diff --git a/src/SMESH_SWIG/StdMeshersDC.py b/src/SMESH_SWIG/StdMeshersDC.py new file mode 100644 index 000000000..c252513f7 --- /dev/null +++ b/src/SMESH_SWIG/StdMeshersDC.py @@ -0,0 +1,1091 @@ +# Copyright (C) 2007-2011 CEA/DEN, EDF R&D, OPEN CASCADE +# +# This library is free software; you can redistribute it and/or +# modify it under the terms of the GNU Lesser General Public +# License as published by the Free Software Foundation; either +# version 2.1 of the License. +# +# This library is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +# Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public +# License along with this library; if not, write to the Free Software +# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA +# +# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com +# +# + +from smesh import Mesh_Algorithm, AssureGeomPublished, IsEqual, ParseParameters +from smeshDC import Mesh + +import StdMeshers + +# Types of algorithms +REGULAR = "Regular_1D" +PYTHON = "Python_1D" +COMPOSITE = "CompositeSegment_1D" +MEFISTO = "MEFISTO_2D" +Hexa = "Hexa_3D" +QUADRANGLE = "Quadrangle_2D" +RADIAL_QUAD = "RadialQuadrangle_1D2D" + + +# import items of enum QuadType +for e in StdMeshers.QuadType._items: exec('%s = StdMeshers.%s'%(e,e)) + + +# Public class: Mesh_Segment +# -------------------------- + +## Class to define a REGULAR 1D algorithm for discretization. It is created by +# calling Mesh.Segment(geom=0) +# +# @ingroup l3_algos_basic +class Mesh_Segment(Mesh_Algorithm): + + meshMethod = "Segment" + algoType = REGULAR + isDefault = True + + ## Private constructor. + def __init__(self, mesh, geom=0): + Mesh_Algorithm.__init__(self) + self.Create(mesh, geom, self.algoType) + + ## Defines "LocalLength" hypothesis to cut an edge in several segments with the same length + # @param l for the length of segments that cut an edge + # @param UseExisting if ==true - searches for an existing hypothesis created with + # the same parameters, else (default) - creates a new one + # @param p precision, used for calculation of the number of segments. + # The precision should be a positive, meaningful value within the range [0,1]. + # In general, the number of segments is calculated with the formula: + # nb = ceil((edge_length / l) - p) + # Function ceil rounds its argument to the higher integer. + # So, p=0 means rounding of (edge_length / l) to the higher integer, + # p=0.5 means rounding of (edge_length / l) to the nearest integer, + # p=1 means rounding of (edge_length / l) to the lower integer. + # Default value is 1e-07. + # @return an instance of StdMeshers_LocalLength hypothesis + # @ingroup l3_hypos_1dhyps + def LocalLength(self, l, UseExisting=0, p=1e-07): + comFun=lambda hyp, args: IsEqual(hyp.GetLength(), args[0]) and IsEqual(hyp.GetPrecision(), args[1]) + hyp = self.Hypothesis("LocalLength", [l,p], UseExisting=UseExisting, CompareMethod=comFun) + hyp.SetLength(l) + hyp.SetPrecision(p) + return hyp + + ## Defines "MaxSize" hypothesis to cut an edge into segments not longer than given value + # @param length is optional maximal allowed length of segment, if it is omitted + # the preestimated length is used that depends on geometry size + # @param UseExisting if ==true - searches for an existing hypothesis created with + # the same parameters, else (default) - creates a new one + # @return an instance of StdMeshers_MaxLength hypothesis + # @ingroup l3_hypos_1dhyps + def MaxSize(self, length=0.0, UseExisting=0): + hyp = self.Hypothesis("MaxLength", [length], UseExisting=UseExisting) + if length > 0.0: + # set given length + hyp.SetLength(length) + if not UseExisting: + # set preestimated length + gen = self.mesh.smeshpyD + initHyp = gen.GetHypothesisParameterValues("MaxLength", "libStdMeshersEngine.so", + self.mesh.GetMesh(), self.mesh.GetShape(), + False) # <- byMesh + preHyp = initHyp._narrow(StdMeshers.StdMeshers_MaxLength) + if preHyp: + hyp.SetPreestimatedLength( preHyp.GetPreestimatedLength() ) + pass + pass + hyp.SetUsePreestimatedLength( length == 0.0 ) + return hyp + + ## Defines "NumberOfSegments" hypothesis to cut an edge in a fixed number of segments + # @param n for the number of segments that cut an edge + # @param s for the scale factor (optional) + # @param reversedEdges is a list of edges to mesh using reversed orientation. + # A list item can also be a tuple (edge 1st_vertex_of_edge) + # @param UseExisting if ==true - searches for an existing hypothesis created with + # the same parameters, else (default) - create a new one + # @return an instance of StdMeshers_NumberOfSegments hypothesis + # @ingroup l3_hypos_1dhyps + def NumberOfSegments(self, n, s=[], reversedEdges=[], UseExisting=0): + if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges + reversedEdges, UseExisting = [], reversedEdges + entry = self.MainShapeEntry() + reversedEdgeInd = self.ReversedEdgeIndices(reversedEdges) + if s == []: + hyp = self.Hypothesis("NumberOfSegments", [n, reversedEdgeInd, entry], + UseExisting=UseExisting, + CompareMethod=self._compareNumberOfSegments) + else: + hyp = self.Hypothesis("NumberOfSegments", [n,s, reversedEdgeInd, entry], + UseExisting=UseExisting, + CompareMethod=self._compareNumberOfSegments) + hyp.SetDistrType( 1 ) + hyp.SetScaleFactor(s) + hyp.SetNumberOfSegments(n) + hyp.SetReversedEdges( reversedEdgeInd ) + hyp.SetObjectEntry( entry ) + return hyp + + ## Private method + ## Checks if the given "NumberOfSegments" hypothesis has the same parameters as the given arguments + def _compareNumberOfSegments(self, hyp, args): + if hyp.GetNumberOfSegments() == args[0]: + if len(args) == 3: + if hyp.GetReversedEdges() == args[1]: + if not args[1] or hyp.GetObjectEntry() == args[2]: + return True + else: + if hyp.GetReversedEdges() == args[2]: + if not args[2] or hyp.GetObjectEntry() == args[3]: + if hyp.GetDistrType() == 1: + if IsEqual(hyp.GetScaleFactor(), args[1]): + return True + return False + + ## Defines "Arithmetic1D" hypothesis to cut an edge in several segments with increasing arithmetic length + # @param start defines the length of the first segment + # @param end defines the length of the last segment + # @param reversedEdges is a list of edges to mesh using reversed orientation. + # A list item can also be a tuple (edge 1st_vertex_of_edge) + # @param UseExisting if ==true - searches for an existing hypothesis created with + # the same parameters, else (default) - creates a new one + # @return an instance of StdMeshers_Arithmetic1D hypothesis + # @ingroup l3_hypos_1dhyps + def Arithmetic1D(self, start, end, reversedEdges=[], UseExisting=0): + if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges + reversedEdges, UseExisting = [], reversedEdges + reversedEdgeInd = self.ReversedEdgeIndices(reversedEdges) + entry = self.MainShapeEntry() + compFun = lambda hyp, args: ( IsEqual(hyp.GetLength(1), args[0]) and \ + IsEqual(hyp.GetLength(0), args[1]) and \ + hyp.GetReversedEdges() == args[2] and \ + (not args[2] or hyp.GetObjectEntry() == args[3])) + hyp = self.Hypothesis("Arithmetic1D", [start, end, reversedEdgeInd, entry], + UseExisting=UseExisting, CompareMethod=compFun) + hyp.SetStartLength(start) + hyp.SetEndLength(end) + hyp.SetReversedEdges( reversedEdgeInd ) + hyp.SetObjectEntry( entry ) + return hyp + + ## Defines "FixedPoints1D" hypothesis to cut an edge using parameter + # on curve from 0 to 1 (additionally it is neecessary to check + # orientation of edges and create list of reversed edges if it is + # needed) and sets numbers of segments between given points (default + # values are equals 1 + # @param points defines the list of parameters on curve + # @param nbSegs defines the list of numbers of segments + # @param reversedEdges is a list of edges to mesh using reversed orientation. + # A list item can also be a tuple (edge 1st_vertex_of_edge) + # @param UseExisting if ==true - searches for an existing hypothesis created with + # the same parameters, else (default) - creates a new one + # @return an instance of StdMeshers_Arithmetic1D hypothesis + # @ingroup l3_hypos_1dhyps + def FixedPoints1D(self, points, nbSegs=[1], reversedEdges=[], UseExisting=0): + if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges + reversedEdges, UseExisting = [], reversedEdges + reversedEdgeInd = self.ReversedEdgeIndices(reversedEdges) + entry = self.MainShapeEntry() + compFun = lambda hyp, args: ( hyp.GetPoints() == args[0] and \ + hyp.GetNbSegments() == args[1] and \ + hyp.GetReversedEdges() == args[2] and \ + (not args[2] or hyp.GetObjectEntry() == args[3])) + hyp = self.Hypothesis("FixedPoints1D", [points, nbSegs, reversedEdgeInd, entry], + UseExisting=UseExisting, CompareMethod=compFun) + hyp.SetPoints(points) + hyp.SetNbSegments(nbSegs) + hyp.SetReversedEdges(reversedEdgeInd) + hyp.SetObjectEntry(entry) + return hyp + + ## Defines "StartEndLength" hypothesis to cut an edge in several segments with increasing geometric length + # @param start defines the length of the first segment + # @param end defines the length of the last segment + # @param reversedEdges is a list of edges to mesh using reversed orientation. + # A list item can also be a tuple (edge 1st_vertex_of_edge) + # @param UseExisting if ==true - searches for an existing hypothesis created with + # the same parameters, else (default) - creates a new one + # @return an instance of StdMeshers_StartEndLength hypothesis + # @ingroup l3_hypos_1dhyps + def StartEndLength(self, start, end, reversedEdges=[], UseExisting=0): + if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges + reversedEdges, UseExisting = [], reversedEdges + reversedEdgeInd = self.ReversedEdgeIndices(reversedEdges) + entry = self.MainShapeEntry() + compFun = lambda hyp, args: ( IsEqual(hyp.GetLength(1), args[0]) and \ + IsEqual(hyp.GetLength(0), args[1]) and \ + hyp.GetReversedEdges() == args[2] and \ + (not args[2] or hyp.GetObjectEntry() == args[3])) + hyp = self.Hypothesis("StartEndLength", [start, end, reversedEdgeInd, entry], + UseExisting=UseExisting, CompareMethod=compFun) + hyp.SetStartLength(start) + hyp.SetEndLength(end) + hyp.SetReversedEdges( reversedEdgeInd ) + hyp.SetObjectEntry( entry ) + return hyp + + ## Defines "Deflection1D" hypothesis + # @param d for the deflection + # @param UseExisting if ==true - searches for an existing hypothesis created with + # the same parameters, else (default) - create a new one + # @ingroup l3_hypos_1dhyps + def Deflection1D(self, d, UseExisting=0): + compFun = lambda hyp, args: IsEqual(hyp.GetDeflection(), args[0]) + hyp = self.Hypothesis("Deflection1D", [d], UseExisting=UseExisting, CompareMethod=compFun) + hyp.SetDeflection(d) + return hyp + + ## Defines "Propagation" hypothesis that propagates all other hypotheses on all other edges that are at + # the opposite side in case of quadrangular faces + # @ingroup l3_hypos_additi + def Propagation(self): + return self.Hypothesis("Propagation", UseExisting=1, CompareMethod=self.CompareEqualHyp) + + ## Defines "AutomaticLength" hypothesis + # @param fineness for the fineness [0-1] + # @param UseExisting if ==true - searches for an existing hypothesis created with the + # same parameters, else (default) - create a new one + # @ingroup l3_hypos_1dhyps + def AutomaticLength(self, fineness=0, UseExisting=0): + compFun = lambda hyp, args: IsEqual(hyp.GetFineness(), args[0]) + hyp = self.Hypothesis("AutomaticLength",[fineness],UseExisting=UseExisting, + CompareMethod=compFun) + hyp.SetFineness( fineness ) + return hyp + + ## Defines "SegmentLengthAroundVertex" hypothesis + # @param length for the segment length + # @param vertex for the length localization: the vertex index [0,1] | vertex object. + # Any other integer value means that the hypothesis will be set on the + # whole 1D shape, where Mesh_Segment algorithm is assigned. + # @param UseExisting if ==true - searches for an existing hypothesis created with + # the same parameters, else (default) - creates a new one + # @ingroup l3_algos_segmarv + def LengthNearVertex(self, length, vertex=0, UseExisting=0): + import types + store_geom = self.geom + if type(vertex) is types.IntType: + if vertex == 0 or vertex == 1: + vertex = self.mesh.geompyD.ExtractShapes(self.geom, geompyDC.ShapeType["VERTEX"],True)[vertex] + self.geom = vertex + pass + pass + else: + self.geom = vertex + pass + ### 0D algorithm + if self.geom is None: + raise RuntimeError, "Attemp to create SegmentAroundVertex_0D algoritm on None shape" + AssureGeomPublished( self.mesh, self.geom ) + name = GetName(self.geom) + + algo = self.FindAlgorithm("SegmentAroundVertex_0D", self.mesh.smeshpyD) + if algo is None: + algo = self.mesh.smeshpyD.CreateHypothesis("SegmentAroundVertex_0D", "libStdMeshersEngine.so") + pass + status = self.mesh.mesh.AddHypothesis(self.geom, algo) + TreatHypoStatus(status, "SegmentAroundVertex_0D", name, True) + ### + comFun = lambda hyp, args: IsEqual(hyp.GetLength(), args[0]) + hyp = self.Hypothesis("SegmentLengthAroundVertex", [length], UseExisting=UseExisting, + CompareMethod=comFun) + self.geom = store_geom + hyp.SetLength( length ) + return hyp + + ## Defines "QuadraticMesh" hypothesis, forcing construction of quadratic edges. + # If the 2D mesher sees that all boundary edges are quadratic, + # it generates quadratic faces, else it generates linear faces using + # medium nodes as if they are vertices. + # The 3D mesher generates quadratic volumes only if all boundary faces + # are quadratic, else it fails. + # + # @ingroup l3_hypos_additi + def QuadraticMesh(self): + hyp = self.Hypothesis("QuadraticMesh", UseExisting=1, CompareMethod=self.CompareEqualHyp) + return hyp + +# Public class: Mesh_CompositeSegment +# -------------------------- + +## A regular 1D algorithm for discretization of a set of adjacent edges as one. +# It is created by calling Mesh.Segment(COMPOSITE,geom=0) +# +# @ingroup l3_algos_basic +class Mesh_CompositeSegment(Mesh_Segment): + + meshMethod = "Segment" + algoType = COMPOSITE + isDefault = False + + ## Private constructor. + def __init__(self, mesh, geom=0): + self.Create(mesh, geom, self.algoType) + + +# Public class: Mesh_Segment_Python +# --------------------------------- + +## Defines a segment 1D algorithm for discretization with python function +# It is created by calling Mesh.Segment(PYTHON,geom=0) +# +# @ingroup l3_algos_basic +class Mesh_Segment_Python(Mesh_Algorithm): + + meshMethod = "Segment" + algoType = PYTHON + + ## Private constructor. + def __init__(self, mesh, geom=0): + import Python1dPlugin + self.Create(mesh, geom, self.algoType, "libPython1dEngine.so") + + ## Defines "PythonSplit1D" hypothesis + # @param n for the number of segments that cut an edge + # @param func for the python function that calculates the length of all segments + # @param UseExisting if ==true - searches for the existing hypothesis created with + # the same parameters, else (default) - creates a new one + # @ingroup l3_hypos_1dhyps + def PythonSplit1D(self, n, func, UseExisting=0): + compFun = lambda hyp, args: False + hyp = self.Hypothesis("PythonSplit1D", [n], "libPython1dEngine.so", + UseExisting=UseExisting, CompareMethod=compFun) + hyp.SetNumberOfSegments(n) + hyp.SetPythonLog10RatioFunction(func) + return hyp + +# Public class: Mesh_Triangle_MEFISTO +# ----------------------------------- + +## Triangle MEFISTO 2D algorithm +# It is created by calling Mesh.Triangle(MEFISTO,geom=0) +# +# @ingroup l3_algos_basic +class Mesh_Triangle_MEFISTO(Mesh_Algorithm): + + meshMethod = "Triangle" + algoType = MEFISTO + isDefault = True + + ## Private constructor. + def __init__(self, mesh, geom=0): + Mesh_Algorithm.__init__(self) + self.Create(mesh, geom, self.algoType) + + ## Defines "MaxElementArea" hypothesis basing on the definition of the maximum area of each triangle + # @param area for the maximum area of each triangle + # @param UseExisting if ==true - searches for an existing hypothesis created with the + # same parameters, else (default) - creates a new one + # + # @ingroup l3_hypos_2dhyps + def MaxElementArea(self, area, UseExisting=0): + comparator = lambda hyp, args: IsEqual(hyp.GetMaxElementArea(), args[0]) + hyp = self.Hypothesis("MaxElementArea", [area], UseExisting=UseExisting, + CompareMethod=comparator) + hyp.SetMaxElementArea(area) + return hyp + + ## Defines "LengthFromEdges" hypothesis to build triangles + # based on the length of the edges taken from the wire + # + # @ingroup l3_hypos_2dhyps + def LengthFromEdges(self): + hyp = self.Hypothesis("LengthFromEdges", UseExisting=1, CompareMethod=self.CompareEqualHyp) + return hyp + +# Public class: Mesh_Quadrangle +# ----------------------------- + +## Defines a quadrangle 2D algorithm +# It is created by calling Mesh.Quadrangle(geom=0) +# +# @ingroup l3_algos_basic +class Mesh_Quadrangle(Mesh_Algorithm): + + meshMethod = "Quadrangle" + algoType = QUADRANGLE + isDefault = True + + params=0 + + ## Private constructor. + def __init__(self, mesh, geom=0): + Mesh_Algorithm.__init__(self) + self.Create(mesh, geom, self.algoType) + return + + ## Defines "QuadrangleParameters" hypothesis + # @param quadType defines the algorithm of transition between differently descretized + # sides of a geometrical face: + # - QUAD_STANDARD - both triangles and quadrangles are possible in the transition + # area along the finer meshed sides. + # - QUAD_TRIANGLE_PREF - only triangles are built in the transition area along the + # finer meshed sides. + # - QUAD_QUADRANGLE_PREF - only quadrangles are built in the transition area along + # the finer meshed sides, iff the total quantity of segments on + # all four sides of the face is even (divisible by 2). + # - QUAD_QUADRANGLE_PREF_REVERSED - same as QUAD_QUADRANGLE_PREF but the transition + # area is located along the coarser meshed sides. + # - QUAD_REDUCED - only quadrangles are built and the transition between the sides + # is made gradually, layer by layer. This type has a limitation on + # the number of segments: one pair of opposite sides must have the + # same number of segments, the other pair must have an even difference + # between the numbers of segments on the sides. + # @param triangleVertex: vertex of a trilateral geometrical face, around which triangles + # will be created while other elements will be quadrangles. + # Vertex can be either a GEOM_Object or a vertex ID within the + # shape to mesh + # @param UseExisting: if ==true - searches for the existing hypothesis created with + # the same parameters, else (default) - creates a new one + # @ingroup l3_hypos_quad + def QuadrangleParameters(self, quadType=StdMeshers.QUAD_STANDARD, triangleVertex=0, UseExisting=0): + import GEOM + vertexID = triangleVertex + if isinstance( triangleVertex, GEOM._objref_GEOM_Object ): + vertexID = self.mesh.geompyD.GetSubShapeID( self.mesh.geom, triangleVertex ) + if not self.params: + compFun = lambda hyp,args: \ + hyp.GetQuadType() == args[0] and \ + ( hyp.GetTriaVertex()==args[1] or ( hyp.GetTriaVertex()<1 and args[1]<1)) + self.params = self.Hypothesis("QuadrangleParams", [quadType,vertexID], + UseExisting = UseExisting, CompareMethod=compFun) + pass + if self.params.GetQuadType() != quadType: + self.params.SetQuadType(quadType) + if vertexID > 0: + self.params.SetTriaVertex( vertexID ) + return self.params + + ## Defines "QuadrangleParams" hypothesis with a type of quadrangulation that only + # quadrangles are built in the transition area along the finer meshed sides, + # iff the total quantity of segments on all four sides of the face is even. + # @param reversed if True, transition area is located along the coarser meshed sides. + # @param UseExisting: if ==true - searches for the existing hypothesis created with + # the same parameters, else (default) - creates a new one + # @ingroup l3_hypos_quad + def QuadranglePreference(self, reversed=False, UseExisting=0): + if reversed: + return self.QuadrangleParameters(QUAD_QUADRANGLE_PREF_REVERSED,UseExisting=UseExisting) + return self.QuadrangleParameters(QUAD_QUADRANGLE_PREF,UseExisting=UseExisting) + + ## Defines "QuadrangleParams" hypothesis with a type of quadrangulation that only + # triangles are built in the transition area along the finer meshed sides. + # @param UseExisting: if ==true - searches for the existing hypothesis created with + # the same parameters, else (default) - creates a new one + # @ingroup l3_hypos_quad + def TrianglePreference(self, UseExisting=0): + return self.QuadrangleParameters(QUAD_TRIANGLE_PREF,UseExisting=UseExisting) + + ## Defines "QuadrangleParams" hypothesis with a type of quadrangulation that only + # quadrangles are built and the transition between the sides is made gradually, + # layer by layer. This type has a limitation on the number of segments: one pair + # of opposite sides must have the same number of segments, the other pair must + # have an even difference between the numbers of segments on the sides. + # @param UseExisting: if ==true - searches for the existing hypothesis created with + # the same parameters, else (default) - creates a new one + # @ingroup l3_hypos_quad + def Reduced(self, UseExisting=0): + return self.QuadrangleParameters(QUAD_REDUCED,UseExisting=UseExisting) + + ## Defines "QuadrangleParams" hypothesis with QUAD_STANDARD type of quadrangulation + # @param vertex: vertex of a trilateral geometrical face, around which triangles + # will be created while other elements will be quadrangles. + # Vertex can be either a GEOM_Object or a vertex ID within the + # shape to mesh + # @param UseExisting: if ==true - searches for the existing hypothesis created with + # the same parameters, else (default) - creates a new one + # @ingroup l3_hypos_quad + def TriangleVertex(self, vertex, UseExisting=0): + return self.QuadrangleParameters(QUAD_STANDARD,vertex,UseExisting) + + +# Public class: Mesh_Hexahedron +# ------------------------------ + +## Defines a hexahedron 3D algorithm +# It is created by calling Mesh.Hexahedron(geom=0) +# +# @ingroup l3_algos_basic +class Mesh_Hexahedron(Mesh_Algorithm): + + meshMethod = "Hexahedron" + algoType = Hexa + isDefault = True + + ## Private constructor. + def __init__(self, mesh, geom=0): + Mesh_Algorithm.__init__(self) + self.Create(mesh, geom, Hexa) + pass + +# Public class: Mesh_Projection1D +# ------------------------------- + +## Defines a projection 1D algorithm +# It is created by calling Mesh.Projection1D(geom=0) +# @ingroup l3_algos_proj +# +class Mesh_Projection1D(Mesh_Algorithm): + + meshMethod = "Projection1D" + algoType = "Projection_1D" + isDefault = True + + ## Private constructor. + def __init__(self, mesh, geom=0): + Mesh_Algorithm.__init__(self) + self.Create(mesh, geom, self.algoType) + + ## Defines "Source Edge" hypothesis, specifying a meshed edge, from where + # a mesh pattern is taken, and, optionally, the association of vertices + # between the source edge and a target edge (to which a hypothesis is assigned) + # @param edge from which nodes distribution is taken + # @param mesh from which nodes distribution is taken (optional) + # @param srcV a vertex of \a edge to associate with \a tgtV (optional) + # @param tgtV a vertex of \a the edge to which the algorithm is assigned, + # to associate with \a srcV (optional) + # @param UseExisting if ==true - searches for the existing hypothesis created with + # the same parameters, else (default) - creates a new one + def SourceEdge(self, edge, mesh=None, srcV=None, tgtV=None, UseExisting=0): + AssureGeomPublished( self.mesh, edge ) + AssureGeomPublished( self.mesh, srcV ) + AssureGeomPublished( self.mesh, tgtV ) + hyp = self.Hypothesis("ProjectionSource1D", [edge,mesh,srcV,tgtV], + UseExisting=0) + # it does not seem to be useful to reuse the existing "SourceEdge" hypothesis + #UseExisting=UseExisting, CompareMethod=self.CompareSourceEdge) + hyp.SetSourceEdge( edge ) + if not mesh is None and isinstance(mesh, Mesh): + mesh = mesh.GetMesh() + hyp.SetSourceMesh( mesh ) + hyp.SetVertexAssociation( srcV, tgtV ) + return hyp + + +# Public class: Mesh_Projection2D +# ------------------------------ + +## Defines a projection 2D algorithm +# It is created by calling Mesh.Projection2D(geom=0) +# @ingroup l3_algos_proj +# +class Mesh_Projection2D(Mesh_Algorithm): + + meshMethod = "Projection2D" + algoType = "Projection_2D" + isDefault = True + + ## Private constructor. + def __init__(self, mesh, geom=0): + Mesh_Algorithm.__init__(self) + self.Create(mesh, geom, self.algoType) + + ## Defines "Source Face" hypothesis, specifying a meshed face, from where + # a mesh pattern is taken, and, optionally, the association of vertices + # between the source face and the target face (to which a hypothesis is assigned) + # @param face from which the mesh pattern is taken + # @param mesh from which the mesh pattern is taken (optional) + # @param srcV1 a vertex of \a face to associate with \a tgtV1 (optional) + # @param tgtV1 a vertex of \a the face to which the algorithm is assigned, + # to associate with \a srcV1 (optional) + # @param srcV2 a vertex of \a face to associate with \a tgtV1 (optional) + # @param tgtV2 a vertex of \a the face to which the algorithm is assigned, + # to associate with \a srcV2 (optional) + # @param UseExisting if ==true - forces the search for the existing hypothesis created with + # the same parameters, else (default) - forces the creation a new one + # + # Note: all association vertices must belong to one edge of a face + def SourceFace(self, face, mesh=None, srcV1=None, tgtV1=None, + srcV2=None, tgtV2=None, UseExisting=0): + from smeshDC import Mesh + if isinstance(mesh, Mesh): + mesh = mesh.GetMesh() + for geom in [ face, srcV1, tgtV1, srcV2, tgtV2 ]: + AssureGeomPublished( self.mesh, geom ) + hyp = self.Hypothesis("ProjectionSource2D", [face,mesh,srcV1,tgtV1,srcV2,tgtV2], + UseExisting=0) + # it does not seem to be useful to reuse the existing "SourceFace" hypothesis + #UseExisting=UseExisting, CompareMethod=self.CompareSourceFace) + hyp.SetSourceFace( face ) + hyp.SetSourceMesh( mesh ) + hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 ) + return hyp + +# Public class: Mesh_Projection1D2D +# --------------------------------- + +## Defines a projection 1D-2D algorithm +# It is created by calling Mesh.Projection1D2D(geom=0) +# +# @ingroup l3_algos_proj + +class Mesh_Projection1D2D(Mesh_Projection2D): + + meshMethod = "Projection1D2D" + algoType = "Projection_1D2D" + + ## Private constructor. + def __init__(self, mesh, geom=0): + Mesh_Projection2D.__init__(self, mesh, geom) + +# Public class: Mesh_Projection3D +# ------------------------------ + +## Defines a projection 3D algorithm +# It is created by calling Mesh.Projection3D(COMPOSITE) +# +# @ingroup l3_algos_proj +# +class Mesh_Projection3D(Mesh_Algorithm): + + meshMethod = "Projection3D" + algoType = "Projection_3D" + + ## Private constructor. + def __init__(self, mesh, geom=0): + Mesh_Algorithm.__init__(self) + self.Create(mesh, geom, self.algoType) + + ## Defines the "Source Shape 3D" hypothesis, specifying a meshed solid, from where + # the mesh pattern is taken, and, optionally, the association of vertices + # between the source and the target solid (to which a hipothesis is assigned) + # @param solid from where the mesh pattern is taken + # @param mesh from where the mesh pattern is taken (optional) + # @param srcV1 a vertex of \a solid to associate with \a tgtV1 (optional) + # @param tgtV1 a vertex of \a the solid where the algorithm is assigned, + # to associate with \a srcV1 (optional) + # @param srcV2 a vertex of \a solid to associate with \a tgtV1 (optional) + # @param tgtV2 a vertex of \a the solid to which the algorithm is assigned, + # to associate with \a srcV2 (optional) + # @param UseExisting - if ==true - searches for the existing hypothesis created with + # the same parameters, else (default) - creates a new one + # + # Note: association vertices must belong to one edge of a solid + def SourceShape3D(self, solid, mesh=0, srcV1=0, tgtV1=0, + srcV2=0, tgtV2=0, UseExisting=0): + for geom in [ solid, srcV1, tgtV1, srcV2, tgtV2 ]: + AssureGeomPublished( self.mesh, geom ) + hyp = self.Hypothesis("ProjectionSource3D", + [solid,mesh,srcV1,tgtV1,srcV2,tgtV2], + UseExisting=0) + # seems to be not really useful to reuse existing "SourceShape3D" hypothesis + #UseExisting=UseExisting, CompareMethod=self.CompareSourceShape3D) + hyp.SetSource3DShape( solid ) + if isinstance(mesh, Mesh): + mesh = mesh.GetMesh() + if mesh: + hyp.SetSourceMesh( mesh ) + if srcV1 and srcV2 and tgtV1 and tgtV2: + hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 ) + #elif srcV1 or srcV2 or tgtV1 or tgtV2: + return hyp + +# Public class: Mesh_Prism +# ------------------------ + +## Defines a Prism 3D algorithm, which is either "Extrusion 3D" or "Radial Prism" +# depending on geometry +# It is created by calling Mesh.Prism(geom=0) +# +# @ingroup l3_algos_3dextr +# +class Mesh_Prism3D(Mesh_Algorithm): + + meshMethod = "Prism" + algoType = "Prism_3D" + + ## Private constructor. + def __init__(self, mesh, geom=0): + Mesh_Algorithm.__init__(self) + + shape = geom + if not shape: + shape = mesh.geom + from geompy import SubShapeAll, ShapeType + nbSolids = len( SubShapeAll( shape, ShapeType["SOLID"] )) + nbShells = len( SubShapeAll( shape, ShapeType["SHELL"] )) + if nbSolids == 0 or nbSolids == nbShells: + self.Create(mesh, geom, "Prism_3D") + else: + self.algoType = "RadialPrism_3D" + self.Create(mesh, geom, "RadialPrism_3D") + self.distribHyp = self.Hypothesis("LayerDistribution", UseExisting=0) + self.nbLayers = None + + ## Return 3D hypothesis holding the 1D one + def Get3DHypothesis(self): + if self.algoType != "RadialPrism_3D": + print "Prism_3D algorith doesn't support any hyposesis" + return None + return self.distribHyp + + ## Private method creating a 1D hypothesis and storing it in the LayerDistribution + # hypothesis. Returns the created hypothesis + def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"): + if self.algoType != "RadialPrism_3D": + print "Prism_3D algorith doesn't support any hyposesis" + return None + if not self.nbLayers is None: + self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers ) + self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp ) + study = self.mesh.smeshpyD.GetCurrentStudy() # prevents publishing own 1D hypothesis + self.mesh.smeshpyD.SetCurrentStudy( None ) + hyp = self.mesh.smeshpyD.CreateHypothesis(hypType, so) + self.mesh.smeshpyD.SetCurrentStudy( study ) # enables publishing + self.distribHyp.SetLayerDistribution( hyp ) + return hyp + + ## Defines "NumberOfLayers" hypothesis, specifying the number of layers of + # prisms to build between the inner and outer shells + # @param n number of layers + # @param UseExisting if ==true - searches for the existing hypothesis created with + # the same parameters, else (default) - creates a new one + def NumberOfLayers(self, n, UseExisting=0): + if self.algoType != "RadialPrism_3D": + print "Prism_3D algorith doesn't support any hyposesis" + return None + self.mesh.RemoveHypothesis( self.distribHyp, self.geom ) + compFun = lambda hyp, args: IsEqual(hyp.GetNumberOfLayers(), args[0]) + self.nbLayers = self.Hypothesis("NumberOfLayers", [n], UseExisting=UseExisting, + CompareMethod=compFun) + self.nbLayers.SetNumberOfLayers( n ) + return self.nbLayers + + ## Defines "LocalLength" hypothesis, specifying the segment length + # to build between the inner and the outer shells + # @param l the length of segments + # @param p the precision of rounding + def LocalLength(self, l, p=1e-07): + if self.algoType != "RadialPrism_3D": + print "Prism_3D algorith doesn't support any hyposesis" + return None + hyp = self.OwnHypothesis("LocalLength", [l,p]) + hyp.SetLength(l) + hyp.SetPrecision(p) + return hyp + + ## Defines "NumberOfSegments" hypothesis, specifying the number of layers of + # prisms to build between the inner and the outer shells. + # @param n the number of layers + # @param s the scale factor (optional) + def NumberOfSegments(self, n, s=[]): + if self.algoType != "RadialPrism_3D": + print "Prism_3D algorith doesn't support any hyposesis" + return None + if s == []: + hyp = self.OwnHypothesis("NumberOfSegments", [n]) + else: + hyp = self.OwnHypothesis("NumberOfSegments", [n,s]) + hyp.SetDistrType( 1 ) + hyp.SetScaleFactor(s) + hyp.SetNumberOfSegments(n) + return hyp + + ## Defines "Arithmetic1D" hypothesis, specifying the distribution of segments + # to build between the inner and the outer shells with a length that changes in arithmetic progression + # @param start the length of the first segment + # @param end the length of the last segment + def Arithmetic1D(self, start, end ): + if self.algoType != "RadialPrism_3D": + print "Prism_3D algorith doesn't support any hyposesis" + return None + hyp = self.OwnHypothesis("Arithmetic1D", [start, end]) + hyp.SetLength(start, 1) + hyp.SetLength(end , 0) + return hyp + + ## Defines "StartEndLength" hypothesis, specifying distribution of segments + # to build between the inner and the outer shells as geometric length increasing + # @param start for the length of the first segment + # @param end for the length of the last segment + def StartEndLength(self, start, end): + if self.algoType != "RadialPrism_3D": + print "Prism_3D algorith doesn't support any hyposesis" + return None + hyp = self.OwnHypothesis("StartEndLength", [start, end]) + hyp.SetLength(start, 1) + hyp.SetLength(end , 0) + return hyp + + ## Defines "AutomaticLength" hypothesis, specifying the number of segments + # to build between the inner and outer shells + # @param fineness defines the quality of the mesh within the range [0-1] + def AutomaticLength(self, fineness=0): + if self.algoType != "RadialPrism_3D": + print "Prism_3D algorith doesn't support any hyposesis" + return None + hyp = self.OwnHypothesis("AutomaticLength") + hyp.SetFineness( fineness ) + return hyp + + +# Public class: Mesh_RadialQuadrangle1D2D +# ------------------------------- + +## Defines a Radial Quadrangle 1D2D algorithm +# It is created by calling Mesh.Quadrangle(RADIAL_QUAD,geom=0) +# +# @ingroup l2_algos_radialq +class Mesh_RadialQuadrangle1D2D(Mesh_Algorithm): + + meshMethod = "Quadrangle" + algoType = RADIAL_QUAD + + ## Private constructor. + def __init__(self, mesh, geom=0): + Mesh_Algorithm.__init__(self) + self.Create(mesh, geom, self.algoType) + + self.distribHyp = None #self.Hypothesis("LayerDistribution2D", UseExisting=0) + self.nbLayers = None + + ## Return 2D hypothesis holding the 1D one + def Get2DHypothesis(self): + if not self.distribHyp: + self.distribHyp = self.Hypothesis("LayerDistribution2D", UseExisting=0) + return self.distribHyp + + ## Private method creating a 1D hypothesis and storing it in the LayerDistribution + # hypothesis. Returns the created hypothesis + def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"): + if self.nbLayers: + self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers ) + if self.distribHyp is None: + self.distribHyp = self.Hypothesis("LayerDistribution2D", UseExisting=0) + else: + self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp ) + study = self.mesh.smeshpyD.GetCurrentStudy() # prevents publishing own 1D hypothesis + self.mesh.smeshpyD.SetCurrentStudy( None ) + hyp = self.mesh.smeshpyD.CreateHypothesis(hypType, so) + self.mesh.smeshpyD.SetCurrentStudy( study ) # enables publishing + self.distribHyp.SetLayerDistribution( hyp ) + return hyp + + ## Defines "NumberOfLayers" hypothesis, specifying the number of layers + # @param n number of layers + # @param UseExisting if ==true - searches for the existing hypothesis created with + # the same parameters, else (default) - creates a new one + def NumberOfLayers(self, n, UseExisting=0): + if self.distribHyp: + self.mesh.GetMesh().RemoveHypothesis( self.geom, self.distribHyp ) + compFun = lambda hyp, args: IsEqual(hyp.GetNumberOfLayers(), args[0]) + self.nbLayers = self.Hypothesis("NumberOfLayers2D", [n], UseExisting=UseExisting, + CompareMethod=compFun) + self.nbLayers.SetNumberOfLayers( n ) + return self.nbLayers + + ## Defines "LocalLength" hypothesis, specifying the segment length + # @param l the length of segments + # @param p the precision of rounding + def LocalLength(self, l, p=1e-07): + hyp = self.OwnHypothesis("LocalLength", [l,p]) + hyp.SetLength(l) + hyp.SetPrecision(p) + return hyp + + ## Defines "NumberOfSegments" hypothesis, specifying the number of layers + # @param n the number of layers + # @param s the scale factor (optional) + def NumberOfSegments(self, n, s=[]): + if s == []: + hyp = self.OwnHypothesis("NumberOfSegments", [n]) + else: + hyp = self.OwnHypothesis("NumberOfSegments", [n,s]) + hyp.SetDistrType( 1 ) + hyp.SetScaleFactor(s) + hyp.SetNumberOfSegments(n) + return hyp + + ## Defines "Arithmetic1D" hypothesis, specifying the distribution of segments + # with a length that changes in arithmetic progression + # @param start the length of the first segment + # @param end the length of the last segment + def Arithmetic1D(self, start, end ): + hyp = self.OwnHypothesis("Arithmetic1D", [start, end]) + hyp.SetLength(start, 1) + hyp.SetLength(end , 0) + return hyp + + ## Defines "StartEndLength" hypothesis, specifying distribution of segments + # as geometric length increasing + # @param start for the length of the first segment + # @param end for the length of the last segment + def StartEndLength(self, start, end): + hyp = self.OwnHypothesis("StartEndLength", [start, end]) + hyp.SetLength(start, 1) + hyp.SetLength(end , 0) + return hyp + + ## Defines "AutomaticLength" hypothesis, specifying the number of segments + # @param fineness defines the quality of the mesh within the range [0-1] + def AutomaticLength(self, fineness=0): + hyp = self.OwnHypothesis("AutomaticLength") + hyp.SetFineness( fineness ) + return hyp + + +# Public class: Mesh_UseExistingElements +# -------------------------------------- +## Defines a Radial Quadrangle 1D2D algorithm +# It is created by calling Mesh.UseExisting1DElements(geom=0) +# +# @ingroup l3_algos_basic +class Mesh_UseExistingElements_1D(Mesh_Algorithm): + + meshMethod = "UseExisting1DElements" + algoType = "Import_1D" + isDefault = True + + def __init__(self, mesh, geom=0): + Mesh_Algorithm.__init__(self) + self.Create(mesh, geom, self.algoType) + return + + ## Defines "Source edges" hypothesis, specifying groups of edges to import + # @param groups list of groups of edges + # @param toCopyMesh if True, the whole mesh \a groups belong to is imported + # @param toCopyGroups if True, all groups of the mesh \a groups belong to are imported + # @param UseExisting if ==true - searches for the existing hypothesis created with + # the same parameters, else (default) - creates a new one + def SourceEdges(self, groups, toCopyMesh=False, toCopyGroups=False, UseExisting=False): + for group in groups: + AssureGeomPublished( self.mesh, group ) + compFun = lambda hyp, args: ( hyp.GetSourceEdges() == args[0] and \ + hyp.GetCopySourceMesh() == args[1], args[2] ) + hyp = self.Hypothesis("ImportSource1D", [groups, toCopyMesh, toCopyGroups], + UseExisting=UseExisting, CompareMethod=compFun) + hyp.SetSourceEdges(groups) + hyp.SetCopySourceMesh(toCopyMesh, toCopyGroups) + return hyp + +# Public class: Mesh_UseExistingElements +# -------------------------------------- +## Defines a Radial Quadrangle 1D2D algorithm +# It is created by calling Mesh.UseExisting2DElements(geom=0) +# +# @ingroup l3_algos_basic +class Mesh_UseExistingElements_1D2D(Mesh_Algorithm): + + meshMethod = "UseExisting2DElements" + algoType = "Import_1D2D" + isDefault = True + + def __init__(self, mesh, geom=0): + Mesh_Algorithm.__init__(self) + self.Create(mesh, geom, self.algoType) + return + + ## Defines "Source faces" hypothesis, specifying groups of faces to import + # @param groups list of groups of faces + # @param toCopyMesh if True, the whole mesh \a groups belong to is imported + # @param toCopyGroups if True, all groups of the mesh \a groups belong to are imported + # @param UseExisting if ==true - searches for the existing hypothesis created with + # the same parameters, else (default) - creates a new one + def SourceFaces(self, groups, toCopyMesh=False, toCopyGroups=False, UseExisting=False): + for group in groups: + AssureGeomPublished( self.mesh, group ) + compFun = lambda hyp, args: ( hyp.GetSourceFaces() == args[0] and \ + hyp.GetCopySourceMesh() == args[1], args[2] ) + hyp = self.Hypothesis("ImportSource2D", [groups, toCopyMesh, toCopyGroups], + UseExisting=UseExisting, CompareMethod=compFun) + hyp.SetSourceFaces(groups) + hyp.SetCopySourceMesh(toCopyMesh, toCopyGroups) + return hyp + + +# Public class: Mesh_Cartesian_3D +# -------------------------------------- +## Defines a Body Fitting 3D algorithm +# It is created by calling Mesh.BodyFitted(geom=0) +# +# @ingroup l3_algos_basic +class Mesh_Cartesian_3D(Mesh_Algorithm): + + meshMethod = "BodyFitted" + algoType = "Cartesian_3D" + isDefault = True + + def __init__(self, mesh, geom=0): + self.Create(mesh, geom, self.algoType) + self.hyp = None + return + + ## Defines "Body Fitting parameters" hypothesis + # @param xGridDef is definition of the grid along the X asix. + # It can be in either of two following forms: + # - Explicit coordinates of nodes, e.g. [-1.5, 0.0, 3.1] or range( -100,200,10) + # - Functions f(t) defining grid spacing at each point on grid axis. If there are + # several functions, they must be accompanied by relative coordinates of + # points dividing the whole shape into ranges where the functions apply; points + # coodrinates should vary within (0.0, 1.0) range. Parameter \a t of the spacing + # function f(t) varies from 0.0 to 1.0 witin a shape range. + # Examples: + # - "10.5" - defines a grid with a constant spacing + # - [["1", "1+10*t", "11"] [0.1, 0.6]] - defines different spacing in 3 ranges. + # @param yGridDef defines the grid along the Y asix the same way as \a xGridDef does + # @param zGridDef defines the grid along the Z asix the same way as \a xGridDef does + # @param sizeThreshold (> 1.0) defines a minimal size of a polyhedron so that + # a polyhedron of size less than hexSize/sizeThreshold is not created + # @param UseExisting if ==true - searches for the existing hypothesis created with + # the same parameters, else (default) - creates a new one + def SetGrid(self, xGridDef, yGridDef, zGridDef, sizeThreshold=4.0, UseExisting=False): + if not self.hyp: + compFun = lambda hyp, args: False + self.hyp = self.Hypothesis("CartesianParameters3D", + [xGridDef, yGridDef, zGridDef, sizeThreshold], + UseExisting=UseExisting, CompareMethod=compFun) + if not self.mesh.IsUsedHypothesis( self.hyp, self.geom ): + self.mesh.AddHypothesis( self.hyp, self.geom ) + + for axis, gridDef in enumerate( [xGridDef, yGridDef, zGridDef]): + if not gridDef: raise ValueError, "Empty grid definition" + if isinstance( gridDef, str ): + self.hyp.SetGridSpacing( [gridDef], [], axis ) + elif isinstance( gridDef[0], str ): + self.hyp.SetGridSpacing( gridDef, [], axis ) + elif isinstance( gridDef[0], int ) or \ + isinstance( gridDef[0], float ): + self.hyp.SetGrid(gridDef, axis ) + else: + self.hyp.SetGridSpacing( gridDef[0], gridDef[1], axis ) + self.hyp.SetSizeThreshold( sizeThreshold ) + return self.hyp + +# Public class: Mesh_UseExisting_1D +# --------------------------------- +## Defines a stub 1D algorithm, which enables "manual" creation of nodes and +# segments usable by 2D algoritms +# It is created by calling Mesh.UseExistingSegments(geom=0) +# +# @ingroup l3_algos_basic + +class Mesh_UseExisting_1D(Mesh_Algorithm): + + meshMethod = "UseExistingSegments" + algoType = "UseExisting_1D" + + def __init__(self, mesh, geom=0): + self.Create(mesh, geom, self.algoType) + + +# Public class: Mesh_UseExisting +# ------------------------------- +## Defines a stub 2D algorithm, which enables "manual" creation of nodes and +# faces usable by 3D algoritms +# It is created by calling Mesh.UseExistingFaces(geom=0) +# +# @ingroup l3_algos_basic + +class Mesh_UseExisting_2D(Mesh_Algorithm): + + meshMethod = "UseExistingFaces" + algoType = "UseExisting_2D" + + def __init__(self, mesh, geom=0): + self.Create(mesh, geom, self.algoType) diff --git a/src/SMESH_SWIG/smeshDC.py b/src/SMESH_SWIG/smeshDC.py index 3949fca2d..699fa5457 100644 --- a/src/SMESH_SWIG/smeshDC.py +++ b/src/SMESH_SWIG/smeshDC.py @@ -94,76 +94,12 @@ import geompyDC import SMESH # This is necessary for back compatibility from SMESH import * -import StdMeshers - import SALOME import SALOMEDS -# import NETGENPlugin module if possible -noNETGENPlugin = 0 -try: - import NETGENPlugin -except ImportError: - noNETGENPlugin = 1 - pass - -# import GHS3DPlugin module if possible -noGHS3DPlugin = 0 -try: - import GHS3DPlugin -except ImportError: - noGHS3DPlugin = 1 - pass - -# import GHS3DPRLPlugin module if possible -noGHS3DPRLPlugin = 0 -try: - import GHS3DPRLPlugin -except ImportError: - noGHS3DPRLPlugin = 1 - pass - -# import HexoticPlugin module if possible -noHexoticPlugin = 0 -try: - import HexoticPlugin -except ImportError: - noHexoticPlugin = 1 - pass - -# import BLSURFPlugin module if possible -noBLSURFPlugin = 0 -try: - import BLSURFPlugin -except ImportError: - noBLSURFPlugin = 1 - pass - ## @addtogroup l1_auxiliary ## @{ -# Types of algorithms -REGULAR = 1 -PYTHON = 2 -COMPOSITE = 3 -SOLE = 0 -SIMPLE = 1 - -MEFISTO = 3 -NETGEN = 4 -GHS3D = 5 -FULL_NETGEN = 6 -NETGEN_2D = 7 -NETGEN_1D2D = NETGEN -NETGEN_1D2D3D = FULL_NETGEN -NETGEN_FULL = FULL_NETGEN -Hexa = 8 -Hexotic = 9 -BLSURF = 10 -GHS3DPRL = 11 -QUADRANGLE = 0 -RADIAL_QUAD = 1 - # MirrorType enumeration POINT = SMESH_MeshEditor.POINT AXIS = SMESH_MeshEditor.AXIS @@ -173,26 +109,6 @@ PLANE = SMESH_MeshEditor.PLANE LAPLACIAN_SMOOTH = SMESH_MeshEditor.LAPLACIAN_SMOOTH CENTROIDAL_SMOOTH = SMESH_MeshEditor.CENTROIDAL_SMOOTH -# Fineness enumeration (for NETGEN) -VeryCoarse = 0 -Coarse = 1 -Moderate = 2 -Fine = 3 -VeryFine = 4 -Custom = 5 - -# Optimization level of GHS3D -# V3.1 -None_Optimization, Light_Optimization, Medium_Optimization, Strong_Optimization = 0,1,2,3 -# V4.1 (partialy redefines V3.1). Issue 0020574 -None_Optimization, Light_Optimization, Standard_Optimization, StandardPlus_Optimization, Strong_Optimization = 0,1,2,3,4 - -# Topology treatment way of BLSURF -FromCAD, PreProcess, PreProcessPlus, PreCAD = 0,1,2,3 - -# Element size flag of BLSURF -DefaultSize, DefaultGeom, BLSURF_Custom, SizeMap = 0,0,1,2 - PrecisionConfusion = 1e-07 # TopAbs_State enumeration @@ -201,196 +117,62 @@ PrecisionConfusion = 1e-07 # Methods of splitting a hexahedron into tetrahedra Hex_5Tet, Hex_6Tet, Hex_24Tet = 1, 2, 3 -# import items of enum QuadType -for e in StdMeshers.QuadType._items: exec('%s = StdMeshers.%s'%(e,e)) - ## Converts an angle from degrees to radians def DegreesToRadians(AngleInDegrees): from math import pi return AngleInDegrees * pi / 180.0 +import salome_notebook +notebook = salome_notebook.notebook # Salome notebook variable separator var_separator = ":" -# Parametrized substitute for PointStruct -class PointStructStr: - - x = 0 - y = 0 - z = 0 - xStr = "" - yStr = "" - zStr = "" - - def __init__(self, xStr, yStr, zStr): - self.xStr = xStr - self.yStr = yStr - self.zStr = zStr - if isinstance(xStr, str) and notebook.isVariable(xStr): - self.x = notebook.get(xStr) - else: - self.x = xStr - if isinstance(yStr, str) and notebook.isVariable(yStr): - self.y = notebook.get(yStr) - else: - self.y = yStr - if isinstance(zStr, str) and notebook.isVariable(zStr): - self.z = notebook.get(zStr) - else: - self.z = zStr - -# Parametrized substitute for PointStruct (with 6 parameters) -class PointStructStr6: - - x1 = 0 - y1 = 0 - z1 = 0 - x2 = 0 - y2 = 0 - z2 = 0 - xStr1 = "" - yStr1 = "" - zStr1 = "" - xStr2 = "" - yStr2 = "" - zStr2 = "" - - def __init__(self, x1Str, x2Str, y1Str, y2Str, z1Str, z2Str): - self.x1Str = x1Str - self.x2Str = x2Str - self.y1Str = y1Str - self.y2Str = y2Str - self.z1Str = z1Str - self.z2Str = z2Str - if isinstance(x1Str, str) and notebook.isVariable(x1Str): - self.x1 = notebook.get(x1Str) - else: - self.x1 = x1Str - if isinstance(x2Str, str) and notebook.isVariable(x2Str): - self.x2 = notebook.get(x2Str) - else: - self.x2 = x2Str - if isinstance(y1Str, str) and notebook.isVariable(y1Str): - self.y1 = notebook.get(y1Str) - else: - self.y1 = y1Str - if isinstance(y2Str, str) and notebook.isVariable(y2Str): - self.y2 = notebook.get(y2Str) - else: - self.y2 = y2Str - if isinstance(z1Str, str) and notebook.isVariable(z1Str): - self.z1 = notebook.get(z1Str) - else: - self.z1 = z1Str - if isinstance(z2Str, str) and notebook.isVariable(z2Str): - self.z2 = notebook.get(z2Str) - else: - self.z2 = z2Str - -# Parametrized substitute for AxisStruct -class AxisStructStr: - - x = 0 - y = 0 - z = 0 - dx = 0 - dy = 0 - dz = 0 - xStr = "" - yStr = "" - zStr = "" - dxStr = "" - dyStr = "" - dzStr = "" - - def __init__(self, xStr, yStr, zStr, dxStr, dyStr, dzStr): - self.xStr = xStr - self.yStr = yStr - self.zStr = zStr - self.dxStr = dxStr - self.dyStr = dyStr - self.dzStr = dzStr - if isinstance(xStr, str) and notebook.isVariable(xStr): - self.x = notebook.get(xStr) - else: - self.x = xStr - if isinstance(yStr, str) and notebook.isVariable(yStr): - self.y = notebook.get(yStr) - else: - self.y = yStr - if isinstance(zStr, str) and notebook.isVariable(zStr): - self.z = notebook.get(zStr) - else: - self.z = zStr - if isinstance(dxStr, str) and notebook.isVariable(dxStr): - self.dx = notebook.get(dxStr) - else: - self.dx = dxStr - if isinstance(dyStr, str) and notebook.isVariable(dyStr): - self.dy = notebook.get(dyStr) - else: - self.dy = dyStr - if isinstance(dzStr, str) and notebook.isVariable(dzStr): - self.dz = notebook.get(dzStr) - else: - self.dz = dzStr - -# Parametrized substitute for DirStruct -class DirStructStr: - - def __init__(self, pointStruct): - self.pointStruct = pointStruct - -# Returns list of variable values from salome notebook -def ParsePointStruct(Point): - Parameters = 2*var_separator - if isinstance(Point, PointStructStr): - Parameters = str(Point.xStr) + var_separator + str(Point.yStr) + var_separator + str(Point.zStr) - Point = PointStruct(Point.x, Point.y, Point.z) - return Point, Parameters - -# Returns list of variable values from salome notebook -def ParseDirStruct(Dir): - Parameters = 2*var_separator - if isinstance(Dir, DirStructStr): - pntStr = Dir.pointStruct - if isinstance(pntStr, PointStructStr6): - Parameters = str(pntStr.x1Str) + var_separator + str(pntStr.x2Str) + var_separator - Parameters += str(pntStr.y1Str) + var_separator + str(pntStr.y2Str) + var_separator - Parameters += str(pntStr.z1Str) + var_separator + str(pntStr.z2Str) - Point = PointStruct(pntStr.x2 - pntStr.x1, pntStr.y2 - pntStr.y1, pntStr.z2 - pntStr.z1) - else: - Parameters = str(pntStr.xStr) + var_separator + str(pntStr.yStr) + var_separator + str(pntStr.zStr) - Point = PointStruct(pntStr.x, pntStr.y, pntStr.z) - Dir = DirStruct(Point) - return Dir, Parameters - -# Returns list of variable values from salome notebook -def ParseAxisStruct(Axis): - Parameters = 5*var_separator - if isinstance(Axis, AxisStructStr): - Parameters = str(Axis.xStr) + var_separator + str(Axis.yStr) + var_separator + str(Axis.zStr) + var_separator - Parameters += str(Axis.dxStr) + var_separator + str(Axis.dyStr) + var_separator + str(Axis.dzStr) - Axis = AxisStruct(Axis.x, Axis.y, Axis.z, Axis.dx, Axis.dy, Axis.dz) - return Axis, Parameters - -## Return list of variable values from salome notebook -def ParseAngles(list): +## Return list of variable values from salome notebook. +# The last argument, if is callable, is used to modify values got from notebook +def ParseParameters(*args): Result = [] Parameters = "" - for parameter in list: - if isinstance(parameter,str) and notebook.isVariable(parameter): - Result.append(DegreesToRadians(notebook.get(parameter))) - pass - else: - Result.append(parameter) - pass + varModifFun=None + if args and callable( args[-1] ): + args, varModifFun = args[:-1], args[-1] + for parameter in args: + + Parameters += str(parameter) + var_separator + + if isinstance(parameter,str): + # check if there is an inexistent variable name + if not notebook.isVariable(parameter): + raise ValueError, "Variable with name '" + parameter + "' doesn't exist!!!" + parameter = notebook.get(parameter) + if varModifFun: + parameter = varModifFun(parameter) + pass + pass + Result.append(parameter) - Parameters = Parameters + str(parameter) - Parameters = Parameters + var_separator pass - Parameters = Parameters[:len(Parameters)-1] - return Result, Parameters + Parameters = Parameters[:-1] + Result.append( Parameters ) + return Result + +# Parse parameters converting variables to radians +def ParseAngles(*args): + return ParseParameters( *( args + (DegreesToRadians, ))) + +# Substitute PointStruct.__init__() to create SMESH.PointStruct using notebook variables. +# Parameters are stored in PointStruct.parameters attribute +def __initPointStruct(point,*args): + point.x, point.y, point.z, point.parameters = ParseParameters(*args) + pass +SMESH.PointStruct.__init__ = __initPointStruct + +# Substitute AxisStruct.__init__() to create SMESH.AxisStruct using notebook variables. +# Parameters are stored in AxisStruct.parameters attribute +def __initAxisStruct(ax,*args): + ax.x, ax.y, ax.z, ax.vx, ax.vy, ax.vz, ax.parameters = ParseParameters(*args) + pass +SMESH.AxisStruct.__init__ = __initAxisStruct + def IsEqual(val1, val2, tol=PrecisionConfusion): if abs(val1 - val2) < tol: @@ -471,25 +253,6 @@ def TreatHypoStatus(status, hypName, geomName, isAlgo): print hypName, "was not assigned:", reason pass -## Check meshing plugin availability -def CheckPlugin(plugin): - if plugin == NETGEN and noNETGENPlugin: - print "Warning: NETGENPlugin module unavailable" - return False - elif plugin == GHS3D and noGHS3DPlugin: - print "Warning: GHS3DPlugin module unavailable" - return False - elif plugin == GHS3DPRL and noGHS3DPRLPlugin: - print "Warning: GHS3DPRLPlugin module unavailable" - return False - elif plugin == Hexotic and noHexoticPlugin: - print "Warning: HexoticPlugin module unavailable" - return False - elif plugin == BLSURF and noBLSURFPlugin: - print "Warning: BLSURFPlugin module unavailable" - return False - return True - ## Private method. Add geom (sub-shape of the main shape) into the study if not yet there def AssureGeomPublished(mesh, geom, name=''): if not isinstance( geom, geompyDC.GEOM._objref_GEOM_Object ): @@ -746,17 +509,18 @@ class smeshDC(SMESH._objref_SMESH_Gen): # @param allGroups forces creation of groups of all elements def Concatenate( self, meshes, uniteIdenticalGroups, mergeNodesAndElements = False, mergeTolerance = 1e-5, allGroups = False): - mergeTolerance,Parameters = geompyDC.ParseParameters(mergeTolerance) + if not meshes: return None for i,m in enumerate(meshes): if isinstance(m, Mesh): meshes[i] = m.GetMesh() + mergeTolerance,Parameters = ParseParameters(mergeTolerance) + meshes[0].SetParameters(Parameters) if allGroups: aSmeshMesh = SMESH._objref_SMESH_Gen.ConcatenateWithGroups( self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance) else: aSmeshMesh = SMESH._objref_SMESH_Gen.Concatenate( self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance) - aSmeshMesh.SetParameters(Parameters) aMesh = Mesh(self, self.geompyD, aSmeshMesh) return aMesh @@ -1026,7 +790,21 @@ class smeshDC(SMESH._objref_SMESH_Gen): # @param theLibName mesh plug-in library name # @return created hypothesis instance def CreateHypothesis(self, theHType, theLibName="libStdMeshersEngine.so"): - return SMESH._objref_SMESH_Gen.CreateHypothesis(self, theHType, theLibName ) + hyp = SMESH._objref_SMESH_Gen.CreateHypothesis(self, theHType, theLibName ) + + if isinstance( hyp, SMESH._objref_SMESH_Algo ): + return hyp + + # wrap hypothesis methods + #print "HYPOTHESIS", theHType + for meth_name in dir( hyp.__class__ ): + if not meth_name.startswith("Get") and \ + not meth_name in dir ( SMESH._objref_SMESH_Hypothesis ): + method = getattr ( hyp.__class__, meth_name ) + if callable(method): + setattr( hyp, meth_name, hypMethodWrapper( hyp, method )) + + return hyp ## Gets the mesh statistic # @return dictionary "element type" - "count of elements" @@ -1206,6 +984,12 @@ class Mesh: self.editor = self.mesh.GetMeshEditor() + # set self to algoCreator's + for attrName in dir(self): + attr = getattr( self, attrName ) + if isinstance( attr, algoCreator ): + setattr( self, attrName, attr.copy( self )) + ## Initializes the Mesh object from an instance of SMESH_Mesh interface # @param theMesh a SMESH_Mesh object # @ingroup l2_construct @@ -1299,204 +1083,6 @@ class Mesh: return 0; pass - ## Creates a segment discretization 1D algorithm. - # If the optional \a algo parameter is not set, this algorithm is REGULAR. - # \n If the optional \a geom parameter is not set, this algorithm is global. - # Otherwise, this algorithm defines a submesh based on \a geom sub-shape. - # @param algo the type of the required algorithm. Possible values are: - # - smesh.REGULAR, - # - smesh.PYTHON for discretization via a python function, - # - smesh.COMPOSITE for meshing a set of edges on one face side as a whole. - # @param geom If defined is the sub-shape to be meshed - # @return an instance of Mesh_Segment or Mesh_Segment_Python, or Mesh_CompositeSegment class - # @ingroup l3_algos_basic - def Segment(self, algo=REGULAR, geom=0): - ## if Segment(geom) is called by mistake - if isinstance( algo, geompyDC.GEOM._objref_GEOM_Object): - algo, geom = geom, algo - if not algo: algo = REGULAR - pass - if algo == REGULAR: - return Mesh_Segment(self, geom) - elif algo == PYTHON: - return Mesh_Segment_Python(self, geom) - elif algo == COMPOSITE: - return Mesh_CompositeSegment(self, geom) - else: - return Mesh_Segment(self, geom) - - ## Creates 1D algorithm importing segments conatined in groups of other mesh. - # If the optional \a geom parameter is not set, this algorithm is global. - # Otherwise, this algorithm defines a submesh based on \a geom sub-shape. - # @param geom If defined the subshape is to be meshed - # @return an instance of Mesh_UseExistingElements class - # @ingroup l3_algos_basic - def UseExisting1DElements(self, geom=0): - return Mesh_UseExistingElements(1,self, geom) - - ## Creates 2D algorithm importing faces conatined in groups of other mesh. - # If the optional \a geom parameter is not set, this algorithm is global. - # Otherwise, this algorithm defines a submesh based on \a geom subshape. - # @param geom If defined the sub-shape is to be meshed - # @return an instance of Mesh_UseExistingElements class - # @ingroup l3_algos_basic - def UseExisting2DElements(self, geom=0): - return Mesh_UseExistingElements(2,self, geom) - - ## Enables creation of nodes and segments usable by 2D algoritms. - # The added nodes and segments must be bound to edges and vertices by - # SetNodeOnVertex(), SetNodeOnEdge() and SetMeshElementOnShape() - # If the optional \a geom parameter is not set, this algorithm is global. - # \n Otherwise, this algorithm defines a submesh based on \a geom sub-shape. - # @param geom the sub-shape to be manually meshed - # @return StdMeshers_UseExisting_1D algorithm that generates nothing - # @ingroup l3_algos_basic - def UseExistingSegments(self, geom=0): - algo = Mesh_UseExisting(1,self,geom) - return algo.GetAlgorithm() - - ## Enables creation of nodes and faces usable by 3D algoritms. - # The added nodes and faces must be bound to geom faces by SetNodeOnFace() - # and SetMeshElementOnShape() - # If the optional \a geom parameter is not set, this algorithm is global. - # \n Otherwise, this algorithm defines a submesh based on \a geom sub-shape. - # @param geom the sub-shape to be manually meshed - # @return StdMeshers_UseExisting_2D algorithm that generates nothing - # @ingroup l3_algos_basic - def UseExistingFaces(self, geom=0): - algo = Mesh_UseExisting(2,self,geom) - return algo.GetAlgorithm() - - ## Creates a triangle 2D algorithm for faces. - # If the optional \a geom parameter is not set, this algorithm is global. - # \n Otherwise, this algorithm defines a submesh based on \a geom sub-shape. - # @param algo values are: smesh.MEFISTO || smesh.NETGEN_1D2D || smesh.NETGEN_2D || smesh.BLSURF - # @param geom If defined, the sub-shape to be meshed (GEOM_Object) - # @return an instance of Mesh_Triangle algorithm - # @ingroup l3_algos_basic - def Triangle(self, algo=MEFISTO, geom=0): - ## if Triangle(geom) is called by mistake - if (isinstance(algo, geompyDC.GEOM._objref_GEOM_Object)): - geom = algo - algo = MEFISTO - return Mesh_Triangle(self, algo, geom) - - ## Creates a quadrangle 2D algorithm for faces. - # If the optional \a geom parameter is not set, this algorithm is global. - # \n Otherwise, this algorithm defines a submesh based on \a geom sub-shape. - # @param geom If defined, the sub-shape to be meshed (GEOM_Object) - # @param algo values are: smesh.QUADRANGLE || smesh.RADIAL_QUAD - # @return an instance of Mesh_Quadrangle algorithm - # @ingroup l3_algos_basic - def Quadrangle(self, geom=0, algo=QUADRANGLE): - if algo==RADIAL_QUAD: - return Mesh_RadialQuadrangle1D2D(self,geom) - else: - return Mesh_Quadrangle(self, geom) - - ## Creates a tetrahedron 3D algorithm for solids. - # The parameter \a algo permits to choose the algorithm: NETGEN or GHS3D - # If the optional \a geom parameter is not set, this algorithm is global. - # \n Otherwise, this algorithm defines a submesh based on \a geom sub-shape. - # @param algo values are: smesh.NETGEN, smesh.GHS3D, smesh.GHS3DPRL, smesh.FULL_NETGEN - # @param geom If defined, the sub-shape to be meshed (GEOM_Object) - # @return an instance of Mesh_Tetrahedron algorithm - # @ingroup l3_algos_basic - def Tetrahedron(self, algo=NETGEN, geom=0): - ## if Tetrahedron(geom) is called by mistake - if ( isinstance( algo, geompyDC.GEOM._objref_GEOM_Object)): - algo, geom = geom, algo - if not algo: algo = NETGEN - pass - return Mesh_Tetrahedron(self, algo, geom) - - ## Creates a hexahedron 3D algorithm for solids. - # If the optional \a geom parameter is not set, this algorithm is global. - # \n Otherwise, this algorithm defines a submesh based on \a geom sub-shape. - # @param algo possible values are: smesh.Hexa, smesh.Hexotic - # @param geom If defined, the sub-shape to be meshed (GEOM_Object) - # @return an instance of Mesh_Hexahedron algorithm - # @ingroup l3_algos_basic - def Hexahedron(self, algo=Hexa, geom=0): - ## if Hexahedron(geom, algo) or Hexahedron(geom) is called by mistake - if ( isinstance(algo, geompyDC.GEOM._objref_GEOM_Object) ): - if geom in [Hexa, Hexotic]: algo, geom = geom, algo - elif geom == 0: algo, geom = Hexa, algo - return Mesh_Hexahedron(self, algo, geom) - - ## Deprecated, used only for compatibility! - # @return an instance of Mesh_Netgen algorithm - # @ingroup l3_algos_basic - def Netgen(self, is3D, geom=0): - return Mesh_Netgen(self, is3D, geom) - - ## Creates a projection 1D algorithm for edges. - # If the optional \a geom parameter is not set, this algorithm is global. - # Otherwise, this algorithm defines a submesh based on \a geom sub-shape. - # @param geom If defined, the sub-shape to be meshed - # @return an instance of Mesh_Projection1D algorithm - # @ingroup l3_algos_proj - def Projection1D(self, geom=0): - return Mesh_Projection1D(self, geom) - - ## Creates a projection 1D-2D algorithm for faces. - # If the optional \a geom parameter is not set, this algorithm is global. - # Otherwise, this algorithm defines a submesh based on \a geom sub-shape. - # @param geom If defined, the sub-shape to be meshed - # @return an instance of Mesh_Projection2D algorithm - # @ingroup l3_algos_proj - def Projection1D2D(self, geom=0): - return Mesh_Projection2D(self, geom, "Projection_1D2D") - - ## Creates a projection 2D algorithm for faces. - # If the optional \a geom parameter is not set, this algorithm is global. - # Otherwise, this algorithm defines a submesh based on \a geom sub-shape. - # @param geom If defined, the sub-shape to be meshed - # @return an instance of Mesh_Projection2D algorithm - # @ingroup l3_algos_proj - def Projection2D(self, geom=0): - return Mesh_Projection2D(self, geom, "Projection_2D") - - ## Creates a projection 3D algorithm for solids. - # If the optional \a geom parameter is not set, this algorithm is global. - # Otherwise, this algorithm defines a submesh based on \a geom sub-shape. - # @param geom If defined, the sub-shape to be meshed - # @return an instance of Mesh_Projection3D algorithm - # @ingroup l3_algos_proj - def Projection3D(self, geom=0): - return Mesh_Projection3D(self, geom) - - ## Creates a 3D extrusion (Prism 3D) or RadialPrism 3D algorithm for solids. - # If the optional \a geom parameter is not set, this algorithm is global. - # Otherwise, this algorithm defines a submesh based on \a geom sub-shape. - # @param geom If defined, the sub-shape to be meshed - # @return an instance of Mesh_Prism3D or Mesh_RadialPrism3D algorithm - # @ingroup l3_algos_radialp l3_algos_3dextr - def Prism(self, geom=0): - shape = geom - if shape==0: - shape = self.geom - nbSolids = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SOLID"] )) - nbShells = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SHELL"] )) - if nbSolids == 0 or nbSolids == nbShells: - return Mesh_Prism3D(self, geom) - return Mesh_RadialPrism3D(self, geom) - - ## Creates a "Body Fitted" 3D algorithm for solids, which generates - # 3D structured Cartesian mesh in the internal part of a solid shape - # and polyhedral volumes near the shape boundary. - # If the optional \a geom parameter is not set, this algorithm is global. - # Otherwise, this algorithm defines a submesh based on \a geom sub-shape. - # The algorithm does not support submeshes. - # Generally usage of this algorithm as a local one is useless since - # it does not discretize 1D and 2D sub-shapes in a usual way acceptable - # for other algorithms. - # @param geom If defined, the sub-shape to be meshed - # @return an instance of Mesh_Cartesian_3D algorithm - # @ingroup l3_algos_basic - def BodyFitted(self, geom=0): - return Mesh_Cartesian_3D(self, geom) - ## Evaluates size of prospective mesh on a shape # @return a list where i-th element is a number of elements of i-th SMESH.EntityType # To know predicted number of e.g. edges, inquire it this way @@ -1683,6 +1269,7 @@ class Mesh: self.Triangle().LengthFromEdges() pass if dim > 2 : + from NETGENPluginDC import NETGEN self.Tetrahedron(NETGEN) pass return self.Compute() @@ -2687,7 +2274,7 @@ class Mesh: # @return Id of the new node # @ingroup l2_modif_add def AddNode(self, x, y, z): - x,y,z,Parameters = geompyDC.ParseParameters(x,y,z) + x,y,z,Parameters = ParseParameters(x,y,z) self.mesh.SetParameters(Parameters) return self.editor.AddNode( x, y, z) @@ -2851,7 +2438,7 @@ class Mesh: # @return True if succeed else False # @ingroup l2_modif_movenode def MoveNode(self, NodeID, x, y, z): - x,y,z,Parameters = geompyDC.ParseParameters(x,y,z) + x,y,z,Parameters = ParseParameters(x,y,z) self.mesh.SetParameters(Parameters) return self.editor.MoveNode(NodeID, x, y, z) @@ -2864,7 +2451,7 @@ class Mesh: # @return the ID of a node # @ingroup l2_modif_throughp def MoveClosestNodeToPoint(self, x, y, z, NodeID): - x,y,z,Parameters = geompyDC.ParseParameters(x,y,z) + x,y,z,Parameters = ParseParameters(x,y,z) self.mesh.SetParameters(Parameters) return self.editor.MoveClosestNodeToPoint(x, y, z, NodeID) @@ -2957,12 +2544,10 @@ class Mesh: flag = False if isinstance(MaxAngle,str): flag = True - MaxAngle,Parameters = geompyDC.ParseParameters(MaxAngle) - if flag: - MaxAngle = DegreesToRadians(MaxAngle) - if IDsOfElements == []: - IDsOfElements = self.GetElementsId() + MaxAngle,Parameters = ParseAngles(MaxAngle) self.mesh.SetParameters(Parameters) + if not IDsOfElements: + IDsOfElements = self.GetElementsId() Functor = 0 if ( isinstance( theCriterion, SMESH._objref_NumericalFunctor ) ): Functor = theCriterion @@ -2978,6 +2563,8 @@ class Mesh: # @return TRUE in case of success, FALSE otherwise. # @ingroup l2_modif_unitetri def TriToQuadObject (self, theObject, theCriterion, MaxAngle): + MaxAngle,Parameters = ParseAngles(MaxAngle) + self.mesh.SetParameters(Parameters) if ( isinstance( theObject, Mesh )): theObject = theObject.GetMesh() return self.editor.TriToQuadObject(theObject, self.smeshpyD.GetFunctor(theCriterion), MaxAngle) @@ -3198,7 +2785,7 @@ class Mesh: MaxNbOfIterations, MaxAspectRatio, Method): if IDsOfElements == []: IDsOfElements = self.GetElementsId() - MaxNbOfIterations,MaxAspectRatio,Parameters = geompyDC.ParseParameters(MaxNbOfIterations,MaxAspectRatio) + MaxNbOfIterations,MaxAspectRatio,Parameters = ParseParameters(MaxNbOfIterations,MaxAspectRatio) self.mesh.SetParameters(Parameters) return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes, MaxNbOfIterations, MaxAspectRatio, Method) @@ -3232,7 +2819,7 @@ class Mesh: MaxNbOfIterations, MaxAspectRatio, Method): if IDsOfElements == []: IDsOfElements = self.GetElementsId() - MaxNbOfIterations,MaxAspectRatio,Parameters = geompyDC.ParseParameters(MaxNbOfIterations,MaxAspectRatio) + MaxNbOfIterations,MaxAspectRatio,Parameters = ParseParameters(MaxNbOfIterations,MaxAspectRatio) self.mesh.SetParameters(Parameters) return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes, MaxNbOfIterations, MaxAspectRatio, Method) @@ -3359,22 +2946,16 @@ class Mesh: # @ingroup l2_modif_extrurev def RotationSweep(self, IDsOfElements, Axis, AngleInRadians, NbOfSteps, Tolerance, MakeGroups=False, TotalAngle=False): - flag = False - if isinstance(AngleInRadians,str): - flag = True - AngleInRadians,AngleParameters = geompyDC.ParseParameters(AngleInRadians) - if flag: - AngleInRadians = DegreesToRadians(AngleInRadians) if IDsOfElements == []: IDsOfElements = self.GetElementsId() if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)): Axis = self.smeshpyD.GetAxisStruct(Axis) - Axis,AxisParameters = ParseAxisStruct(Axis) + AngleInRadians,AngleParameters = ParseAngles(AngleInRadians) + NbOfSteps,Tolerance,Parameters = ParseParameters(NbOfSteps,Tolerance) + Parameters = Axis.parameters + var_separator + AngleParameters + var_separator + Parameters + self.mesh.SetParameters(Parameters) if TotalAngle and NbOfSteps: AngleInRadians /= NbOfSteps - NbOfSteps,Tolerance,Parameters = geompyDC.ParseParameters(NbOfSteps,Tolerance) - Parameters = AxisParameters + var_separator + AngleParameters + var_separator + Parameters - self.mesh.SetParameters(Parameters) if MakeGroups: return self.editor.RotationSweepMakeGroups(IDsOfElements, Axis, AngleInRadians, NbOfSteps, Tolerance) @@ -3395,22 +2976,16 @@ class Mesh: # @ingroup l2_modif_extrurev def RotationSweepObject(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance, MakeGroups=False, TotalAngle=False): - flag = False - if isinstance(AngleInRadians,str): - flag = True - AngleInRadians,AngleParameters = geompyDC.ParseParameters(AngleInRadians) - if flag: - AngleInRadians = DegreesToRadians(AngleInRadians) if ( isinstance( theObject, Mesh )): theObject = theObject.GetMesh() if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)): Axis = self.smeshpyD.GetAxisStruct(Axis) - Axis,AxisParameters = ParseAxisStruct(Axis) + AngleInRadians,AngleParameters = ParseAngles(AngleInRadians) + NbOfSteps,Tolerance,Parameters = ParseParameters(NbOfSteps,Tolerance) + Parameters = Axis.parameters + var_separator + AngleParameters + var_separator + Parameters + self.mesh.SetParameters(Parameters) if TotalAngle and NbOfSteps: AngleInRadians /= NbOfSteps - NbOfSteps,Tolerance,Parameters = geompyDC.ParseParameters(NbOfSteps,Tolerance) - Parameters = AxisParameters + var_separator + AngleParameters + var_separator + Parameters - self.mesh.SetParameters(Parameters) if MakeGroups: return self.editor.RotationSweepObjectMakeGroups(theObject, Axis, AngleInRadians, NbOfSteps, Tolerance) @@ -3431,22 +3006,16 @@ class Mesh: # @ingroup l2_modif_extrurev def RotationSweepObject1D(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance, MakeGroups=False, TotalAngle=False): - flag = False - if isinstance(AngleInRadians,str): - flag = True - AngleInRadians,AngleParameters = geompyDC.ParseParameters(AngleInRadians) - if flag: - AngleInRadians = DegreesToRadians(AngleInRadians) if ( isinstance( theObject, Mesh )): theObject = theObject.GetMesh() if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)): Axis = self.smeshpyD.GetAxisStruct(Axis) - Axis,AxisParameters = ParseAxisStruct(Axis) + AngleInRadians,AngleParameters = ParseAngles(AngleInRadians) + NbOfSteps,Tolerance,Parameters = ParseParameters(NbOfSteps,Tolerance) + Parameters = Axis.parameters + var_separator + AngleParameters + var_separator + Parameters + self.mesh.SetParameters(Parameters) if TotalAngle and NbOfSteps: AngleInRadians /= NbOfSteps - NbOfSteps,Tolerance,Parameters = geompyDC.ParseParameters(NbOfSteps,Tolerance) - Parameters = AxisParameters + var_separator + AngleParameters + var_separator + Parameters - self.mesh.SetParameters(Parameters) if MakeGroups: return self.editor.RotationSweepObject1DMakeGroups(theObject, Axis, AngleInRadians, NbOfSteps, Tolerance) @@ -3467,22 +3036,16 @@ class Mesh: # @ingroup l2_modif_extrurev def RotationSweepObject2D(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance, MakeGroups=False, TotalAngle=False): - flag = False - if isinstance(AngleInRadians,str): - flag = True - AngleInRadians,AngleParameters = geompyDC.ParseParameters(AngleInRadians) - if flag: - AngleInRadians = DegreesToRadians(AngleInRadians) if ( isinstance( theObject, Mesh )): theObject = theObject.GetMesh() if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)): Axis = self.smeshpyD.GetAxisStruct(Axis) - Axis,AxisParameters = ParseAxisStruct(Axis) + AngleInRadians,AngleParameters = ParseAngles(AngleInRadians) + NbOfSteps,Tolerance,Parameters = ParseParameters(NbOfSteps,Tolerance) + Parameters = Axis.parameters + var_separator + AngleParameters + var_separator + Parameters + self.mesh.SetParameters(Parameters) if TotalAngle and NbOfSteps: AngleInRadians /= NbOfSteps - NbOfSteps,Tolerance,Parameters = geompyDC.ParseParameters(NbOfSteps,Tolerance) - Parameters = AxisParameters + var_separator + AngleParameters + var_separator + Parameters - self.mesh.SetParameters(Parameters) if MakeGroups: return self.editor.RotationSweepObject2DMakeGroups(theObject, Axis, AngleInRadians, NbOfSteps, Tolerance) @@ -3502,9 +3065,8 @@ class Mesh: IDsOfElements = self.GetElementsId() if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)): StepVector = self.smeshpyD.GetDirStruct(StepVector) - StepVector,StepVectorParameters = ParseDirStruct(StepVector) - NbOfSteps,Parameters = geompyDC.ParseParameters(NbOfSteps) - Parameters = StepVectorParameters + var_separator + Parameters + NbOfSteps,Parameters = ParseParameters(NbOfSteps) + Parameters = StepVector.PS.parameters + var_separator + Parameters self.mesh.SetParameters(Parameters) if MakeGroups: if(IsNodes): @@ -3552,9 +3114,8 @@ class Mesh: theObject = theObject.GetMesh() if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)): StepVector = self.smeshpyD.GetDirStruct(StepVector) - StepVector,StepVectorParameters = ParseDirStruct(StepVector) - NbOfSteps,Parameters = geompyDC.ParseParameters(NbOfSteps) - Parameters = StepVectorParameters + var_separator + Parameters + NbOfSteps,Parameters = ParseParameters(NbOfSteps) + Parameters = StepVector.PS.parameters + var_separator + Parameters self.mesh.SetParameters(Parameters) if MakeGroups: if(IsNodes): @@ -3580,9 +3141,8 @@ class Mesh: theObject = theObject.GetMesh() if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)): StepVector = self.smeshpyD.GetDirStruct(StepVector) - StepVector,StepVectorParameters = ParseDirStruct(StepVector) - NbOfSteps,Parameters = geompyDC.ParseParameters(NbOfSteps) - Parameters = StepVectorParameters + var_separator + Parameters + NbOfSteps,Parameters = ParseParameters(NbOfSteps) + Parameters = StepVector.PS.parameters + var_separator + Parameters self.mesh.SetParameters(Parameters) if MakeGroups: return self.editor.ExtrusionSweepObject1DMakeGroups(theObject, StepVector, NbOfSteps) @@ -3602,9 +3162,8 @@ class Mesh: theObject = theObject.GetMesh() if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)): StepVector = self.smeshpyD.GetDirStruct(StepVector) - StepVector,StepVectorParameters = ParseDirStruct(StepVector) - NbOfSteps,Parameters = geompyDC.ParseParameters(NbOfSteps) - Parameters = StepVectorParameters + var_separator + Parameters + NbOfSteps,Parameters = ParseParameters(NbOfSteps) + Parameters = StepVector.PS.parameters + var_separator + Parameters self.mesh.SetParameters(Parameters) if MakeGroups: return self.editor.ExtrusionSweepObject2DMakeGroups(theObject, StepVector, NbOfSteps) @@ -3634,12 +3193,11 @@ class Mesh: def ExtrusionAlongPathX(self, Base, Path, NodeStart, HasAngles, Angles, LinearVariation, HasRefPoint, RefPoint, MakeGroups, ElemType): - Angles,AnglesParameters = ParseAngles(Angles) - RefPoint,RefPointParameters = ParsePointStruct(RefPoint) if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)): RefPoint = self.smeshpyD.GetPointStruct(RefPoint) pass - Parameters = AnglesParameters + var_separator + RefPointParameters + Angles,AnglesParameters = ParseAngles(Angles) + Parameters = AnglesParameters + var_separator + RefPoint.parameters self.mesh.SetParameters(Parameters) if (isinstance(Path, Mesh)): Path = Path.GetMesh() @@ -3682,8 +3240,6 @@ class Mesh: def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart, HasAngles, Angles, HasRefPoint, RefPoint, MakeGroups=False, LinearVariation=False): - Angles,AnglesParameters = ParseAngles(Angles) - RefPoint,RefPointParameters = ParsePointStruct(RefPoint) if IDsOfElements == []: IDsOfElements = self.GetElementsId() if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)): @@ -3691,11 +3247,12 @@ class Mesh: pass if ( isinstance( PathMesh, Mesh )): PathMesh = PathMesh.GetMesh() + Angles,AnglesParameters = ParseAngles(Angles) + Parameters = AnglesParameters + var_separator + RefPoint.parameters + self.mesh.SetParameters(Parameters) if HasAngles and Angles and LinearVariation: Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles ) pass - Parameters = AnglesParameters + var_separator + RefPointParameters - self.mesh.SetParameters(Parameters) if MakeGroups: return self.editor.ExtrusionAlongPathMakeGroups(IDsOfElements, PathMesh, PathShape, NodeStart, HasAngles, @@ -3725,19 +3282,18 @@ class Mesh: def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart, HasAngles, Angles, HasRefPoint, RefPoint, MakeGroups=False, LinearVariation=False): - Angles,AnglesParameters = ParseAngles(Angles) - RefPoint,RefPointParameters = ParsePointStruct(RefPoint) if ( isinstance( theObject, Mesh )): theObject = theObject.GetMesh() if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)): RefPoint = self.smeshpyD.GetPointStruct(RefPoint) if ( isinstance( PathMesh, Mesh )): PathMesh = PathMesh.GetMesh() + Angles,AnglesParameters = ParseAngles(Angles) + Parameters = AnglesParameters + var_separator + RefPoint.parameters + self.mesh.SetParameters(Parameters) if HasAngles and Angles and LinearVariation: Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles ) pass - Parameters = AnglesParameters + var_separator + RefPointParameters - self.mesh.SetParameters(Parameters) if MakeGroups: return self.editor.ExtrusionAlongPathObjectMakeGroups(theObject, PathMesh, PathShape, NodeStart, HasAngles, @@ -3768,19 +3324,18 @@ class Mesh: def ExtrusionAlongPathObject1D(self, theObject, PathMesh, PathShape, NodeStart, HasAngles, Angles, HasRefPoint, RefPoint, MakeGroups=False, LinearVariation=False): - Angles,AnglesParameters = ParseAngles(Angles) - RefPoint,RefPointParameters = ParsePointStruct(RefPoint) if ( isinstance( theObject, Mesh )): theObject = theObject.GetMesh() if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)): RefPoint = self.smeshpyD.GetPointStruct(RefPoint) if ( isinstance( PathMesh, Mesh )): PathMesh = PathMesh.GetMesh() + Angles,AnglesParameters = ParseAngles(Angles) + Parameters = AnglesParameters + var_separator + RefPoint.parameters + self.mesh.SetParameters(Parameters) if HasAngles and Angles and LinearVariation: Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles ) pass - Parameters = AnglesParameters + var_separator + RefPointParameters - self.mesh.SetParameters(Parameters) if MakeGroups: return self.editor.ExtrusionAlongPathObject1DMakeGroups(theObject, PathMesh, PathShape, NodeStart, HasAngles, @@ -3811,19 +3366,18 @@ class Mesh: def ExtrusionAlongPathObject2D(self, theObject, PathMesh, PathShape, NodeStart, HasAngles, Angles, HasRefPoint, RefPoint, MakeGroups=False, LinearVariation=False): - Angles,AnglesParameters = ParseAngles(Angles) - RefPoint,RefPointParameters = ParsePointStruct(RefPoint) if ( isinstance( theObject, Mesh )): theObject = theObject.GetMesh() if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)): RefPoint = self.smeshpyD.GetPointStruct(RefPoint) if ( isinstance( PathMesh, Mesh )): PathMesh = PathMesh.GetMesh() + Angles,AnglesParameters = ParseAngles(Angles) + Parameters = AnglesParameters + var_separator + RefPoint.parameters + self.mesh.SetParameters(Parameters) if HasAngles and Angles and LinearVariation: Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles ) pass - Parameters = AnglesParameters + var_separator + RefPointParameters - self.mesh.SetParameters(Parameters) if MakeGroups: return self.editor.ExtrusionAlongPathObject2DMakeGroups(theObject, PathMesh, PathShape, NodeStart, HasAngles, @@ -3846,8 +3400,7 @@ class Mesh: IDsOfElements = self.GetElementsId() if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)): Mirror = self.smeshpyD.GetAxisStruct(Mirror) - Mirror,Parameters = ParseAxisStruct(Mirror) - self.mesh.SetParameters(Parameters) + self.mesh.SetParameters(Mirror.parameters) if Copy and MakeGroups: return self.editor.MirrorMakeGroups(IDsOfElements, Mirror, theMirrorType) self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy) @@ -3867,10 +3420,9 @@ class Mesh: IDsOfElements = self.GetElementsId() if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)): Mirror = self.smeshpyD.GetAxisStruct(Mirror) - Mirror,Parameters = ParseAxisStruct(Mirror) + mesh.SetParameters(Mirror.parameters) mesh = self.editor.MirrorMakeMesh(IDsOfElements, Mirror, theMirrorType, MakeGroups, NewMeshName) - mesh.SetParameters(Parameters) return Mesh(self.smeshpyD,self.geompyD,mesh) ## Creates a symmetrical copy of the object @@ -3887,8 +3439,7 @@ class Mesh: theObject = theObject.GetMesh() if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)): Mirror = self.smeshpyD.GetAxisStruct(Mirror) - Mirror,Parameters = ParseAxisStruct(Mirror) - self.mesh.SetParameters(Parameters) + self.mesh.SetParameters(Mirror.parameters) if Copy and MakeGroups: return self.editor.MirrorObjectMakeGroups(theObject, Mirror, theMirrorType) self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy) @@ -3908,10 +3459,9 @@ class Mesh: theObject = theObject.GetMesh() if (isinstance(Mirror, geompyDC.GEOM._objref_GEOM_Object)): Mirror = self.smeshpyD.GetAxisStruct(Mirror) - Mirror,Parameters = ParseAxisStruct(Mirror) + self.mesh.SetParameters(Mirror.parameters) mesh = self.editor.MirrorObjectMakeMesh(theObject, Mirror, theMirrorType, MakeGroups, NewMeshName) - mesh.SetParameters(Parameters) return Mesh( self.smeshpyD,self.geompyD,mesh ) ## Translates the elements @@ -3926,8 +3476,7 @@ class Mesh: IDsOfElements = self.GetElementsId() if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)): Vector = self.smeshpyD.GetDirStruct(Vector) - Vector,Parameters = ParseDirStruct(Vector) - self.mesh.SetParameters(Parameters) + self.mesh.SetParameters(Vector.PS.parameters) if Copy and MakeGroups: return self.editor.TranslateMakeGroups(IDsOfElements, Vector) self.editor.Translate(IDsOfElements, Vector, Copy) @@ -3945,9 +3494,8 @@ class Mesh: IDsOfElements = self.GetElementsId() if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)): Vector = self.smeshpyD.GetDirStruct(Vector) - Vector,Parameters = ParseDirStruct(Vector) + self.mesh.SetParameters(Vector.PS.parameters) mesh = self.editor.TranslateMakeMesh(IDsOfElements, Vector, MakeGroups, NewMeshName) - mesh.SetParameters(Parameters) return Mesh ( self.smeshpyD, self.geompyD, mesh ) ## Translates the object @@ -3962,8 +3510,7 @@ class Mesh: theObject = theObject.GetMesh() if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)): Vector = self.smeshpyD.GetDirStruct(Vector) - Vector,Parameters = ParseDirStruct(Vector) - self.mesh.SetParameters(Parameters) + self.mesh.SetParameters(Vector.PS.parameters) if Copy and MakeGroups: return self.editor.TranslateObjectMakeGroups(theObject, Vector) self.editor.TranslateObject(theObject, Vector, Copy) @@ -3981,9 +3528,8 @@ class Mesh: theObject = theObject.GetMesh() if (isinstance(Vector, geompyDC.GEOM._objref_GEOM_Object)): Vector = self.smeshpyD.GetDirStruct(Vector) - Vector,Parameters = ParseDirStruct(Vector) + self.mesh.SetParameters(Vector.PS.parameters) mesh = self.editor.TranslateObjectMakeMesh(theObject, Vector, MakeGroups, NewMeshName) - mesh.SetParameters(Parameters) return Mesh( self.smeshpyD, self.geompyD, mesh ) @@ -4003,8 +3549,7 @@ class Mesh: if ( isinstance( theObject, list )): theObject = self.GetIDSource(theObject, SMESH.ALL) - thePoint, Parameters = ParsePointStruct(thePoint) - self.mesh.SetParameters(Parameters) + self.mesh.SetParameters(thePoint.parameters) if Copy and MakeGroups: return self.editor.ScaleMakeGroups(theObject, thePoint, theScaleFact) @@ -4024,9 +3569,9 @@ class Mesh: if ( isinstance( theObject, list )): theObject = self.GetIDSource(theObject,SMESH.ALL) + self.mesh.SetParameters(thePoint.parameters) mesh = self.editor.ScaleMakeMesh(theObject, thePoint, theScaleFact, MakeGroups, NewMeshName) - #mesh.SetParameters(Parameters) return Mesh( self.smeshpyD, self.geompyD, mesh ) @@ -4040,18 +3585,12 @@ class Mesh: # @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise # @ingroup l2_modif_trsf def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy, MakeGroups=False): - flag = False - if isinstance(AngleInRadians,str): - flag = True - AngleInRadians,Parameters = geompyDC.ParseParameters(AngleInRadians) - if flag: - AngleInRadians = DegreesToRadians(AngleInRadians) if IDsOfElements == []: IDsOfElements = self.GetElementsId() if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)): Axis = self.smeshpyD.GetAxisStruct(Axis) - Axis,AxisParameters = ParseAxisStruct(Axis) - Parameters = AxisParameters + var_separator + Parameters + AngleInRadians,Parameters = ParseAngles(AngleInRadians) + Parameters = Axis.parameters + var_separator + Parameters self.mesh.SetParameters(Parameters) if Copy and MakeGroups: return self.editor.RotateMakeGroups(IDsOfElements, Axis, AngleInRadians) @@ -4067,21 +3606,15 @@ class Mesh: # @return instance of Mesh class # @ingroup l2_modif_trsf def RotateMakeMesh (self, IDsOfElements, Axis, AngleInRadians, MakeGroups=0, NewMeshName=""): - flag = False - if isinstance(AngleInRadians,str): - flag = True - AngleInRadians,Parameters = geompyDC.ParseParameters(AngleInRadians) - if flag: - AngleInRadians = DegreesToRadians(AngleInRadians) if IDsOfElements == []: IDsOfElements = self.GetElementsId() if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)): Axis = self.smeshpyD.GetAxisStruct(Axis) - Axis,AxisParameters = ParseAxisStruct(Axis) - Parameters = AxisParameters + var_separator + Parameters + AngleInRadians,Parameters = ParseAngles(AngleInRadians) + Parameters = Axis.parameters + var_separator + Parameters + self.mesh.SetParameters(Parameters) mesh = self.editor.RotateMakeMesh(IDsOfElements, Axis, AngleInRadians, MakeGroups, NewMeshName) - mesh.SetParameters(Parameters) return Mesh( self.smeshpyD, self.geompyD, mesh ) ## Rotates the object @@ -4093,18 +3626,12 @@ class Mesh: # @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise # @ingroup l2_modif_trsf def RotateObject (self, theObject, Axis, AngleInRadians, Copy, MakeGroups=False): - flag = False - if isinstance(AngleInRadians,str): - flag = True - AngleInRadians,Parameters = geompyDC.ParseParameters(AngleInRadians) - if flag: - AngleInRadians = DegreesToRadians(AngleInRadians) if (isinstance(theObject, Mesh)): theObject = theObject.GetMesh() if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)): Axis = self.smeshpyD.GetAxisStruct(Axis) - Axis,AxisParameters = ParseAxisStruct(Axis) - Parameters = AxisParameters + ":" + Parameters + AngleInRadians,Parameters = ParseAngles(AngleInRadians) + Parameters = Axis.parameters + ":" + Parameters self.mesh.SetParameters(Parameters) if Copy and MakeGroups: return self.editor.RotateObjectMakeGroups(theObject, Axis, AngleInRadians) @@ -4120,21 +3647,15 @@ class Mesh: # @return instance of Mesh class # @ingroup l2_modif_trsf def RotateObjectMakeMesh(self, theObject, Axis, AngleInRadians, MakeGroups=0,NewMeshName=""): - flag = False - if isinstance(AngleInRadians,str): - flag = True - AngleInRadians,Parameters = geompyDC.ParseParameters(AngleInRadians) - if flag: - AngleInRadians = DegreesToRadians(AngleInRadians) if (isinstance( theObject, Mesh )): theObject = theObject.GetMesh() if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)): Axis = self.smeshpyD.GetAxisStruct(Axis) - Axis,AxisParameters = ParseAxisStruct(Axis) - Parameters = AxisParameters + ":" + Parameters + AngleInRadians,Parameters = ParseAngles(AngleInRadians) + Parameters = Axis.parameters + ":" + Parameters mesh = self.editor.RotateObjectMakeMesh(theObject, Axis, AngleInRadians, MakeGroups, NewMeshName) - mesh.SetParameters(Parameters) + self.mesh.SetParameters(Parameters) return Mesh( self.smeshpyD, self.geompyD, mesh ) ## Finds groups of ajacent nodes within Tolerance. @@ -4741,2264 +4262,95 @@ class Mesh_Algorithm: raise TypeError, "Item must be either an edge or tuple (edge 1st_vertex_of_edge)" return resList -# Public class: Mesh_Segment -# -------------------------- - -## Class to define a segment 1D algorithm for discretization -# -# More details. -# @ingroup l3_algos_basic -class Mesh_Segment(Mesh_Algorithm): - - ## Private constructor. - def __init__(self, mesh, geom=0): - Mesh_Algorithm.__init__(self) - self.Create(mesh, geom, "Regular_1D") - - ## Defines "LocalLength" hypothesis to cut an edge in several segments with the same length - # @param l for the length of segments that cut an edge - # @param UseExisting if ==true - searches for an existing hypothesis created with - # the same parameters, else (default) - creates a new one - # @param p precision, used for calculation of the number of segments. - # The precision should be a positive, meaningful value within the range [0,1]. - # In general, the number of segments is calculated with the formula: - # nb = ceil((edge_length / l) - p) - # Function ceil rounds its argument to the higher integer. - # So, p=0 means rounding of (edge_length / l) to the higher integer, - # p=0.5 means rounding of (edge_length / l) to the nearest integer, - # p=1 means rounding of (edge_length / l) to the lower integer. - # Default value is 1e-07. - # @return an instance of StdMeshers_LocalLength hypothesis - # @ingroup l3_hypos_1dhyps - def LocalLength(self, l, UseExisting=0, p=1e-07): - hyp = self.Hypothesis("LocalLength", [l,p], UseExisting=UseExisting, - CompareMethod=self.CompareLocalLength) - hyp.SetLength(l) - hyp.SetPrecision(p) - return hyp - - ## Private method - ## Checks if the given "LocalLength" hypothesis has the same parameters as the given arguments - def CompareLocalLength(self, hyp, args): - if IsEqual(hyp.GetLength(), args[0]): - return IsEqual(hyp.GetPrecision(), args[1]) - return False - - ## Defines "MaxSize" hypothesis to cut an edge into segments not longer than given value - # @param length is optional maximal allowed length of segment, if it is omitted - # the preestimated length is used that depends on geometry size - # @param UseExisting if ==true - searches for an existing hypothesis created with - # the same parameters, else (default) - create a new one - # @return an instance of StdMeshers_MaxLength hypothesis - # @ingroup l3_hypos_1dhyps - def MaxSize(self, length=0.0, UseExisting=0): - hyp = self.Hypothesis("MaxLength", [length], UseExisting=UseExisting) - if length > 0.0: - # set given length - hyp.SetLength(length) - if not UseExisting: - # set preestimated length - gen = self.mesh.smeshpyD - initHyp = gen.GetHypothesisParameterValues("MaxLength", "libStdMeshersEngine.so", - self.mesh.GetMesh(), self.mesh.GetShape(), - False) # <- byMesh - preHyp = initHyp._narrow(StdMeshers.StdMeshers_MaxLength) - if preHyp: - hyp.SetPreestimatedLength( preHyp.GetPreestimatedLength() ) - pass - pass - hyp.SetUsePreestimatedLength( length == 0.0 ) - return hyp - - ## Defines "NumberOfSegments" hypothesis to cut an edge in a fixed number of segments - # @param n for the number of segments that cut an edge - # @param s for the scale factor (optional) - # @param reversedEdges is a list of edges to mesh using reversed orientation. - # A list item can also be a tuple (edge 1st_vertex_of_edge) - # @param UseExisting if ==true - searches for an existing hypothesis created with - # the same parameters, else (default) - create a new one - # @return an instance of StdMeshers_NumberOfSegments hypothesis - # @ingroup l3_hypos_1dhyps - def NumberOfSegments(self, n, s=[], reversedEdges=[], UseExisting=0): - if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges - reversedEdges, UseExisting = [], reversedEdges - entry = self.MainShapeEntry() - reversedEdgeInd = self.ReversedEdgeIndices(reversedEdges) - if s == []: - hyp = self.Hypothesis("NumberOfSegments", [n, reversedEdgeInd, entry], - UseExisting=UseExisting, - CompareMethod=self.CompareNumberOfSegments) - else: - hyp = self.Hypothesis("NumberOfSegments", [n,s, reversedEdgeInd, entry], - UseExisting=UseExisting, - CompareMethod=self.CompareNumberOfSegments) - hyp.SetDistrType( 1 ) - hyp.SetScaleFactor(s) - hyp.SetNumberOfSegments(n) - hyp.SetReversedEdges( reversedEdgeInd ) - hyp.SetObjectEntry( entry ) - return hyp - - ## Private method - ## Checks if the given "NumberOfSegments" hypothesis has the same parameters as the given arguments - def CompareNumberOfSegments(self, hyp, args): - if hyp.GetNumberOfSegments() == args[0]: - if len(args) == 3: - if hyp.GetReversedEdges() == args[1]: - if not args[1] or hyp.GetObjectEntry() == args[2]: - return True - else: - if hyp.GetReversedEdges() == args[2]: - if not args[2] or hyp.GetObjectEntry() == args[3]: - if hyp.GetDistrType() == 1: - if IsEqual(hyp.GetScaleFactor(), args[1]): - return True - return False - - ## Defines "Arithmetic1D" hypothesis to cut an edge in several segments with increasing arithmetic length - # @param start defines the length of the first segment - # @param end defines the length of the last segment - # @param reversedEdges is a list of edges to mesh using reversed orientation. - # A list item can also be a tuple (edge 1st_vertex_of_edge) - # @param UseExisting if ==true - searches for an existing hypothesis created with - # the same parameters, else (default) - creates a new one - # @return an instance of StdMeshers_Arithmetic1D hypothesis - # @ingroup l3_hypos_1dhyps - def Arithmetic1D(self, start, end, reversedEdges=[], UseExisting=0): - if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges - reversedEdges, UseExisting = [], reversedEdges - reversedEdgeInd = self.ReversedEdgeIndices(reversedEdges) - entry = self.MainShapeEntry() - hyp = self.Hypothesis("Arithmetic1D", [start, end, reversedEdgeInd, entry], - UseExisting=UseExisting, - CompareMethod=self.CompareArithmetic1D) - hyp.SetStartLength(start) - hyp.SetEndLength(end) - hyp.SetReversedEdges( reversedEdgeInd ) - hyp.SetObjectEntry( entry ) - return hyp - - ## Private method - ## Check if the given "Arithmetic1D" hypothesis has the same parameters as the given arguments - def CompareArithmetic1D(self, hyp, args): - if IsEqual(hyp.GetLength(1), args[0]): - if IsEqual(hyp.GetLength(0), args[1]): - if hyp.GetReversedEdges() == args[2]: - if not args[2] or hyp.GetObjectEntry() == args[3]: - return True - return False - - - ## Defines "FixedPoints1D" hypothesis to cut an edge using parameter - # on curve from 0 to 1 (additionally it is neecessary to check - # orientation of edges and create list of reversed edges if it is - # needed) and sets numbers of segments between given points (default - # values are equals 1 - # @param points defines the list of parameters on curve - # @param nbSegs defines the list of numbers of segments - # @param reversedEdges is a list of edges to mesh using reversed orientation. - # A list item can also be a tuple (edge 1st_vertex_of_edge) - # @param UseExisting if ==true - searches for an existing hypothesis created with - # the same parameters, else (default) - creates a new one - # @return an instance of StdMeshers_Arithmetic1D hypothesis - # @ingroup l3_hypos_1dhyps - def FixedPoints1D(self, points, nbSegs=[1], reversedEdges=[], UseExisting=0): - if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges - reversedEdges, UseExisting = [], reversedEdges - reversedEdgeInd = self.ReversedEdgeIndices(reversedEdges) - entry = self.MainShapeEntry() - hyp = self.Hypothesis("FixedPoints1D", [points, nbSegs, reversedEdgeInd, entry], - UseExisting=UseExisting, - CompareMethod=self.CompareFixedPoints1D) - hyp.SetPoints(points) - hyp.SetNbSegments(nbSegs) - hyp.SetReversedEdges(reversedEdgeInd) - hyp.SetObjectEntry(entry) - return hyp - - ## Private method - ## Check if the given "FixedPoints1D" hypothesis has the same parameters - ## as the given arguments - def CompareFixedPoints1D(self, hyp, args): - if hyp.GetPoints() == args[0]: - if hyp.GetNbSegments() == args[1]: - if hyp.GetReversedEdges() == args[2]: - if not args[2] or hyp.GetObjectEntry() == args[3]: - return True - return False - - - - ## Defines "StartEndLength" hypothesis to cut an edge in several segments with increasing geometric length - # @param start defines the length of the first segment - # @param end defines the length of the last segment - # @param reversedEdges is a list of edges to mesh using reversed orientation. - # A list item can also be a tuple (edge 1st_vertex_of_edge) - # @param UseExisting if ==true - searches for an existing hypothesis created with - # the same parameters, else (default) - creates a new one - # @return an instance of StdMeshers_StartEndLength hypothesis - # @ingroup l3_hypos_1dhyps - def StartEndLength(self, start, end, reversedEdges=[], UseExisting=0): - if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges - reversedEdges, UseExisting = [], reversedEdges - reversedEdgeInd = self.ReversedEdgeIndices(reversedEdges) - entry = self.MainShapeEntry() - hyp = self.Hypothesis("StartEndLength", [start, end, reversedEdgeInd, entry], - UseExisting=UseExisting, - CompareMethod=self.CompareStartEndLength) - hyp.SetStartLength(start) - hyp.SetEndLength(end) - hyp.SetReversedEdges( reversedEdgeInd ) - hyp.SetObjectEntry( entry ) - return hyp - - ## Check if the given "StartEndLength" hypothesis has the same parameters as the given arguments - def CompareStartEndLength(self, hyp, args): - if IsEqual(hyp.GetLength(1), args[0]): - if IsEqual(hyp.GetLength(0), args[1]): - if hyp.GetReversedEdges() == args[2]: - if not args[2] or hyp.GetObjectEntry() == args[3]: - return True - return False - - ## Defines "Deflection1D" hypothesis - # @param d for the deflection - # @param UseExisting if ==true - searches for an existing hypothesis created with - # the same parameters, else (default) - create a new one - # @ingroup l3_hypos_1dhyps - def Deflection1D(self, d, UseExisting=0): - hyp = self.Hypothesis("Deflection1D", [d], UseExisting=UseExisting, - CompareMethod=self.CompareDeflection1D) - hyp.SetDeflection(d) - return hyp - - ## Check if the given "Deflection1D" hypothesis has the same parameters as the given arguments - def CompareDeflection1D(self, hyp, args): - return IsEqual(hyp.GetDeflection(), args[0]) - - ## Defines "Propagation" hypothesis that propagates all other hypotheses on all other edges that are at - # the opposite side in case of quadrangular faces - # @ingroup l3_hypos_additi - def Propagation(self): - return self.Hypothesis("Propagation", UseExisting=1, CompareMethod=self.CompareEqualHyp) - - ## Defines "AutomaticLength" hypothesis - # @param fineness for the fineness [0-1] - # @param UseExisting if ==true - searches for an existing hypothesis created with the - # same parameters, else (default) - create a new one - # @ingroup l3_hypos_1dhyps - def AutomaticLength(self, fineness=0, UseExisting=0): - hyp = self.Hypothesis("AutomaticLength",[fineness],UseExisting=UseExisting, - CompareMethod=self.CompareAutomaticLength) - hyp.SetFineness( fineness ) - return hyp - - ## Checks if the given "AutomaticLength" hypothesis has the same parameters as the given arguments - def CompareAutomaticLength(self, hyp, args): - return IsEqual(hyp.GetFineness(), args[0]) - - ## Defines "SegmentLengthAroundVertex" hypothesis - # @param length for the segment length - # @param vertex for the length localization: the vertex index [0,1] | vertex object. - # Any other integer value means that the hypothesis will be set on the - # whole 1D shape, where Mesh_Segment algorithm is assigned. - # @param UseExisting if ==true - searches for an existing hypothesis created with - # the same parameters, else (default) - creates a new one - # @ingroup l3_algos_segmarv - def LengthNearVertex(self, length, vertex=0, UseExisting=0): - import types - store_geom = self.geom - if type(vertex) is types.IntType: - if vertex == 0 or vertex == 1: - vertex = self.mesh.geompyD.ExtractShapes(self.geom, geompyDC.ShapeType["VERTEX"],True)[vertex] - self.geom = vertex - pass - pass - else: - self.geom = vertex - pass - ### 0D algorithm - if self.geom is None: - raise RuntimeError, "Attemp to create SegmentAroundVertex_0D algoritm on None shape" - AssureGeomPublished( self.mesh, self.geom ) - name = GetName(self.geom) - - algo = self.FindAlgorithm("SegmentAroundVertex_0D", self.mesh.smeshpyD) - if algo is None: - algo = self.mesh.smeshpyD.CreateHypothesis("SegmentAroundVertex_0D", "libStdMeshersEngine.so") - pass - status = self.mesh.mesh.AddHypothesis(self.geom, algo) - TreatHypoStatus(status, "SegmentAroundVertex_0D", name, True) - ### - hyp = self.Hypothesis("SegmentLengthAroundVertex", [length], UseExisting=UseExisting, - CompareMethod=self.CompareLengthNearVertex) - self.geom = store_geom - hyp.SetLength( length ) - return hyp - - ## Checks if the given "LengthNearVertex" hypothesis has the same parameters as the given arguments - # @ingroup l3_algos_segmarv - def CompareLengthNearVertex(self, hyp, args): - return IsEqual(hyp.GetLength(), args[0]) - - ## Defines "QuadraticMesh" hypothesis, forcing construction of quadratic edges. - # If the 2D mesher sees that all boundary edges are quadratic, - # it generates quadratic faces, else it generates linear faces using - # medium nodes as if they are vertices. - # The 3D mesher generates quadratic volumes only if all boundary faces - # are quadratic, else it fails. - # - # @ingroup l3_hypos_additi - def QuadraticMesh(self): - hyp = self.Hypothesis("QuadraticMesh", UseExisting=1, CompareMethod=self.CompareEqualHyp) - return hyp - -# Public class: Mesh_CompositeSegment -# -------------------------- - -## Defines a segment 1D algorithm for discretization -# -# @ingroup l3_algos_basic -class Mesh_CompositeSegment(Mesh_Segment): - - ## Private constructor. - def __init__(self, mesh, geom=0): - self.Create(mesh, geom, "CompositeSegment_1D") - - -# Public class: Mesh_Segment_Python -# --------------------------------- - -## Defines a segment 1D algorithm for discretization with python function -# -# @ingroup l3_algos_basic -class Mesh_Segment_Python(Mesh_Segment): - - ## Private constructor. - def __init__(self, mesh, geom=0): - import Python1dPlugin - self.Create(mesh, geom, "Python_1D", "libPython1dEngine.so") - - ## Defines "PythonSplit1D" hypothesis - # @param n for the number of segments that cut an edge - # @param func for the python function that calculates the length of all segments - # @param UseExisting if ==true - searches for the existing hypothesis created with - # the same parameters, else (default) - creates a new one - # @ingroup l3_hypos_1dhyps - def PythonSplit1D(self, n, func, UseExisting=0): - hyp = self.Hypothesis("PythonSplit1D", [n], "libPython1dEngine.so", - UseExisting=UseExisting, CompareMethod=self.ComparePythonSplit1D) - hyp.SetNumberOfSegments(n) - hyp.SetPythonLog10RatioFunction(func) - return hyp - - ## Checks if the given "PythonSplit1D" hypothesis has the same parameters as the given arguments - def ComparePythonSplit1D(self, hyp, args): - #if hyp.GetNumberOfSegments() == args[0]: - # if hyp.GetPythonLog10RatioFunction() == args[1]: - # return True - return False - -# Public class: Mesh_Triangle -# --------------------------- - -## Defines a triangle 2D algorithm -# -# @ingroup l3_algos_basic -class Mesh_Triangle(Mesh_Algorithm): - - # default values - algoType = 0 - params = 0 - - _angleMeshS = 8 - _gradation = 1.1 - - ## Private constructor. - def __init__(self, mesh, algoType, geom=0): - Mesh_Algorithm.__init__(self) - - if algoType == MEFISTO: - self.Create(mesh, geom, "MEFISTO_2D") - pass - elif algoType == BLSURF: - CheckPlugin(BLSURF) - self.Create(mesh, geom, "BLSURF", "libBLSURFEngine.so") - #self.SetPhysicalMesh() - PAL19680 - elif algoType == NETGEN: - CheckPlugin(NETGEN) - self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so") - pass - elif algoType == NETGEN_2D: - CheckPlugin(NETGEN) - self.Create(mesh, geom, "NETGEN_2D_ONLY", "libNETGENEngine.so") - pass - - self.algoType = algoType - - ## Defines "MaxElementArea" hypothesis basing on the definition of the maximum area of each triangle - # @param area for the maximum area of each triangle - # @param UseExisting if ==true - searches for an existing hypothesis created with the - # same parameters, else (default) - creates a new one - # - # Only for algoType == MEFISTO || NETGEN_2D - # @ingroup l3_hypos_2dhyps - def MaxElementArea(self, area, UseExisting=0): - if self.algoType == MEFISTO or self.algoType == NETGEN_2D: - hyp = self.Hypothesis("MaxElementArea", [area], UseExisting=UseExisting, - CompareMethod=self.CompareMaxElementArea) - elif self.algoType == NETGEN: - hyp = self.Parameters(SIMPLE) - hyp.SetMaxElementArea(area) - return hyp - - ## Checks if the given "MaxElementArea" hypothesis has the same parameters as the given arguments - def CompareMaxElementArea(self, hyp, args): - return IsEqual(hyp.GetMaxElementArea(), args[0]) - - ## Defines "LengthFromEdges" hypothesis to build triangles - # based on the length of the edges taken from the wire - # - # Only for algoType == MEFISTO || NETGEN_2D - # @ingroup l3_hypos_2dhyps - def LengthFromEdges(self): - if self.algoType == MEFISTO or self.algoType == NETGEN_2D: - hyp = self.Hypothesis("LengthFromEdges", UseExisting=1, CompareMethod=self.CompareEqualHyp) - return hyp - elif self.algoType == NETGEN: - hyp = self.Parameters(SIMPLE) - hyp.LengthFromEdges() - return hyp - - ## Sets a way to define size of mesh elements to generate. - # @param thePhysicalMesh is: DefaultSize, BLSURF_Custom or SizeMap. - # @ingroup l3_hypos_blsurf - def SetPhysicalMesh(self, thePhysicalMesh=DefaultSize): - if self.Parameters(): - # Parameter of BLSURF algo - self.params.SetPhysicalMesh(thePhysicalMesh) - - ## Sets size of mesh elements to generate. - # @ingroup l3_hypos_blsurf - def SetPhySize(self, theVal): - if self.Parameters(): - # Parameter of BLSURF algo - self.params.SetPhySize(theVal) - - ## Sets lower boundary of mesh element size (PhySize). - # @ingroup l3_hypos_blsurf - def SetPhyMin(self, theVal=-1): - if self.Parameters(): - # Parameter of BLSURF algo - self.params.SetPhyMin(theVal) - - ## Sets upper boundary of mesh element size (PhySize). - # @ingroup l3_hypos_blsurf - def SetPhyMax(self, theVal=-1): - if self.Parameters(): - # Parameter of BLSURF algo - self.params.SetPhyMax(theVal) - - ## Sets a way to define maximum angular deflection of mesh from CAD model. - # @param theGeometricMesh is: 0 (None) or 1 (Custom) - # @ingroup l3_hypos_blsurf - def SetGeometricMesh(self, theGeometricMesh=0): - if self.Parameters(): - # Parameter of BLSURF algo - if self.params.GetPhysicalMesh() == 0: theGeometricMesh = 1 - self.params.SetGeometricMesh(theGeometricMesh) - - ## Sets angular deflection (in degrees) of a mesh face from CAD surface. - # @ingroup l3_hypos_blsurf - def SetAngleMeshS(self, theVal=_angleMeshS): - if self.Parameters(): - # Parameter of BLSURF algo - if self.params.GetGeometricMesh() == 0: theVal = self._angleMeshS - self.params.SetAngleMeshS(theVal) - - ## Sets angular deflection (in degrees) of a mesh edge from CAD curve. - # @ingroup l3_hypos_blsurf - def SetAngleMeshC(self, theVal=_angleMeshS): - if self.Parameters(): - # Parameter of BLSURF algo - if self.params.GetGeometricMesh() == 0: theVal = self._angleMeshS - self.params.SetAngleMeshC(theVal) - - ## Sets lower boundary of mesh element size computed to respect angular deflection. - # @ingroup l3_hypos_blsurf - def SetGeoMin(self, theVal=-1): - if self.Parameters(): - # Parameter of BLSURF algo - self.params.SetGeoMin(theVal) - - ## Sets upper boundary of mesh element size computed to respect angular deflection. - # @ingroup l3_hypos_blsurf - def SetGeoMax(self, theVal=-1): - if self.Parameters(): - # Parameter of BLSURF algo - self.params.SetGeoMax(theVal) - - ## Sets maximal allowed ratio between the lengths of two adjacent edges. - # @ingroup l3_hypos_blsurf - def SetGradation(self, theVal=_gradation): - if self.Parameters(): - # Parameter of BLSURF algo - if self.params.GetGeometricMesh() == 0: theVal = self._gradation - self.params.SetGradation(theVal) - - ## Sets topology usage way. - # @param way defines how mesh conformity is assured