[bos #42217][EDF 28921] Horseshoe with bodyfitting.

Fixed endless loop of creating threads and crash for an edge case when num of threads greater than num of hexaedrons to compute.
This commit is contained in:
Konstantin Leontev 2024-08-05 12:57:49 +01:00
parent 02ad02e211
commit 05136f0f59

View File

@ -517,23 +517,66 @@ namespace Cartesian3D
// Implement parallel computation of Hexa with c++ thread implementation // Implement parallel computation of Hexa with c++ thread implementation
template<typename Iterator, class Function> template<typename Iterator, class Function>
void parallel_for(const Iterator& first, const Iterator& last, Function&& f, const int nthreads = 1) void parallel_for(const Iterator& first, const Iterator& last, Function&& f, const unsigned int nthreads = 1)
{ {
const unsigned int group = ((last-first))/std::abs(nthreads); MESSAGE("Start parallel computation of Hexa with c++ threads...");
assert(nthreads > 0);
const unsigned int numTasksTotal = last - first;
std::vector<std::thread> threads; std::vector<std::thread> threads;
threads.reserve(nthreads);
Iterator it = first; Iterator it = first;
for (; it < last-group; it += group) {
// to create a thread
// Pass iterators by value and the function by reference!
auto lambda = [=,&f](){ std::for_each(it, std::min(it+group, last), f);};
// stack the threads MESSAGE("Number of elements to compute: " << numTasksTotal << "; num of threads: " << nthreads);
threads.push_back( std::thread( lambda ) );
// Distribute tasks among threads
if (numTasksTotal <= nthreads)
{
// A simple case - just one task executed in one thread.
// TODO: check if it's faster to do it sequentially
threads.reserve(numTasksTotal);
for (; it < last; ++it)
{
threads.emplace_back(f, std::ref(*it));
} }
std::for_each(it, last, f); // last steps while we wait for other threads }
std::for_each(threads.begin(), threads.end(), [](std::thread& x){x.join();}); else
{
// Calculate how to distribute elements among threads evenly
const unsigned int numTasksInThread = numTasksTotal / nthreads;
MESSAGE("Number of tasks in thread: " << numTasksInThread);
// Store the numbers of tasks per thread
std::vector<unsigned int> distTasksInThreads(nthreads, numTasksInThread);
// Distribute a remainder among saved numbers
const unsigned int remainder = numTasksTotal % nthreads;
MESSAGE("Remainder of tasks " << remainder << " will be evenly distributed among threads");
for (unsigned int i = 0; i < remainder; ++i)
{
++distTasksInThreads[i];
}
// Create threads for each number of tasks
threads.reserve(nthreads);
for (const auto i : distTasksInThreads)
{
Iterator curLast = it + i;
// Pass iterators by value and the function by reference!
auto lambda = [=,&f](){ std::for_each(it, curLast, f); };
// Create a thread
threads.emplace_back(lambda);
// Advance iterator to the next step
it = curLast;
}
}
std::for_each(threads.begin(), threads.end(), [](std::thread& x){ x.join(); });
MESSAGE("Parallel computation was finished successfully");
} }
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------