def Projection2D(self, geom=0):
|
||||
return Mesh_Projection2D(self, geom)
|
||||
|
||||
## Creates a projection 3D algorithm for solids.
|
||||
# If the optional \a geom parameter is not sets, this algorithm is global.
|
||||
# Otherwise, this algorithm define a submesh based on \a geom subshape.
|
||||
# @param geom If defined, subshape to be meshed
|
||||
def Projection3D(self, geom=0):
|
||||
return Mesh_Projection3D(self, geom)
|
||||
|
||||
## Creates a Prism 3D or RadialPrism 3D algorithm for solids.
|
||||
# If the optional \a geom parameter is not sets, this algorithm is global.
|
||||
# Otherwise, this algorithm define a submesh based on \a geom subshape.
|
||||
# @param geom If defined, subshape to be meshed
|
||||
def Prism(self, geom=0):
|
||||
shape = geom
|
||||
if shape==0:
|
||||
shape = self.geom
|
||||
nbSolids = len( geompy.SubShapeAll( shape, geompy.ShapeType["SOLID"] ))
|
||||
nbShells = len( geompy.SubShapeAll( shape, geompy.ShapeType["SHELL"] ))
|
||||
if nbSolids == 0 or nbSolids == nbShells:
|
||||
return Mesh_Prism3D(self, geom)
|
||||
return Mesh_RadialPrism3D(self, geom)
|
||||
|
||||
## Compute the mesh and return the status of the computation
|
||||
def Compute(self, geom=0):
|
||||
if geom == 0 or not isinstance(geom, geompy.GEOM._objref_GEOM_Object):
|
||||
@ -1001,8 +1233,15 @@ class Mesh:
|
||||
elif err.name == MISSING_HYPO:
|
||||
name = '"' + err.algoName + '"'
|
||||
reason = glob + dim + "D algorithm " + name + " misses " + dim + "D hypothesis"
|
||||
else:
|
||||
elif err.name == NOT_CONFORM_MESH:
|
||||
reason = "Global \"Not Conform mesh allowed\" hypothesis is missing"
|
||||
elif err.name == BAD_PARAM_VALUE:
|
||||
name = '"' + err.algoName + '"'
|
||||
reason = "Hypothesis of" + glob + dim + "D algorithm " + name +\
|
||||
" has a bad parameter value"
|
||||
else:
|
||||
reason = "For unknown reason."+\
|
||||
" Revise Mesh.Compute() implementation in smesh.py!"
|
||||
pass
|
||||
if allReasons != "":
|
||||
allReasons += "\n"
|
||||
|
Loading…
Reference in New Issue
Block a user