0020139: EDF 944 SMESH : Get 2D/3D element with X, Y, Z coordinates

fix isOut()
This commit is contained in:
eap 2009-11-11 14:58:39 +00:00
parent f314777950
commit 388cb7d58d

View File

@ -5581,75 +5581,125 @@ bool SMESH_MeshEditor::isOut( const SMDS_MeshElement* element, const gp_Pnt& poi
while ( nodeIt->more() )
xyz.push_back( TNodeXYZ( cast2Node( nodeIt->next() )));
int i, nbNodes = element->NbNodes();
if ( element->GetType() == SMDSAbs_Face ) // --------------------------------------------------
{
// gravity center
gp_XYZ gc(0,0,0);
gc = accumulate( xyz.begin(), xyz.end(), gc );
gc /= element->NbNodes();
// compute face normal using gc
gp_Vec normal(0,0,0);
// compute face normal
gp_Vec faceNorm(0,0,0);
xyz.push_back( xyz.front() );
for ( int i = 0; i < element->NbNodes(); ++i )
for ( i = 0; i < nbNodes; ++i )
{
gp_Vec edge( xyz[i], xyz[i+1]);
gp_Vec n2gc( xyz[i], gc );
normal += edge ^ n2gc;
gp_Vec edge1( xyz[i+1], xyz[i]);
gp_Vec edge2( xyz[i+1], xyz[(i+2)%nbNodes] );
faceNorm += edge1 ^ edge2;
}
double faceDoubleArea = normal.Magnitude();
if ( faceDoubleArea <= numeric_limits<double>::min() )
return true; // invalid face
normal /= faceDoubleArea;
double normSize = faceNorm.Magnitude();
if ( normSize <= tol )
{
// degenerated face: point is out if it is out of all face edges
for ( i = 0; i < nbNodes; ++i )
{
SMDS_MeshNode n1( xyz[i].X(), xyz[i].Y(), xyz[i].Z() );
SMDS_MeshNode n2( xyz[i+1].X(), xyz[i+1].Y(), xyz[i+1].Z() );
SMDS_MeshEdge edge( &n1, &n2 );
if ( !isOut( &edge, point, tol ))
return false;
}
return true;
}
faceNorm /= normSize;
// check if the point lays on face plane
gp_Vec n2p( xyz[0], point );
if ( fabs( n2p * normal ) > tol )
if ( fabs( n2p * faceNorm ) > tol )
return true; // not on face plane
// check if point is out of face boundary
int i, out = false;
for ( i = 0; !out && i < element->NbNodes(); ++i )
// check if point is out of face boundary:
// define it by closest transition of a ray point->infinity through face boundary
// on the face plane.
// First, find normal of a plane perpendicular to face plane, to be used as a cutting tool
// to find intersections of the ray with the boundary.
gp_Vec ray = n2p;
gp_Vec plnNorm = ray ^ faceNorm;
normSize = plnNorm.Magnitude();
if ( normSize <= tol ) return false; // point coincides with the first node
plnNorm /= normSize;
// for each node of the face, compute its signed distance to the plane
vector<double> dist( nbNodes + 1);
for ( i = 0; i < nbNodes; ++i )
{
gp_Vec edge( xyz[i], xyz[i+1]);
gp_Vec n2p ( xyz[i], point );
gp_Vec cross = edge ^ n2p;
out = ( cross * normal < -tol );
gp_Vec n2p( xyz[i], point );
dist[i] = n2p * plnNorm;
}
if ( out && element->IsPoly() )
dist.back() = dist.front();
// find the closest intersection
int iClosest = -1;
double rClosest, distClosest = 1e100;;
gp_Pnt pClosest;
for ( i = 0; i < nbNodes; ++i )
{
// define point position by the closest edge
double minDist = numeric_limits<double>::max();
int iMinDist;
for ( i = 0; i < element->NbNodes(); ++i )
double r;
if ( dist[i] < tol )
r = 0.;
else if ( dist[i+1] < tol )
r = 1.;
else if ( dist[i] * dist[i+1] < 0 )
r = dist[i] / ( dist[i] - dist[i+1] );
else
continue; // no intersection
gp_Pnt pInt = xyz[i] * (1.-r) + xyz[i+1] * r;
gp_Vec p2int ( point, pInt);
if ( p2int * ray > -tol ) // right half-space
{
gp_Vec edge( xyz[i], xyz[i+1]);
gp_Vec n1p ( xyz[i], point);
double dist = ( edge ^ n1p ).Magnitude() / edge.Magnitude();
if ( dist < minDist )
iMinDist = i;
double intDist = p2int.SquareMagnitude();
if ( intDist < distClosest )
{
iClosest = i;
rClosest = r;
pClosest = pInt;
distClosest = intDist;
}
gp_Vec edge( xyz[iMinDist], xyz[iMinDist+1]);
gp_Vec n2p ( xyz[iMinDist], point );
gp_Vec cross = edge ^ n2p;
out = ( cross * normal < -tol );
}
}
if ( iClosest < 0 )
return true; // no intesections - out
// analyse transition
gp_Vec edge( xyz[iClosest], xyz[iClosest+1] );
gp_Vec edgeNorm = -( edge ^ faceNorm ); // normal to intersected edge pointing out of face
gp_Vec p2int ( point, pClosest );
bool out = (edgeNorm * p2int) < -tol;
if ( rClosest > 0. && rClosest < 1. ) // not node intersection
return out;
// ray pass through a face node; analyze transition through an adjacent edge
gp_Pnt p1 = xyz[ (rClosest == 0.) ? ((iClosest+nbNodes-1) % nbNodes) : (iClosest+1) ];
gp_Pnt p2 = xyz[ (rClosest == 0.) ? iClosest : ((iClosest+2) % nbNodes) ];
gp_Vec edgeAdjacent( p1, p2 );
gp_Vec edgeNorm2 = -( edgeAdjacent ^ faceNorm );
bool out2 = (edgeNorm2 * p2int) < -tol;
bool covexCorner = ( edgeNorm * edgeAdjacent * (rClosest==1. ? 1. : -1.)) < 0;
return covexCorner ? (out || out2) : (out && out2);
}
if ( element->GetType() == SMDSAbs_Edge ) // --------------------------------------------------
{
for ( int i = 1; i < element->NbNodes(); ++i )
// point is out of edge if it is NOT ON any straight part of edge
// (we consider quadratic edge as being composed of two straight parts)
for ( i = 1; i < nbNodes; ++i )
{
gp_Vec edge( xyz[i-1], xyz[i]);
gp_Vec n1p ( xyz[i-1], point);
double dist = ( edge ^ n1p ).Magnitude() / edge.Magnitude();
if ( dist > tol )
return true;
continue;
gp_Vec n2p( xyz[i], point );
if ( fabs( edge.Magnitude() - n1p.Magnitude() - n2p.Magnitude()) > tol )
return true;
continue;
return false; // point is ON this part
}
return false;
return true;
}
// Node or 0D element -------------------------------------------------------------------------
{