typo-fix by Kunda + minor changes

This commit is contained in:
eap 2017-11-28 14:15:48 +03:00
parent 254c2216c3
commit 05318c85be
23 changed files with 175 additions and 100 deletions

View File

@ -28,22 +28,22 @@ critaria = [ \
] ]
filt = smesh.GetFilterFromCriteria( critaria ) filt = smesh.GetFilterFromCriteria( critaria )
filtGroup = mesh.GroupOnFilter( SMESH.FACE, "group on filter", filt ) filtGroup = mesh.GroupOnFilter( SMESH.FACE, "group on filter", filt )
print "Group on filter contains %s elemens" % filtGroup.Size() print "Group on filter contains %s elements" % filtGroup.Size()
# group on filter is updated if the mesh is modified # group on filter is updated if the mesh is modified
hyp1D.SetStartLength( 2.5 ) hyp1D.SetStartLength( 2.5 )
hyp1D.SetEndLength( 2.5 ) hyp1D.SetEndLength( 2.5 )
mesh.Compute() mesh.Compute()
print "After mesh change, group on filter contains %s elemens" % filtGroup.Size() print "After mesh change, group on filter contains %s elements" % filtGroup.Size()
# set a new filter defining the group # set a new filter defining the group
filt2 = smesh.GetFilter( SMESH.FACE, SMESH.FT_RangeOfIds, "1-50" ) filt2 = smesh.GetFilter( SMESH.FACE, SMESH.FT_RangeOfIds, "1-50" )
filtGroup.SetFilter( filt2 ) filtGroup.SetFilter( filt2 )
print "With a new filter, group on filter contains %s elemens" % filtGroup.Size() print "With a new filter, group on filter contains %s elements" % filtGroup.Size()
# group is updated at modification of the filter # group is updated at modification of the filter
filt2.SetCriteria( [ smesh.GetCriterion( SMESH.FACE, SMESH.FT_RangeOfIds, "1-70" )]) filt2.SetCriteria( [ smesh.GetCriterion( SMESH.FACE, SMESH.FT_RangeOfIds, "1-70" )])
filtIDs3 = filtGroup.GetIDs() filtIDs3 = filtGroup.GetIDs()
print "After filter modification, group on filter contains %s elemens" % filtGroup.Size() print "After filter modification, group on filter contains %s elements" % filtGroup.Size()
salome.sg.updateObjBrowser(True) salome.sg.updateObjBrowser(True)

View File

@ -31,7 +31,7 @@ smesh = smeshBuilder.New(salome.myStudy)
<b> Of course, <em>from smesh import *</em> is no more possible.</b> <b> Of course, <em>from smesh import *</em> is no more possible.</b>
\n You have to explicitely write <em>smesh.some_method()</em>. \n You have to explicitly write <em>smesh.some_method()</em>.
<b>All algorithms have been transferred from the namespace <em>smesh</em> to the namespace <em>smeshBuilder</em>.</b> <b>All algorithms have been transferred from the namespace <em>smesh</em> to the namespace <em>smeshBuilder</em>.</b>
\n For instance: \n For instance:
@ -79,7 +79,7 @@ is replaced by:
Compound1 = smesh.Concatenate([Mesh_inf.GetMesh(), Mesh_sup.GetMesh()], 0, 1, 1e-05) Compound1 = smesh.Concatenate([Mesh_inf.GetMesh(), Mesh_sup.GetMesh()], 0, 1, 1e-05)
\endcode \endcode
<b>If you need to import a %SMESH Plugin explicitely, keep in mind that they are now located in separate namespaces.</b> <b>If you need to import a %SMESH Plugin explicitly, keep in mind that they are now located in separate namespaces.</b>
\n For instance: \n For instance:
\code \code
import StdMeshers import StdMeshers

View File

@ -551,7 +551,7 @@ module SMESH
raises (SALOME::SALOME_Exception); raises (SALOME::SALOME_Exception);
/*! /*!
* Remove an hypothesis previouly added with AddHypothesis. * Remove an hypothesis previously added with AddHypothesis.
*/ */
Hypothesis_Status RemoveHypothesis(in GEOM::GEOM_Object aSubObject, Hypothesis_Status RemoveHypothesis(in GEOM::GEOM_Object aSubObject,
in SMESH_Hypothesis anHyp) in SMESH_Hypothesis anHyp)
@ -734,7 +734,7 @@ module SMESH
double GetComputeProgress(); double GetComputeProgress();
/*! /*!
* Get informations about mesh contents * Get information about mesh contents
*/ */
long NbNodes() long NbNodes()
raises (SALOME::SALOME_Exception); raises (SALOME::SALOME_Exception);

View File

@ -45,6 +45,7 @@
#include <BRepClass3d_SolidClassifier.hxx> #include <BRepClass3d_SolidClassifier.hxx>
#include <BRepClass_FaceClassifier.hxx> #include <BRepClass_FaceClassifier.hxx>
#include <BRep_Tool.hxx> #include <BRep_Tool.hxx>
#include <GeomLib_IsPlanarSurface.hxx>
#include <Geom_CylindricalSurface.hxx> #include <Geom_CylindricalSurface.hxx>
#include <Geom_Plane.hxx> #include <Geom_Plane.hxx>
#include <Geom_Surface.hxx> #include <Geom_Surface.hxx>
@ -98,6 +99,15 @@ namespace {
v2.Magnitude() < gp::Resolution() ? 0 : v1.Angle( v2 ); v2.Magnitude() < gp::Resolution() ? 0 : v1.Angle( v2 );
} }
inline double getCos2( const gp_XYZ& P1, const gp_XYZ& P2, const gp_XYZ& P3 )
{
gp_Vec v1( P1 - P2 ), v2( P3 - P2 );
double dot = v1 * v2, len1 = v1.SquareMagnitude(), len2 = v2.SquareMagnitude();
return ( len1 < gp::Resolution() || len2 < gp::Resolution() ? -1 :
dot * dot / len1 / len2 );
}
inline double getArea( const gp_XYZ& P1, const gp_XYZ& P2, const gp_XYZ& P3 ) inline double getArea( const gp_XYZ& P1, const gp_XYZ& P2, const gp_XYZ& P3 )
{ {
gp_Vec aVec1( P2 - P1 ); gp_Vec aVec1( P2 - P1 );
@ -713,21 +723,25 @@ SMDSAbs_ElementType MaxElementLength3D::GetType() const
double MinimumAngle::GetValue( const TSequenceOfXYZ& P ) double MinimumAngle::GetValue( const TSequenceOfXYZ& P )
{ {
double aMin; if ( P.size() < 3 )
if (P.size() <3)
return 0.; return 0.;
aMin = getAngle(P( P.size() ), P( 1 ), P( 2 )); double aMaxCos2;
aMin = Min(aMin,getAngle(P( P.size()-1 ), P( P.size() ), P( 1 )));
aMaxCos2 = getCos2( P( P.size() ), P( 1 ), P( 2 ));
aMaxCos2 = Max( aMaxCos2, getCos2( P( P.size()-1 ), P( P.size() ), P( 1 )));
for ( size_t i = 2; i < P.size(); i++ ) for ( size_t i = 2; i < P.size(); i++ )
{ {
double A0 = getAngle( P( i-1 ), P( i ), P( i+1 ) ); double A0 = getCos2( P( i-1 ), P( i ), P( i+1 ) );
aMin = Min(aMin,A0); aMaxCos2 = Max( aMaxCos2, A0 );
} }
if ( aMaxCos2 <= 0 )
return 0; // all nodes coincide
return aMin * 180.0 / M_PI; double cos = sqrt( aMaxCos2 );
if ( cos >= 1 ) return 0;
return acos( cos ) * 180.0 / M_PI;
} }
double MinimumAngle::GetBadRate( double Value, int nbNodes ) const double MinimumAngle::GetBadRate( double Value, int nbNodes ) const
@ -786,58 +800,51 @@ double AspectRatio::GetValue( const TSequenceOfXYZ& P )
if ( nbNodes == 3 ) { if ( nbNodes == 3 ) {
// Compute lengths of the sides // Compute lengths of the sides
std::vector< double > aLen (nbNodes); double aLen1 = getDistance( P( 1 ), P( 2 ));
for ( int i = 0; i < nbNodes - 1; i++ ) double aLen2 = getDistance( P( 2 ), P( 3 ));
aLen[ i ] = getDistance( P( i + 1 ), P( i + 2 ) ); double aLen3 = getDistance( P( 3 ), P( 1 ));
aLen[ nbNodes - 1 ] = getDistance( P( 1 ), P( nbNodes ) );
// Q = alfa * h * p / S, where // Q = alfa * h * p / S, where
// //
// alfa = sqrt( 3 ) / 6 // alfa = sqrt( 3 ) / 6
// h - length of the longest edge // h - length of the longest edge
// p - half perimeter // p - half perimeter
// S - triangle surface // S - triangle surface
const double alfa = sqrt( 3. ) / 6.; const double alfa = sqrt( 3. ) / 6.;
double maxLen = Max( aLen[ 0 ], Max( aLen[ 1 ], aLen[ 2 ] ) ); double maxLen = Max( aLen1, Max( aLen2, aLen3 ));
double half_perimeter = ( aLen[0] + aLen[1] + aLen[2] ) / 2.; double half_perimeter = ( aLen1 + aLen2 + aLen3 ) / 2.;
double anArea = getArea( P( 1 ), P( 2 ), P( 3 ) ); double anArea = getArea( P( 1 ), P( 2 ), P( 3 ));
if ( anArea <= theEps ) if ( anArea <= theEps )
return theInf; return theInf;
return alfa * maxLen * half_perimeter / anArea; return alfa * maxLen * half_perimeter / anArea;
} }
else if ( nbNodes == 6 ) { // quadratic triangles else if ( nbNodes == 6 ) { // quadratic triangles
// Compute lengths of the sides // Compute lengths of the sides
std::vector< double > aLen (3); double aLen1 = getDistance( P( 1 ), P( 3 ));
aLen[0] = getDistance( P(1), P(3) ); double aLen2 = getDistance( P( 3 ), P( 5 ));
aLen[1] = getDistance( P(3), P(5) ); double aLen3 = getDistance( P( 5 ), P( 1 ));
aLen[2] = getDistance( P(5), P(1) ); // algo same as for the linear triangle
// Q = alfa * h * p / S, where const double alfa = sqrt( 3. ) / 6.;
// double maxLen = Max( aLen1, Max( aLen2, aLen3 ));
// alfa = sqrt( 3 ) / 6 double half_perimeter = ( aLen1 + aLen2 + aLen3 ) / 2.;
// h - length of the longest edge double anArea = getArea( P( 1 ), P( 3 ), P( 5 ));
// p - half perimeter
// S - triangle surface
const double alfa = sqrt( 3. ) / 6.;
double maxLen = Max( aLen[ 0 ], Max( aLen[ 1 ], aLen[ 2 ] ) );
double half_perimeter = ( aLen[0] + aLen[1] + aLen[2] ) / 2.;
double anArea = getArea( P(1), P(3), P(5) );
if ( anArea <= theEps ) if ( anArea <= theEps )
return theInf; return theInf;
return alfa * maxLen * half_perimeter / anArea; return alfa * maxLen * half_perimeter / anArea;
} }
else if( nbNodes == 4 ) { // quadrangle else if( nbNodes == 4 ) { // quadrangle
// Compute lengths of the sides // Compute lengths of the sides
std::vector< double > aLen (4); double aLen[4];
aLen[0] = getDistance( P(1), P(2) ); aLen[0] = getDistance( P(1), P(2) );
aLen[1] = getDistance( P(2), P(3) ); aLen[1] = getDistance( P(2), P(3) );
aLen[2] = getDistance( P(3), P(4) ); aLen[2] = getDistance( P(3), P(4) );
aLen[3] = getDistance( P(4), P(1) ); aLen[3] = getDistance( P(4), P(1) );
// Compute lengths of the diagonals // Compute lengths of the diagonals
std::vector< double > aDia (2); double aDia[2];
aDia[0] = getDistance( P(1), P(3) ); aDia[0] = getDistance( P(1), P(3) );
aDia[1] = getDistance( P(2), P(4) ); aDia[1] = getDistance( P(2), P(4) );
// Compute areas of all triangles which can be built // Compute areas of all triangles which can be built
// taking three nodes of the quadrangle // taking three nodes of the quadrangle
std::vector< double > anArea (4); double anArea[4];
anArea[0] = getArea( P(1), P(2), P(3) ); anArea[0] = getArea( P(1), P(2), P(3) );
anArea[1] = getArea( P(1), P(2), P(4) ); anArea[1] = getArea( P(1), P(2), P(4) );
anArea[2] = getArea( P(1), P(3), P(4) ); anArea[2] = getArea( P(1), P(3), P(4) );
@ -853,35 +860,35 @@ double AspectRatio::GetValue( const TSequenceOfXYZ& P )
// Si - areas of the triangles // Si - areas of the triangles
const double alpha = sqrt( 1 / 32. ); const double alpha = sqrt( 1 / 32. );
double L = Max( aLen[ 0 ], double L = Max( aLen[ 0 ],
Max( aLen[ 1 ], Max( aLen[ 1 ],
Max( aLen[ 2 ], Max( aLen[ 2 ],
Max( aLen[ 3 ], Max( aLen[ 3 ],
Max( aDia[ 0 ], aDia[ 1 ] ) ) ) ) ); Max( aDia[ 0 ], aDia[ 1 ] ) ) ) ) );
double C1 = sqrt( ( aLen[0] * aLen[0] + double C1 = sqrt( ( aLen[0] * aLen[0] +
aLen[1] * aLen[1] + aLen[1] * aLen[1] +
aLen[2] * aLen[2] + aLen[2] * aLen[2] +
aLen[3] * aLen[3] ) / 4. ); aLen[3] * aLen[3] ) / 4. );
double C2 = Min( anArea[ 0 ], double C2 = Min( anArea[ 0 ],
Min( anArea[ 1 ], Min( anArea[ 1 ],
Min( anArea[ 2 ], anArea[ 3 ] ) ) ); Min( anArea[ 2 ], anArea[ 3 ] ) ) );
if ( C2 <= theEps ) if ( C2 <= theEps )
return theInf; return theInf;
return alpha * L * C1 / C2; return alpha * L * C1 / C2;
} }
else if( nbNodes == 8 || nbNodes == 9 ) { // nbNodes==8 - quadratic quadrangle else if( nbNodes == 8 || nbNodes == 9 ) { // nbNodes==8 - quadratic quadrangle
// Compute lengths of the sides // Compute lengths of the sides
std::vector< double > aLen (4); double aLen[4];
aLen[0] = getDistance( P(1), P(3) ); aLen[0] = getDistance( P(1), P(3) );
aLen[1] = getDistance( P(3), P(5) ); aLen[1] = getDistance( P(3), P(5) );
aLen[2] = getDistance( P(5), P(7) ); aLen[2] = getDistance( P(5), P(7) );
aLen[3] = getDistance( P(7), P(1) ); aLen[3] = getDistance( P(7), P(1) );
// Compute lengths of the diagonals // Compute lengths of the diagonals
std::vector< double > aDia (2); double aDia[2];
aDia[0] = getDistance( P(1), P(5) ); aDia[0] = getDistance( P(1), P(5) );
aDia[1] = getDistance( P(3), P(7) ); aDia[1] = getDistance( P(3), P(7) );
// Compute areas of all triangles which can be built // Compute areas of all triangles which can be built
// taking three nodes of the quadrangle // taking three nodes of the quadrangle
std::vector< double > anArea (4); double anArea[4];
anArea[0] = getArea( P(1), P(3), P(5) ); anArea[0] = getArea( P(1), P(3), P(5) );
anArea[1] = getArea( P(1), P(3), P(7) ); anArea[1] = getArea( P(1), P(3), P(7) );
anArea[2] = getArea( P(1), P(5), P(7) ); anArea[2] = getArea( P(1), P(5), P(7) );
@ -1922,6 +1929,12 @@ double Deflection2D::GetValue( const TSequenceOfXYZ& P )
if ( !S.IsNull() && S.ShapeType() == TopAbs_FACE ) if ( !S.IsNull() && S.ShapeType() == TopAbs_FACE )
{ {
mySurface = new ShapeAnalysis_Surface( BRep_Tool::Surface( TopoDS::Face( S ))); mySurface = new ShapeAnalysis_Surface( BRep_Tool::Surface( TopoDS::Face( S )));
GeomLib_IsPlanarSurface isPlaneCheck( mySurface->Surface() );
if ( isPlaneCheck.IsPlanar() )
myPlane.reset( new gp_Pln( isPlaneCheck.Plan() ));
else
myPlane.reset();
} }
} }
// project gravity center to the surface // project gravity center to the surface
@ -1947,12 +1960,22 @@ double Deflection2D::GetValue( const TSequenceOfXYZ& P )
double maxLen = MaxElementLength2D().GetValue( P ); double maxLen = MaxElementLength2D().GetValue( P );
double tol = 1e-3 * maxLen; double tol = 1e-3 * maxLen;
if ( uv.X() != 0 && uv.Y() != 0 ) // faster way double dist;
mySurface->NextValueOfUV( uv, gc, tol, 0.5 * maxLen ); if ( myPlane )
{
dist = myPlane->Distance( gc );
if ( dist < tol )
dist = 0;
}
else else
mySurface->ValueOfUV( gc, tol ); {
if ( uv.X() != 0 && uv.Y() != 0 ) // faster way
return Round( mySurface->Gap() ); mySurface->NextValueOfUV( uv, gc, tol, 0.5 * maxLen );
else
mySurface->ValueOfUV( gc, tol );
dist = mySurface->Gap();
}
return Round( dist );
} }
} }
return 0; return 0;
@ -1962,6 +1985,7 @@ void Deflection2D::SetMesh( const SMDS_Mesh* theMesh )
{ {
NumericalFunctor::SetMesh( dynamic_cast<const SMESHDS_Mesh* >( theMesh )); NumericalFunctor::SetMesh( dynamic_cast<const SMESHDS_Mesh* >( theMesh ));
myShapeIndex = -100; myShapeIndex = -100;
myPlane.reset();
} }
SMDSAbs_ElementType Deflection2D::GetType() const SMDSAbs_ElementType Deflection2D::GetType() const

View File

@ -53,9 +53,10 @@ class SMESHDS_Mesh;
class SMESHDS_SubMesh; class SMESHDS_SubMesh;
class SMESHDS_GroupBase; class SMESHDS_GroupBase;
class gp_Pnt;
class BRepClass3d_SolidClassifier; class BRepClass3d_SolidClassifier;
class ShapeAnalysis_Surface; class ShapeAnalysis_Surface;
class gp_Pln;
class gp_Pnt;
namespace SMESH{ namespace SMESH{
namespace Controls{ namespace Controls{
@ -321,6 +322,7 @@ namespace SMESH{
private: private:
Handle(ShapeAnalysis_Surface) mySurface; Handle(ShapeAnalysis_Surface) mySurface;
int myShapeIndex; int myShapeIndex;
boost::shared_ptr<gp_Pln> myPlane;
}; };
/* /*

View File

@ -87,7 +87,7 @@ using namespace std;
bool SMESH_Algo::Features::IsCompatible( const SMESH_Algo::Features& algo2 ) const bool SMESH_Algo::Features::IsCompatible( const SMESH_Algo::Features& algo2 ) const
{ {
if ( _dim > algo2._dim ) return algo2.IsCompatible( *this ); if ( _dim > algo2._dim ) return algo2.IsCompatible( *this );
// algo2 is of highter dimension // algo2 is of higher dimension
if ( _outElemTypes.empty() || algo2._inElemTypes.empty() ) if ( _outElemTypes.empty() || algo2._inElemTypes.empty() )
return false; return false;
bool compatible = true; bool compatible = true;

View File

@ -2188,7 +2188,7 @@ ostream& SMESH_Mesh::Dump(ostream& save)
save << clause << ".3) Faces in detail: " << endl; save << clause << ".3) Faces in detail: " << endl;
map <int,int>::iterator itF; map <int,int>::iterator itF;
for (itF = myFaceMap.begin(); itF != myFaceMap.end(); itF++) for (itF = myFaceMap.begin(); itF != myFaceMap.end(); itF++)
save << "--> nb nodes: " << itF->first << " - nb elemens:\t" << itF->second << endl; save << "--> nb nodes: " << itF->first << " - nb elements:\t" << itF->second << endl;
} }
} }
save << ++clause << ") Total number of " << orderStr << " volumes:\t" << NbVolumes(order) << endl; save << ++clause << ") Total number of " << orderStr << " volumes:\t" << NbVolumes(order) << endl;
@ -2213,7 +2213,7 @@ ostream& SMESH_Mesh::Dump(ostream& save)
save << clause << ".5) Volumes in detail: " << endl; save << clause << ".5) Volumes in detail: " << endl;
map <int,int>::iterator itV; map <int,int>::iterator itV;
for (itV = myVolumesMap.begin(); itV != myVolumesMap.end(); itV++) for (itV = myVolumesMap.begin(); itV != myVolumesMap.end(); itV++)
save << "--> nb nodes: " << itV->first << " - nb elemens:\t" << itV->second << endl; save << "--> nb nodes: " << itV->first << " - nb elements:\t" << itV->second << endl;
} }
} }
save << endl; save << endl;

View File

@ -3460,6 +3460,24 @@ double SMESH_MesherHelper::GetOtherParam(const double param) const
return fabs(param-myPar1[i]) < fabs(param-myPar2[i]) ? myPar2[i] : myPar1[i]; return fabs(param-myPar1[i]) < fabs(param-myPar2[i]) ? myPar2[i] : myPar1[i];
} }
//=======================================================================
//function : NbRealSeam
//purpose : Return a number of real seam edges in the shape set through
// IsQuadraticSubMesh() or SetSubShape(). A real seam edge encounters twice in a wire
//=======================================================================
size_t SMESH_MesherHelper::NbRealSeam() const
{
size_t nb = 0;
std::set< int >::const_iterator id = mySeamShapeIds.begin();
for ( ; id != mySeamShapeIds.end(); ++id )
if ( *id < 0 ) ++nb;
else break;
return nb;
}
//======================================================================= //=======================================================================
//function : IsOnSeam //function : IsOnSeam
//purpose : Check if UV is on seam. Return 0 if not, 1 for U seam, 2 for V seam //purpose : Check if UV is on seam. Return 0 if not, 1 for U seam, 2 for V seam
@ -5126,7 +5144,7 @@ void SMESH_MesherHelper::FixQuadraticElements(SMESH_ComputeErrorPtr& compError,
MSG("Internal chain - ignore"); MSG("Internal chain - ignore");
continue; continue;
} }
// mesure chain length and compute link position along the chain // measure chain length and compute link position along the chain
double chainLen = 0; double chainLen = 0;
vector< double > linkPos; vector< double > linkPos;
TChain savedChain; // backup TChain savedChain; // backup

View File

@ -561,9 +561,15 @@ public:
/*! /*!
* \brief Check if the shape set through IsQuadraticSubMesh() or SetSubShape() * \brief Check if the shape set through IsQuadraticSubMesh() or SetSubShape()
* has a degenerated edges * has a degenerated edges
* \retval bool - true if it has * \retval bool - true if there are degenerated edges
*/ */
bool HasDegeneratedEdges() const { return !myDegenShapeIds.empty(); } bool HasDegeneratedEdges() const { return !myDegenShapeIds.empty(); }
/*!
* \brief Return a number of degenerated edges in the shape set through
* IsQuadraticSubMesh() or SetSubShape()
* \retval size_t - nb edges
*/
size_t NbDegeneratedEdges() const { return myDegenShapeIds.size(); }
/*! /*!
* \brief Check if shape is a seam edge or it's vertex * \brief Check if shape is a seam edge or it's vertex
@ -610,6 +616,12 @@ public:
* \retval bool - true if it has * \retval bool - true if it has
*/ */
bool HasRealSeam() const { return HasSeam() && ( *mySeamShapeIds.begin() < 0 ); } bool HasRealSeam() const { return HasSeam() && ( *mySeamShapeIds.begin() < 0 ); }
/*!
* \brief Return a number of real seam edges in the shape set through
* IsQuadraticSubMesh() or SetSubShape(). A real seam edge encounters twice in a wire
* \retval size_t - nb of real seams
*/
size_t NbRealSeam() const;
/*! /*!
* \brief Return index of periodic parametric direction of a closed face * \brief Return index of periodic parametric direction of a closed face
* \retval int - 1 for U, 2 for V direction * \retval int - 1 for U, 2 for V direction

View File

@ -95,7 +95,7 @@ SMESH_ProxyMesh::SMESH_ProxyMesh(std::vector<SMESH_ProxyMesh::Ptr>& components):
//================================================================================ //================================================================================
/*! /*!
* \brief Destructor deletes proxy submeshes and tmp elemens * \brief Destructor deletes proxy submeshes and tmp elements
*/ */
//================================================================================ //================================================================================

View File

@ -1539,7 +1539,7 @@ SMESHGUI_ComputeOp::SMESHGUI_ComputeOp()
//================================================================================ //================================================================================
/*! /*!
* \brief Desctructor * \brief Destructor
*/ */
//================================================================================ //================================================================================
@ -2158,7 +2158,7 @@ SMESHGUI_EvaluateOp::SMESHGUI_EvaluateOp()
//================================================================================ //================================================================================
/*! /*!
* \brief Desctructor * \brief Destructor
*/ */
//================================================================================ //================================================================================

View File

@ -91,7 +91,7 @@ namespace SMESHOp {
OpRemoveElemGroupPopup = 2082, // POPUP MENU - REMOVE ELEMENTS FROM GROUP OpRemoveElemGroupPopup = 2082, // POPUP MENU - REMOVE ELEMENTS FROM GROUP
OpMeshInformation = 2100, // MENU MESH - MESH INFORMATION OpMeshInformation = 2100, // MENU MESH - MESH INFORMATION
OpWhatIs = 2101, // MENU MESH - MESH ELEMENT INFORMATION OpWhatIs = 2101, // MENU MESH - MESH ELEMENT INFORMATION
OpStdInfo = 2102, // MENU MESH - MESH STANDART INFORMATION OpStdInfo = 2102, // MENU MESH - MESH STANDARD INFORMATION
OpFindElementByPoint = 2103, // MENU MESH - FIND ELEMENT BY POINT OpFindElementByPoint = 2103, // MENU MESH - FIND ELEMENT BY POINT
OpUpdate = 2200, // POPUP MENU - UPDATE OpUpdate = 2200, // POPUP MENU - UPDATE
// Controls -----------------------//-------------------------------- // Controls -----------------------//--------------------------------

View File

@ -66,6 +66,7 @@ namespace
double myDirCoef; // 1. or -1, to make myDir oriented as myNodes in myFace double myDirCoef; // 1. or -1, to make myDir oriented as myNodes in myFace
double myLength; // between nodes double myLength; // between nodes
double myAngleWithPrev; // between myDir and -myPrev->myDir double myAngleWithPrev; // between myDir and -myPrev->myDir
double myMinMaxRatio; // of a possible triangle sides
TAngleMap::iterator myAngleMapPos; TAngleMap::iterator myAngleMapPos;
double myOverlapAngle; // angle delta due to overlapping double myOverlapAngle; // angle delta due to overlapping
const SMDS_MeshNode* myNode1Shift; // nodes created to avoid overlapping of faces const SMDS_MeshNode* myNode1Shift; // nodes created to avoid overlapping of faces
@ -87,11 +88,13 @@ namespace
std::vector<const SMDS_MeshElement*>& newFaces, std::vector<const SMDS_MeshElement*>& newFaces,
const bool isReverse ); const bool isReverse );
gp_XYZ GetInFaceDir() const { return myFaceNorm ^ myDir * myDirCoef; } gp_XYZ GetInFaceDir() const { return myFaceNorm ^ myDir * myDirCoef; }
double ShapeFactor() const { return 0.5 * ( 1. - myMinMaxRatio ); }
void InsertSelf(TAngleMap& edgesByAngle, bool isReverseFaces, bool reBind, bool useOverlap ) void InsertSelf(TAngleMap& edgesByAngle, bool isReverseFaces, bool reBind, bool useOverlap )
{ {
if ( reBind ) edgesByAngle.erase( myAngleMapPos ); if ( reBind ) edgesByAngle.erase( myAngleMapPos );
double key = (( isReverseFaces ? 2 * M_PI - myAngleWithPrev : myAngleWithPrev ) double key = (( isReverseFaces ? 2 * M_PI - myAngleWithPrev : myAngleWithPrev )
+ myOverlapAngle * useOverlap ); + myOverlapAngle * useOverlap
+ ShapeFactor() );
myAngleMapPos = edgesByAngle.insert( std::make_pair( key, this )); myAngleMapPos = edgesByAngle.insert( std::make_pair( key, this ));
} }
@ -163,7 +166,6 @@ namespace
myFaceNorm *= -1; myFaceNorm *= -1;
myDirCoef *= -1; myDirCoef *= -1;
} }
} }
//================================================================================ //================================================================================
@ -174,21 +176,28 @@ namespace
void BEdge::ComputeAngle( bool theReverseAngle ) void BEdge::ComputeAngle( bool theReverseAngle )
{ {
myAngleWithPrev = ACos( myDir.Dot( myPrev->myDir.Reversed() )); double dot = myDir.Dot( myPrev->myDir.Reversed() );
if ( dot >= 1 ) myAngleWithPrev = 0;
else if ( dot <= -1 ) myAngleWithPrev = M_PI;
else myAngleWithPrev = acos( dot );
bool isObtuse; bool isObtuse;
gp_XYZ inNewFaceDir = myDir - myPrev->myDir; gp_XYZ inFaceDirNew = myDir - myPrev->myDir;
double dot1 = myDir.Dot( myPrev->myFaceNorm ); gp_XYZ inFaceDir1 = myPrev->GetInFaceDir();
double dot2 = myPrev->myDir.Dot( myFaceNorm ); gp_XYZ inFaceDir2 = this->GetInFaceDir();
bool isOverlap1 = ( inNewFaceDir * myPrev->GetInFaceDir() > 0 ); double dot1 = inFaceDirNew * inFaceDir1;
bool isOverlap2 = ( inNewFaceDir * GetInFaceDir() > 0 ); double dot2 = inFaceDirNew * inFaceDir2;
bool isOverlap1 = ( dot1 > 0 );
bool isOverlap2 = ( dot2 > 0 );
if ( !myPrev->myFace ) if ( !myPrev->myFace )
isObtuse = isOverlap1; isObtuse = isOverlap1;
else if ( !myFace ) else if ( !myFace )
isObtuse = isOverlap2; isObtuse = isOverlap2;
else else
{ {
isObtuse = ( dot1 > 0 || dot2 < 0 ); // suppose face normals point outside the border double dt1 = myDir.Dot( myPrev->myFaceNorm );
double dt2 = myPrev->myDir.Dot( myFaceNorm );
isObtuse = ( dt1 > 0 || dt2 < 0 ); // suppose face normals point outside the border
if ( theReverseAngle ) if ( theReverseAngle )
isObtuse = !isObtuse; isObtuse = !isObtuse;
} }
@ -207,15 +216,22 @@ namespace
// check if myFace and a triangle built on this and prev edges overlap // check if myFace and a triangle built on this and prev edges overlap
if ( isOverlap1 ) if ( isOverlap1 )
{ {
double cos2 = dot1 * dot1 / myPrev->myFaceNorm.SquareModulus(); double cos2 = dot1 * dot1 / inFaceDirNew.SquareModulus() / inFaceDir1.SquareModulus();
myOverlapAngle += 0.5 * M_PI * ( 1 - cos2 ); myOverlapAngle += 1. * M_PI * cos2;
} }
if ( isOverlap2 ) if ( isOverlap2 )
{ {
double cos2 = dot2 * dot2 / myFaceNorm.SquareModulus(); double cos2 = dot2 * dot2 / inFaceDirNew.SquareModulus() / inFaceDir2.SquareModulus();
myOverlapAngle += 0.5 * M_PI * ( 1 - cos2 ); myOverlapAngle += 1. * M_PI * cos2;
} }
} }
{
double len3 = SMESH_NodeXYZ( myPrev->myNode1 ).Distance( myNode2 );
double minLen = Min( myLength, Min( myPrev->myLength, len3 ));
double maxLen = Max( myLength, Max( myPrev->myLength, len3 ));
myMinMaxRatio = minLen / maxLen;
}
} }
//================================================================================ //================================================================================
@ -445,11 +461,12 @@ void SMESH_MeshAlgos::FillHole(const SMESH_MeshAlgos::TFreeBorder & theFreeBord
while ( edgesByAngle.size() > 2 ) while ( edgesByAngle.size() > 2 )
{ {
TAngleMap::iterator a2e = edgesByAngle.begin(); TAngleMap::iterator a2e = edgesByAngle.begin();
if ( useOverlap && a2e->first > M_PI - angTol ) // all new triangles need shift edge = a2e->second;
if ( useOverlap &&
a2e->first - edge->ShapeFactor() > M_PI - angTol ) // all new triangles need shift
{ {
// re-sort the edges // re-sort the edges w/o overlap consideration
useOverlap = false; useOverlap = false;
edge = a2e->second;
nbEdges = edgesByAngle.size(); nbEdges = edgesByAngle.size();
edgesByAngle.clear(); edgesByAngle.clear();
for ( size_t i = 0; i < nbEdges; ++i, edge = edge->myNext ) for ( size_t i = 0; i < nbEdges; ++i, edge = edge->myNext )

View File

@ -149,7 +149,6 @@ struct SMESH_OrientedLink: public SMESH_TLink
struct SMESH_TNodeXYZ : public gp_XYZ struct SMESH_TNodeXYZ : public gp_XYZ
{ {
const SMDS_MeshNode* _node; const SMDS_MeshNode* _node;
double _xyz[3];
SMESH_TNodeXYZ( const SMDS_MeshElement* e=0):gp_XYZ(0,0,0),_node(0) SMESH_TNodeXYZ( const SMDS_MeshElement* e=0):gp_XYZ(0,0,0),_node(0)
{ {
Set(e); Set(e);
@ -159,15 +158,14 @@ struct SMESH_TNodeXYZ : public gp_XYZ
if (e) { if (e) {
assert( e->GetType() == SMDSAbs_Node ); assert( e->GetType() == SMDSAbs_Node );
_node = static_cast<const SMDS_MeshNode*>(e); _node = static_cast<const SMDS_MeshNode*>(e);
_node->GetXYZ(_xyz); // - thread safe getting coords _node->GetXYZ( ChangeData() ); // - thread safe getting coords
SetCoord( _xyz[0], _xyz[1], _xyz[2] );
return true; return true;
} }
return false; return false;
} }
double Distance(const SMDS_MeshNode* n) const { return (SMESH_TNodeXYZ( n )-*this).Modulus(); } double Distance(const SMDS_MeshNode* n) const { return (SMESH_TNodeXYZ( n )-*this).Modulus(); }
double SquareDistance(const SMDS_MeshNode* n) const { return (SMESH_TNodeXYZ( n )-*this).SquareModulus(); } double SquareDistance(const SMDS_MeshNode* n) const { return (SMESH_TNodeXYZ( n )-*this).SquareModulus(); }
bool operator==(const SMESH_TNodeXYZ& other) const { return _node == other._node; } bool operator==(const SMESH_TNodeXYZ& other) const { return _node == other._node; }
}; };
typedef SMESH_TNodeXYZ SMESH_NodeXYZ; typedef SMESH_TNodeXYZ SMESH_NodeXYZ;

View File

@ -72,7 +72,7 @@ using SMESH::TPythonDump;
/*! /*!
* \brief Container of commands into which the initial script is split. * \brief Container of commands into which the initial script is split.
* It also contains data coresponding to SMESH_Gen contents * It also contains data corresponding to SMESH_Gen contents
*/ */
static Handle(_pyGen) theGen; static Handle(_pyGen) theGen;

View File

@ -3812,7 +3812,7 @@ SALOMEDS::TMPFile* SMESH_Gen_i::Save( SALOMEDS::SComponent_ptr theComponent,
// "Face V positions" - V parameter of node on face // "Face V positions" - V parameter of node on face
// Find out nb of nodes on edges and faces // Find out nb of nodes on edges and faces
// Collect corresponing sub-meshes // Collect corresponding sub-meshes
int nbEdgeNodes = 0, nbFaceNodes = 0; int nbEdgeNodes = 0, nbFaceNodes = 0;
list<SMESHDS_SubMesh*> aEdgeSM, aFaceSM; list<SMESHDS_SubMesh*> aEdgeSM, aFaceSM;
// loop on SMESHDS_SubMesh'es // loop on SMESHDS_SubMesh'es

View File

@ -953,6 +953,10 @@ class StdMeshersBuilder_Prism3D(Mesh_Algorithm):
## doc string of the method ## doc string of the method
# @internal # @internal
docHelper = "Creates prism 3D algorithm for volumes" docHelper = "Creates prism 3D algorithm for volumes"
## flag pointing whether this algorithm should be used by default in dynamic method
# of smeshBuilder.Mesh class
# @internal
isDefault = True
## Private constructor. ## Private constructor.
# @param mesh parent mesh object algorithm is assigned to # @param mesh parent mesh object algorithm is assigned to

View File

@ -2303,10 +2303,10 @@ class Mesh:
return self.editor.MakeIDSource(ids, elemType) return self.editor.MakeIDSource(ids, elemType)
# Get informations about mesh contents: # Get information about mesh contents:
# ------------------------------------ # ------------------------------------
## Get the mesh stattistic ## Get the mesh statistic
# @return dictionary type element - count of elements # @return dictionary type element - count of elements
# @ingroup l1_meshinfo # @ingroup l1_meshinfo
def GetMeshInfo(self, obj = None): def GetMeshInfo(self, obj = None):
@ -4924,12 +4924,12 @@ class Mesh:
## Identify the elements that will be affected by node duplication (actual duplication is not performed. ## Identify the elements that will be affected by node duplication (actual duplication is not performed.
# This method is the first step of DoubleNodeElemGroupsInRegion. # This method is the first step of DoubleNodeElemGroupsInRegion.
# @param theElems - list of groups of elements (edges or faces) to be replicated # @param theElems - list of groups of nodes or elements (edges or faces) to be replicated
# @param theNodesNot - list of groups of nodes not to replicated # @param theNodesNot - list of groups of nodes not to replicated
# @param theShape - shape to detect affected elements (element which geometric center # @param theShape - shape to detect affected elements (element which geometric center
# located on or inside shape). # located on or inside shape).
# The replicated nodes should be associated to affected elements. # The replicated nodes should be associated to affected elements.
# @return groups of affected elements # @return groups of affected elements in order: volumes, faces, edges
# @ingroup l2_modif_duplicat # @ingroup l2_modif_duplicat
def AffectedElemGroupsInRegion(self, theElems, theNodesNot, theShape): def AffectedElemGroupsInRegion(self, theElems, theNodesNot, theShape):
return self.editor.AffectedElemGroupsInRegion(theElems, theNodesNot, theShape) return self.editor.AffectedElemGroupsInRegion(theElems, theNodesNot, theShape)

View File

@ -191,7 +191,7 @@ namespace {
theTShapeToLengthMap.insert( make_pair( getTShape( edge ), L )); theTShapeToLengthMap.insert( make_pair( getTShape( edge ), L ));
} }
// Compute S0 - minimal segement length, is computed by the shortest EDGE // Compute S0 - minimal segment length, is computed by the shortest EDGE
/* image attached to PAL10237 /* image attached to PAL10237

View File

@ -604,7 +604,7 @@ namespace
theSinuEdges [0].size() > 0 && theSinuEdges [1].size() > 0 ); theSinuEdges [0].size() > 0 && theSinuEdges [1].size() > 0 );
// the sinuous EDGEs can be composite and C0 continuous, // the sinuous EDGEs can be composite and C0 continuous,
// therefor we use a complex criterion to find TWO short non-sinuous EDGEs // therefore we use a complex criterion to find TWO short non-sinuous EDGEs
// and the rest EDGEs will be treated as sinuous. // and the rest EDGEs will be treated as sinuous.
// A short edge should have the following features: // A short edge should have the following features:
// a) straight // a) straight

View File

@ -4593,7 +4593,7 @@ int StdMeshers_Quadrangle_2D::getCorners(const TopoDS_Face& theFace,
{ {
d = Abs( idealLen - accuLength[ iEV ]); d = Abs( idealLen - accuLength[ iEV ]);
// take into account presence of a coresponding halfDivider // take into account presence of a corresponding halfDivider
const double cornerWgt = 0.5 / nbSides; const double cornerWgt = 0.5 / nbSides;
const double vertexWgt = 0.25 / nbSides; const double vertexWgt = 0.25 / nbSides;
TGeoIndex hd = halfDivider[ evVec[ iEV ]]; TGeoIndex hd = halfDivider[ evVec[ iEV ]];

View File

@ -429,7 +429,7 @@ CORBA::Long MeshJobManager_i::initialize(const MESHJOB::MeshJobFileList & meshJo
//jobParameters->maximum_duration = CORBA::string_dup("01:00"); //jobParameters->maximum_duration = CORBA::string_dup("01:00");
jobParameters->queue = CORBA::string_dup(""); jobParameters->queue = CORBA::string_dup("");
// Setting resource and additionnal properties (if needed) // Setting resource and additional properties (if needed)
// The resource parameters can be initiated from scratch, for // The resource parameters can be initiated from scratch, for
// example by specifying the values in hard coding: // example by specifying the values in hard coding:
// >>> // >>>
@ -451,7 +451,7 @@ CORBA::Long MeshJobManager_i::initialize(const MESHJOB::MeshJobFileList & meshJo
resourceDefinition = _resourcesManager->GetResourceDefinition(resourceName); resourceDefinition = _resourcesManager->GetResourceDefinition(resourceName);
} }
catch (const CORBA::SystemException& ex) { catch (const CORBA::SystemException& ex) {
_lastErrorMessage = std::string("We can not access to the ressource ") + std::string(resourceName); _lastErrorMessage = std::string("We can not access the resource ") + std::string(resourceName);
_lastErrorMessage+= std::string("(check the file CatalogResource.xml)"); _lastErrorMessage+= std::string("(check the file CatalogResource.xml)");
LOG(_lastErrorMessage); LOG(_lastErrorMessage);
return JOBID_UNDEFINED; return JOBID_UNDEFINED;
@ -462,7 +462,7 @@ CORBA::Long MeshJobManager_i::initialize(const MESHJOB::MeshJobFileList & meshJo
// Then, the values can be used to initiate the resource parameters // Then, the values can be used to initiate the resource parameters
// of the job: // of the job:
jobParameters->resource_required.name = CORBA::string_dup(resourceDefinition->name.in()); jobParameters->resource_required.name = CORBA::string_dup(resourceDefinition->name.in());
// CAUTION: the additionnal two following parameters MUST be // CAUTION: the additional two following parameters MUST be
// specified explicitly, because they are not provided by the // specified explicitly, because they are not provided by the
// resource definition: // resource definition:
jobParameters->resource_required.mem_mb = resourceDefinition->mem_mb; jobParameters->resource_required.mem_mb = resourceDefinition->mem_mb;
@ -682,7 +682,7 @@ std::vector<std::string> * MeshJobManager_i::_getResourceNames() {
// SALOME application. // SALOME application.
// In the code instructions, you just have to choose a resource // In the code instructions, you just have to choose a resource
// configuration by its name and then define the ResourceParameters // configuration by its name and then define the ResourceParameters
// that specify additionnal properties for a specific job submission // that specify additional properties for a specific job submission
// (use the attribute resource_required of the JobParameters). // (use the attribute resource_required of the JobParameters).
return resourceNames; return resourceNames;

View File

@ -73,7 +73,7 @@ private:
Engines::ResourcesManager_var _resourcesManager; Engines::ResourcesManager_var _resourcesManager;
// This maps the config identifier to the config parameters. A // This maps the config identifier to the config parameters. A
// config is a resource with additionnal data specifying the // config is a resource with additional data specifying the
// location of the binary program to be executed by the task // location of the binary program to be executed by the task
std::map<std::string, MESHJOB::ConfigParameter> _configMap; std::map<std::string, MESHJOB::ConfigParameter> _configMap;