0020431: EDF 1020 SMESH : Radial Mesh of a cylinder

* Algorith behavior has changed - default hyps have appeared
This commit is contained in:
eap 2010-01-22 11:38:25 +00:00
parent fd1dc99bb5
commit 4104f26589
2 changed files with 399 additions and 354 deletions

View File

@ -27,15 +27,15 @@
// //
#include "StdMeshers_RadialQuadrangle_1D2D.hxx" #include "StdMeshers_RadialQuadrangle_1D2D.hxx"
//#include "StdMeshers_ProjectionUtils.hxx"
#include "StdMeshers_NumberOfLayers.hxx" #include "StdMeshers_NumberOfLayers.hxx"
#include "StdMeshers_LayerDistribution.hxx" #include "StdMeshers_LayerDistribution.hxx"
//#include "StdMeshers_Prism_3D.hxx"
#include "StdMeshers_Regular_1D.hxx" #include "StdMeshers_Regular_1D.hxx"
#include "StdMeshers_NumberOfSegments.hxx"
#include "SMDS_MeshNode.hxx" #include "SMDS_MeshNode.hxx"
#include "SMESHDS_SubMesh.hxx" #include "SMESHDS_SubMesh.hxx"
#include "SMESH_Gen.hxx" #include "SMESH_Gen.hxx"
#include "SMESH_HypoFilter.hxx"
#include "SMESH_Mesh.hxx" #include "SMESH_Mesh.hxx"
#include "SMESH_MesherHelper.hxx" #include "SMESH_MesherHelper.hxx"
#include "SMESH_subMesh.hxx" #include "SMESH_subMesh.hxx"
@ -53,6 +53,7 @@
#include <TColgp_SequenceOfPnt.hxx> #include <TColgp_SequenceOfPnt.hxx>
#include <TColgp_SequenceOfPnt2d.hxx> #include <TColgp_SequenceOfPnt2d.hxx>
#include <TopExp_Explorer.hxx> #include <TopExp_Explorer.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopoDS.hxx> #include <TopoDS.hxx>
@ -61,8 +62,6 @@ using namespace std;
#define RETURN_BAD_RESULT(msg) { MESSAGE(")-: Error: " << msg); return false; } #define RETURN_BAD_RESULT(msg) { MESSAGE(")-: Error: " << msg); return false; }
#define gpXYZ(n) gp_XYZ(n->X(),n->Y(),n->Z()) #define gpXYZ(n) gp_XYZ(n->X(),n->Y(),n->Z())
//typedef StdMeshers_ProjectionUtils TAssocTool;
//======================================================================= //=======================================================================
//function : StdMeshers_RadialQuadrangle_1D2D //function : StdMeshers_RadialQuadrangle_1D2D
@ -114,8 +113,8 @@ bool StdMeshers_RadialQuadrangle_1D2D::CheckHypothesis
const list <const SMESHDS_Hypothesis * >&hyps = GetUsedHypothesis(aMesh, aShape); const list <const SMESHDS_Hypothesis * >&hyps = GetUsedHypothesis(aMesh, aShape);
if ( hyps.size() == 0 ) { if ( hyps.size() == 0 ) {
aStatus = SMESH_Hypothesis::HYP_MISSING; aStatus = SMESH_Hypothesis::HYP_OK;
return false; // can't work with no hypothesis return true; // can work with no hypothesis
} }
if ( hyps.size() > 1 ) { if ( hyps.size() > 1 ) {
@ -147,27 +146,42 @@ namespace
/*! /*!
* \brief Listener used to mark edges meshed by StdMeshers_RadialQuadrangle_1D2D * \brief Listener used to mark edges meshed by StdMeshers_RadialQuadrangle_1D2D
*/ */
class TLinEdgeMarker : public SMESH_subMeshEventListener class TEdgeMarker : public SMESH_subMeshEventListener
{ {
TLinEdgeMarker(): SMESH_subMeshEventListener(/*isDeletable=*/false) {} TEdgeMarker(): SMESH_subMeshEventListener(/*isDeletable=*/false) {}
public: public:
//!< Return static listener
static SMESH_subMeshEventListener* getListener() static SMESH_subMeshEventListener* getListener()
{ {
static TLinEdgeMarker theEdgeMarker; static TEdgeMarker theEdgeMarker;
return &theEdgeMarker; return &theEdgeMarker;
} }
//! Clear face sumbesh if something happens on edges
void ProcessEvent(const int event,
const int eventType,
SMESH_subMesh* edgeSubMesh,
EventListenerData* data,
const SMESH_Hypothesis* /*hyp*/)
{
if ( data && !data->mySubMeshes.empty() && eventType == SMESH_subMesh::ALGO_EVENT)
{
ASSERT( data->mySubMeshes.front() != edgeSubMesh );
SMESH_subMesh* faceSubMesh = data->mySubMeshes.front();
faceSubMesh->ComputeStateEngine( SMESH_subMesh::CLEAN );
}
}
}; };
// ------------------------------------------------------------------------------ // ------------------------------------------------------------------------------
/*! /*!
* \brief Mark an edge as computed by StdMeshers_RadialQuadrangle_1D2D * \brief Mark an edge as computed by StdMeshers_RadialQuadrangle_1D2D
*/ */
void markLinEdgeAsComputedByMe(const TopoDS_Edge& edge, SMESH_subMesh* faceSubMesh) void markEdgeAsComputedByMe(const TopoDS_Edge& edge, SMESH_subMesh* faceSubMesh)
{ {
if ( SMESH_subMesh* edgeSM = faceSubMesh->GetFather()->GetSubMeshContaining( edge )) if ( SMESH_subMesh* edgeSM = faceSubMesh->GetFather()->GetSubMeshContaining( edge ))
{ {
if ( !edgeSM->GetEventListenerData( TLinEdgeMarker::getListener() )) if ( !edgeSM->GetEventListenerData( TEdgeMarker::getListener() ))
faceSubMesh->SetEventListener( TLinEdgeMarker::getListener(), faceSubMesh->SetEventListener( TEdgeMarker::getListener(),
SMESH_subMeshEventListenerData::MakeData(faceSubMesh), SMESH_subMeshEventListenerData::MakeData(faceSubMesh),
edgeSM); edgeSM);
} }
@ -177,38 +191,30 @@ namespace
* \brief Return true if a radial edge was meshed with StdMeshers_RadialQuadrangle_1D2D with * \brief Return true if a radial edge was meshed with StdMeshers_RadialQuadrangle_1D2D with
* the same radial distribution * the same radial distribution
*/ */
bool isEdgeCompitaballyMeshed(const TopoDS_Edge& edge, SMESH_subMesh* faceSubMesh) // bool isEdgeCompatiballyMeshed(const TopoDS_Edge& edge, SMESH_subMesh* faceSubMesh)
{ // {
if ( SMESH_subMesh* edgeSM = faceSubMesh->GetFather()->GetSubMeshContaining( edge )) // if ( SMESH_subMesh* edgeSM = faceSubMesh->GetFather()->GetSubMeshContaining( edge ))
{ // {
if ( SMESH_subMeshEventListenerData* otherFaceData = // if ( SMESH_subMeshEventListenerData* otherFaceData =
edgeSM->GetEventListenerData( TLinEdgeMarker::getListener() )) // edgeSM->GetEventListenerData( TEdgeMarker::getListener() ))
{ // {
// compare hypothesis aplied to two disk faces sharing radial edges // // compare hypothesis aplied to two disk faces sharing radial edges
SMESH_Mesh& mesh = *faceSubMesh->GetFather(); // SMESH_Mesh& mesh = *faceSubMesh->GetFather();
SMESH_Algo* radialQuadAlgo = mesh.GetGen()->GetAlgo(mesh, faceSubMesh->GetSubShape() ); // SMESH_Algo* radialQuadAlgo = mesh.GetGen()->GetAlgo(mesh, faceSubMesh->GetSubShape() );
SMESH_subMesh* otherFaceSubMesh = otherFaceData->mySubMeshes.front(); // SMESH_subMesh* otherFaceSubMesh = otherFaceData->mySubMeshes.front();
const list <const SMESHDS_Hypothesis *> & hyps1 = // list <const SMESHDS_Hypothesis *> hyps1 =
radialQuadAlgo->GetUsedHypothesis( mesh, faceSubMesh->GetSubShape()); // radialQuadAlgo->GetUsedHypothesis( mesh, faceSubMesh->GetSubShape());
const list <const SMESHDS_Hypothesis *> & hyps2 = // list <const SMESHDS_Hypothesis *> hyps2 =
radialQuadAlgo->GetUsedHypothesis( mesh, otherFaceSubMesh->GetSubShape()); // radialQuadAlgo->GetUsedHypothesis( mesh, otherFaceSubMesh->GetSubShape());
if( hyps1.empty() && hyps2.empty() ) // if( hyps1.empty() && hyps2.empty() )
return true; // defaul hyps // return true; // defaul hyps
if ( hyps1.size() != hyps2.size() || // if ( hyps1.size() != hyps2.size() )
strcmp( hyps1.front()->GetName(), hyps2.front()->GetName() )) // return false;
return false; // return *hyps1.front() == *hyps2.front();
ostringstream hypDump1, hypDump2; // }
list <const SMESHDS_Hypothesis*>::const_iterator hyp1 = hyps1.begin(); // }
for ( ; hyp1 != hyps1.end(); ++hyp1 ) // return false;
const_cast<SMESHDS_Hypothesis*>(*hyp1)->SaveTo( hypDump1 ); // }
list <const SMESHDS_Hypothesis*>::const_iterator hyp2 = hyps2.begin();
for ( ; hyp2 != hyps2.end(); ++hyp2 )
const_cast<SMESHDS_Hypothesis*>(*hyp2)->SaveTo( hypDump2 );
return hypDump1.str() == hypDump2.str();
}
}
return false;
}
//================================================================================ //================================================================================
/*! /*!
@ -274,6 +280,123 @@ namespace
} }
return nbe; return nbe;
} }
//================================================================================
//================================================================================
/*!
* \brief Class computing layers distribution using data of
* StdMeshers_LayerDistribution hypothesis
*/
//================================================================================
//================================================================================
class TNodeDistributor: public StdMeshers_Regular_1D
{
list <const SMESHDS_Hypothesis *> myUsedHyps;
public:
// -----------------------------------------------------------------------------
static TNodeDistributor* GetDistributor(SMESH_Mesh& aMesh)
{
const int myID = -1000;
map < int, SMESH_1D_Algo * > & algoMap = aMesh.GetGen()->_map1D_Algo;
map < int, SMESH_1D_Algo * >::iterator id_algo = algoMap.find( myID );
if ( id_algo == algoMap.end() )
return new TNodeDistributor( myID, 0, aMesh.GetGen() );
return static_cast< TNodeDistributor* >( id_algo->second );
}
// -----------------------------------------------------------------------------
//! Computes distribution of nodes on a straight line ending at pIn and pOut
bool Compute( vector< double > & positions,
gp_Pnt pIn,
gp_Pnt pOut,
SMESH_Mesh& aMesh,
const SMESH_Hypothesis* hyp1d)
{
if ( !hyp1d ) return error( "Invalid LayerDistribution hypothesis");
double len = pIn.Distance( pOut );
if ( len <= DBL_MIN ) return error("Too close points of inner and outer shells");
myUsedHyps.clear();
myUsedHyps.push_back( hyp1d );
TopoDS_Edge edge = BRepBuilderAPI_MakeEdge( pIn, pOut );
SMESH_Hypothesis::Hypothesis_Status aStatus;
if ( !StdMeshers_Regular_1D::CheckHypothesis( aMesh, edge, aStatus ))
return error( "StdMeshers_Regular_1D::CheckHypothesis() failed "
"with LayerDistribution hypothesis");
BRepAdaptor_Curve C3D(edge);
double f = C3D.FirstParameter(), l = C3D.LastParameter();
list< double > params;
if ( !StdMeshers_Regular_1D::computeInternalParameters( aMesh, C3D, len, f, l, params, false ))
return error("StdMeshers_Regular_1D failed to compute layers distribution");
positions.clear();
positions.reserve( params.size() );
for (list<double>::iterator itU = params.begin(); itU != params.end(); itU++)
positions.push_back( *itU / len );
return true;
}
// -----------------------------------------------------------------------------
//! Make mesh on an adge using assigned 1d hyp or defaut nb of segments
bool ComputeCircularEdge(SMESH_Mesh& aMesh,
const TopoDS_Edge& anEdge)
{
_gen->Compute( aMesh, anEdge);
SMESH_subMesh *sm = aMesh.GetSubMesh(anEdge);
if ( sm->GetComputeState() != SMESH_subMesh::COMPUTE_OK)
{
// find any 1d hyp assigned (there can be a hyp w/o algo)
myUsedHyps = SMESH_Algo::GetUsedHypothesis(aMesh, anEdge, /*ignoreAux=*/true);
Hypothesis_Status aStatus;
if ( !StdMeshers_Regular_1D::CheckHypothesis( aMesh, anEdge, aStatus ))
{
// no valid 1d hyp assigned, use default nb of segments
_hypType = NB_SEGMENTS;
_ivalue[ DISTR_TYPE_IND ] = StdMeshers_NumberOfSegments::DT_Regular;
_ivalue[ NB_SEGMENTS_IND ] = _gen->GetDefaultNbSegments();
}
return StdMeshers_Regular_1D::Compute( aMesh, anEdge );
}
return true;
}
// -----------------------------------------------------------------------------
//! Make mesh on an adge using assigned 1d hyp or defaut nb of segments
bool EvaluateCircularEdge(SMESH_Mesh& aMesh,
const TopoDS_Edge& anEdge,
MapShapeNbElems& aResMap)
{
_gen->Evaluate( aMesh, anEdge, aResMap );
if ( aResMap.count( aMesh.GetSubMesh( anEdge )))
return true;
// find any 1d hyp assigned
myUsedHyps = SMESH_Algo::GetUsedHypothesis(aMesh, anEdge, /*ignoreAux=*/true);
Hypothesis_Status aStatus;
if ( !StdMeshers_Regular_1D::CheckHypothesis( aMesh, anEdge, aStatus ))
{
// no valid 1d hyp assigned, use default nb of segments
_hypType = NB_SEGMENTS;
_ivalue[ DISTR_TYPE_IND ] = StdMeshers_NumberOfSegments::DT_Regular;
_ivalue[ NB_SEGMENTS_IND ] = _gen->GetDefaultNbSegments();
}
return StdMeshers_Regular_1D::Evaluate( aMesh, anEdge, aResMap );
}
protected:
// -----------------------------------------------------------------------------
TNodeDistributor( int hypId, int studyId, SMESH_Gen* gen)
: StdMeshers_Regular_1D( hypId, studyId, gen)
{
}
// -----------------------------------------------------------------------------
virtual const list <const SMESHDS_Hypothesis *> &
GetUsedHypothesis(SMESH_Mesh &, const TopoDS_Shape &, const bool)
{
return myUsedHyps;
}
// -----------------------------------------------------------------------------
};
} }
//======================================================================= //=======================================================================
@ -281,7 +404,7 @@ namespace
* \brief Allow algo to do something after persistent restoration * \brief Allow algo to do something after persistent restoration
* \param subMesh - restored submesh * \param subMesh - restored submesh
* *
* call markLinEdgeAsComputedByMe() * call markEdgeAsComputedByMe()
*/ */
//======================================================================= //=======================================================================
@ -291,8 +414,9 @@ void StdMeshers_RadialQuadrangle_1D2D::SubmeshRestored(SMESH_subMesh* faceSubMes
{ {
TopoDS_Edge CircEdge, LinEdge1, LinEdge2; TopoDS_Edge CircEdge, LinEdge1, LinEdge2;
analyseFace( faceSubMesh->GetSubShape(), CircEdge, LinEdge1, LinEdge2 ); analyseFace( faceSubMesh->GetSubShape(), CircEdge, LinEdge1, LinEdge2 );
if ( !LinEdge1.IsNull() ) markLinEdgeAsComputedByMe( LinEdge1, faceSubMesh ); if ( !CircEdge.IsNull() ) markEdgeAsComputedByMe( CircEdge, faceSubMesh );
if ( !LinEdge2.IsNull() ) markLinEdgeAsComputedByMe( LinEdge2, faceSubMesh ); if ( !LinEdge1.IsNull() ) markEdgeAsComputedByMe( LinEdge1, faceSubMesh );
if ( !LinEdge2.IsNull() ) markEdgeAsComputedByMe( LinEdge2, faceSubMesh );
} }
} }
@ -312,14 +436,15 @@ bool StdMeshers_RadialQuadrangle_1D2D::Compute(SMESH_Mesh& aMesh,
// to delete helper at exit from Compute() // to delete helper at exit from Compute()
auto_ptr<SMESH_MesherHelper> helperDeleter( myHelper ); auto_ptr<SMESH_MesherHelper> helperDeleter( myHelper );
myLayerPositions.clear(); TNodeDistributor* algo1d = TNodeDistributor::GetDistributor(aMesh);
TopoDS_Edge CircEdge, LinEdge1, LinEdge2; TopoDS_Edge CircEdge, LinEdge1, LinEdge2;
int nbe = analyseFace( aShape, CircEdge, LinEdge1, LinEdge2 ); int nbe = analyseFace( aShape, CircEdge, LinEdge1, LinEdge2 );
if( nbe>3 || nbe < 1 || CircEdge.IsNull() ) Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge ));
if( nbe>3 || nbe < 1 || aCirc.IsNull() )
return error("The face must be a full circle or a part of circle (i.e. the number of edges is less or equal to 3 and one of them is a circle curve)"); return error("The face must be a full circle or a part of circle (i.e. the number of edges is less or equal to 3 and one of them is a circle curve)");
gp_Pnt P0,P1; gp_Pnt P0, P1;
// points for rotation // points for rotation
TColgp_SequenceOfPnt Points; TColgp_SequenceOfPnt Points;
// angles for rotation // angles for rotation
@ -336,15 +461,14 @@ bool StdMeshers_RadialQuadrangle_1D2D::Compute(SMESH_Mesh& aMesh,
TopoDS_Face F = TopoDS::Face(aShape); TopoDS_Face F = TopoDS::Face(aShape);
Handle(Geom_Surface) S = BRep_Tool::Surface(F); Handle(Geom_Surface) S = BRep_Tool::Surface(F);
if(nbe==1) if(nbe==1)
{ {
Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge )); if (!algo1d->ComputeCircularEdge( aMesh, CircEdge ))
return error( algo1d->GetComputeError() );
bool ok = _gen->Compute( aMesh, CircEdge );
if( !ok ) return false;
map< double, const SMDS_MeshNode* > theNodes; map< double, const SMDS_MeshNode* > theNodes;
ok = GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes); if ( !GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes))
if( !ok ) return false; return error("Circular edge is incorrectly meshed");
CNodes.clear(); CNodes.clear();
map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin(); map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin();
@ -364,8 +488,8 @@ bool StdMeshers_RadialQuadrangle_1D2D::Compute(SMESH_Mesh& aMesh,
P1 = gp_Pnt( NF->X(), NF->Y(), NF->Z() ); P1 = gp_Pnt( NF->X(), NF->Y(), NF->Z() );
P0 = aCirc->Location(); P0 = aCirc->Location();
myLayerPositions.clear(); if ( !computeLayerPositions(P0,P1))
computeLayerPositions(P0,P1); return false;
exp.Init( CircEdge, TopAbs_VERTEX ); exp.Init( CircEdge, TopAbs_VERTEX );
TopoDS_Vertex V1 = TopoDS::Vertex( exp.Current() ); TopoDS_Vertex V1 = TopoDS::Vertex( exp.Current() );
@ -414,19 +538,13 @@ bool StdMeshers_RadialQuadrangle_1D2D::Compute(SMESH_Mesh& aMesh,
// other curve not line // other curve not line
return error(COMPERR_BAD_SHAPE); return error(COMPERR_BAD_SHAPE);
} }
bool linEdgeComputed = false;
if( SMESH_subMesh* sm1 = aMesh.GetSubMesh(LinEdge1) ) {
if( !sm1->IsEmpty() )
if( isEdgeCompitaballyMeshed( LinEdge1, aMesh.GetSubMesh(F) ))
linEdgeComputed = true;
else
return error("Invalid set of hypotheses");
}
bool ok = _gen->Compute( aMesh, CircEdge ); if ( !algo1d->ComputeCircularEdge( aMesh, CircEdge ))
if( !ok ) return false; return error( algo1d->GetComputeError() );
map< double, const SMDS_MeshNode* > theNodes; map< double, const SMDS_MeshNode* > theNodes;
GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes); if ( !GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes) ||
theNodes.size()%2 == 0 )
return error("Circular edge is incorrectly meshed");
CNodes.clear(); CNodes.clear();
map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin(); map< double, const SMDS_MeshNode* >::iterator itn = theNodes.begin();
@ -446,8 +564,9 @@ bool StdMeshers_RadialQuadrangle_1D2D::Compute(SMESH_Mesh& aMesh,
gp_Pnt P2( NL->X(), NL->Y(), NL->Z() ); gp_Pnt P2( NL->X(), NL->Y(), NL->Z() );
P0 = aCirc->Location(); P0 = aCirc->Location();
myLayerPositions.clear(); bool linEdgeComputed;
computeLayerPositions(P0,P1); if ( !computeLayerPositions(P0,P1,LinEdge1,&linEdgeComputed))
return false;
if ( linEdgeComputed ) if ( linEdgeComputed )
{ {
@ -538,7 +657,7 @@ bool StdMeshers_RadialQuadrangle_1D2D::Compute(SMESH_Mesh& aMesh,
SMDS_MeshEdge* ME = myHelper->AddEdge( tmpNodes[i-1], tmpNodes[i] ); SMDS_MeshEdge* ME = myHelper->AddEdge( tmpNodes[i-1], tmpNodes[i] );
if(ME) meshDS->SetMeshElementOnShape(ME, edgeID); if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
} }
markLinEdgeAsComputedByMe( LinEdge1, aMesh.GetSubMesh( F )); markEdgeAsComputedByMe( LinEdge1, aMesh.GetSubMesh( F ));
} }
} }
else // nbe==3 or ( nbe==2 && linEdge is INTERNAL ) else // nbe==3 or ( nbe==2 && linEdge is INTERNAL )
@ -550,33 +669,16 @@ bool StdMeshers_RadialQuadrangle_1D2D::Compute(SMESH_Mesh& aMesh,
// segments of line // segments of line
double fp, lp; double fp, lp;
Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge )); Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge ));
Handle(Geom_Line) aLine1 = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 )); Handle(Geom_Line) aLine1 = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 ));
Handle(Geom_Line) aLine2 = Handle(Geom_Line)::DownCast( getCurve( LinEdge2 )); Handle(Geom_Line) aLine2 = Handle(Geom_Line)::DownCast( getCurve( LinEdge2 ));
if( aLine1.IsNull() || aLine2.IsNull() ) { if( aCirc.IsNull() || aLine1.IsNull() || aLine2.IsNull() )
// other curve not line
return error(COMPERR_BAD_SHAPE); return error(COMPERR_BAD_SHAPE);
}
bool linEdge1Computed = false; if ( !algo1d->ComputeCircularEdge( aMesh, CircEdge ))
if ( SMESH_subMesh* sm1 = aMesh.GetSubMesh(LinEdge1)) return error( algo1d->GetComputeError() );
if( !sm1->IsEmpty() )
if( isEdgeCompitaballyMeshed( LinEdge1, aMesh.GetSubMesh(F) ))
linEdge1Computed = true;
else
return error("Invalid set of hypotheses");
bool linEdge2Computed = false;
if ( SMESH_subMesh* sm2 = aMesh.GetSubMesh(LinEdge2))
if( !sm2->IsEmpty() )
if( isEdgeCompitaballyMeshed( LinEdge2, aMesh.GetSubMesh(F) ))
linEdge2Computed = true;
else
return error("Invalid set of hypotheses");
bool ok = _gen->Compute( aMesh, CircEdge );
if( !ok ) return false;
map< double, const SMDS_MeshNode* > theNodes; map< double, const SMDS_MeshNode* > theNodes;
GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes); if ( !GetSortedNodesOnEdge(aMesh.GetMeshDS(),CircEdge,true,theNodes))
return error("Circular edge is incorrectly meshed");
const SMDS_MeshNode* NF = theNodes.begin()->second; const SMDS_MeshNode* NF = theNodes.begin()->second;
const SMDS_MeshNode* NL = theNodes.rbegin()->second; const SMDS_MeshNode* NL = theNodes.rbegin()->second;
@ -596,12 +698,19 @@ bool StdMeshers_RadialQuadrangle_1D2D::Compute(SMESH_Mesh& aMesh,
gp_Pnt P2( NL->X(), NL->Y(), NL->Z() ); gp_Pnt P2( NL->X(), NL->Y(), NL->Z() );
P0 = aCirc->Location(); P0 = aCirc->Location();
myLayerPositions.clear(); bool linEdge1Computed, linEdge2Computed;
computeLayerPositions(P0,P1); if ( !computeLayerPositions(P0,P1,LinEdge1,&linEdge1Computed))
return false;
Nodes1.resize( myLayerPositions.size()+1 ); Nodes1.resize( myLayerPositions.size()+1 );
Nodes2.resize( myLayerPositions.size()+1 ); Nodes2.resize( myLayerPositions.size()+1 );
// check that both linear edges have same hypotheses
if ( !computeLayerPositions(P0,P1,LinEdge2, &linEdge2Computed))
return false;
if ( Nodes1.size() != myLayerPositions.size()+1 )
return error("Different hypotheses apply to radial edges");
exp.Init( LinEdge1, TopAbs_VERTEX ); exp.Init( LinEdge1, TopAbs_VERTEX );
TopoDS_Vertex V1 = TopoDS::Vertex( exp.Current() ); TopoDS_Vertex V1 = TopoDS::Vertex( exp.Current() );
exp.Next(); exp.Next();
@ -702,7 +811,7 @@ bool StdMeshers_RadialQuadrangle_1D2D::Compute(SMESH_Mesh& aMesh,
if (nbe==2 && LinEdge1.Orientation() == TopAbs_INTERNAL ) if (nbe==2 && LinEdge1.Orientation() == TopAbs_INTERNAL )
Nodes2 = Nodes1; Nodes2 = Nodes1;
} }
markLinEdgeAsComputedByMe( LinEdge1, aMesh.GetSubMesh( F )); markEdgeAsComputedByMe( LinEdge1, aMesh.GetSubMesh( F ));
// LinEdge2 // LinEdge2
if ( linEdge2Computed ) if ( linEdge2Computed )
@ -766,8 +875,9 @@ bool StdMeshers_RadialQuadrangle_1D2D::Compute(SMESH_Mesh& aMesh,
if(ME) meshDS->SetMeshElementOnShape(ME, edgeID); if(ME) meshDS->SetMeshElementOnShape(ME, edgeID);
} }
} }
markLinEdgeAsComputedByMe( LinEdge2, aMesh.GetSubMesh( F )); markEdgeAsComputedByMe( LinEdge2, aMesh.GetSubMesh( F ));
} }
markEdgeAsComputedByMe( CircEdge, aMesh.GetSubMesh( F ));
// orientation // orientation
bool IsForward = ( CircEdge.Orientation()==TopAbs_FORWARD ); bool IsForward = ( CircEdge.Orientation()==TopAbs_FORWARD );
@ -851,106 +961,103 @@ bool StdMeshers_RadialQuadrangle_1D2D::Compute(SMESH_Mesh& aMesh,
return true; return true;
} }
//================================================================================
//================================================================================ //================================================================================
/*! /*!
* \brief Class computing layers distribution using data of * \brief Compute positions of nodes on the radial edge
* StdMeshers_LayerDistribution hypothesis
*/
//================================================================================
//================================================================================
class TNodeDistributor: public StdMeshers_Regular_1D
{
list <const SMESHDS_Hypothesis *> myUsedHyps;
public:
// -----------------------------------------------------------------------------
static TNodeDistributor* GetDistributor(SMESH_Mesh& aMesh)
{
const int myID = -1000;
map < int, SMESH_1D_Algo * > & algoMap = aMesh.GetGen()->_map1D_Algo;
map < int, SMESH_1D_Algo * >::iterator id_algo = algoMap.find( myID );
if ( id_algo == algoMap.end() )
return new TNodeDistributor( myID, 0, aMesh.GetGen() );
return static_cast< TNodeDistributor* >( id_algo->second );
}
// -----------------------------------------------------------------------------
bool Compute( vector< double > & positions,
gp_Pnt pIn,
gp_Pnt pOut,
SMESH_Mesh& aMesh,
const StdMeshers_LayerDistribution* hyp)
{
double len = pIn.Distance( pOut );
if ( len <= DBL_MIN ) return error("Too close points of inner and outer shells");
if ( !hyp || !hyp->GetLayerDistribution() )
return error( "Invalid LayerDistribution hypothesis");
myUsedHyps.clear();
myUsedHyps.push_back( hyp->GetLayerDistribution() );
TopoDS_Edge edge = BRepBuilderAPI_MakeEdge( pIn, pOut );
SMESH_Hypothesis::Hypothesis_Status aStatus;
if ( !StdMeshers_Regular_1D::CheckHypothesis( aMesh, edge, aStatus ))
return error( "StdMeshers_Regular_1D::CheckHypothesis() failed "
"with LayerDistribution hypothesis");
BRepAdaptor_Curve C3D(edge);
double f = C3D.FirstParameter(), l = C3D.LastParameter();
list< double > params;
if ( !StdMeshers_Regular_1D::computeInternalParameters( aMesh, C3D, len, f, l, params, false ))
return error("StdMeshers_Regular_1D failed to compute layers distribution");
positions.clear();
positions.reserve( params.size() );
for (list<double>::iterator itU = params.begin(); itU != params.end(); itU++)
positions.push_back( *itU / len );
return true;
}
protected:
// -----------------------------------------------------------------------------
TNodeDistributor( int hypId, int studyId, SMESH_Gen* gen)
: StdMeshers_Regular_1D( hypId, studyId, gen)
{
}
// -----------------------------------------------------------------------------
virtual const list <const SMESHDS_Hypothesis *> &
GetUsedHypothesis(SMESH_Mesh &, const TopoDS_Shape &, const bool)
{
return myUsedHyps;
}
// -----------------------------------------------------------------------------
};
//================================================================================
/*!
* \brief Compute positions of nodes between the internal and the external surfaces
* \retval bool - is a success * \retval bool - is a success
*/ */
//================================================================================ //================================================================================
bool StdMeshers_RadialQuadrangle_1D2D::computeLayerPositions(const gp_Pnt& pIn, bool StdMeshers_RadialQuadrangle_1D2D::computeLayerPositions(const gp_Pnt& p1,
const gp_Pnt& pOut) const gp_Pnt& p2,
const TopoDS_Edge& linEdge,
bool* linEdgeComputed)
{ {
if ( myNbLayerHypo ) // First, try to compute positions of layers
myLayerPositions.clear();
SMESH_Mesh * mesh = myHelper->GetMesh();
const SMESH_Hypothesis* hyp1D = myDistributionHypo ? myDistributionHypo->GetLayerDistribution() : 0;
int nbLayers = myNbLayerHypo ? myNbLayerHypo->GetNumberOfLayers() : 0;
if ( !hyp1D && !nbLayers )
{ {
int nbSegments = myNbLayerHypo->GetNumberOfLayers(); // No own algo hypotheses assigned, so first try to find any 1D hypothesis.
myLayerPositions.resize( nbSegments - 1 ); // We need some edge
for ( int z = 1; z < nbSegments; ++z ) TopoDS_Shape edge = linEdge;
myLayerPositions[ z - 1 ] = double( z )/ double( nbSegments ); if ( edge.IsNull() && !myHelper->GetSubShape().IsNull())
return true; for ( TopExp_Explorer e(myHelper->GetSubShape(), TopAbs_EDGE); e.More(); e.Next())
} edge = e.Current();
if ( myDistributionHypo ) { if ( !edge.IsNull() )
SMESH_Mesh * mesh = myHelper->GetMesh();
if ( !TNodeDistributor::GetDistributor(*mesh)->Compute( myLayerPositions, pIn, pOut,
*mesh, myDistributionHypo ))
{ {
error( TNodeDistributor::GetDistributor(*mesh)->GetComputeError() ); // find a hyp usable by TNodeDistributor
return false; SMESH_HypoFilter hypKind;
TNodeDistributor::GetDistributor(*mesh)->InitCompatibleHypoFilter(hypKind,/*ignoreAux=*/1);
hyp1D = mesh->GetHypothesis( edge, hypKind, /*fromAncestors=*/true);
} }
} }
RETURN_BAD_RESULT("Bad hypothesis"); if ( hyp1D ) // try to compute with hyp1D
{
if ( !TNodeDistributor::GetDistributor(*mesh)->Compute( myLayerPositions,p1,p2,*mesh,hyp1D ))
if ( myDistributionHypo ) { // bad hyp assigned
return error( TNodeDistributor::GetDistributor(*mesh)->GetComputeError() );
}
else {
// bad hyp found, its Ok, lets try with default nb of segnents
}
}
if ( myLayerPositions.empty() ) // try to use nb of layers
{
if ( !nbLayers )
nbLayers = _gen->GetDefaultNbSegments();
if ( nbLayers )
{
myLayerPositions.resize( nbLayers - 1 );
for ( int z = 1; z < nbLayers; ++z )
myLayerPositions[ z - 1 ] = double( z )/ double( nbLayers );
}
}
// Second, check presence of a mesh built by other algo on linEdge
// and mesh conformity to my hypothesis
bool meshComputed = (!linEdge.IsNull() && !mesh->GetSubMesh(linEdge)->IsEmpty() );
if ( linEdgeComputed ) *linEdgeComputed = meshComputed;
if ( meshComputed )
{
vector< double > nodeParams;
GetNodeParamOnEdge( mesh->GetMeshDS(), linEdge, nodeParams );
if ( myLayerPositions.empty() )
{
myLayerPositions.resize( nodeParams.size() - 2 );
}
else if ( myDistributionHypo || myNbLayerHypo )
{
// linEdge is computed by other algo. Check if there is a meshed face
// using nodes on linEdge
bool nodesAreUsed = false;
TopTools_ListIteratorOfListOfShape ancestIt = mesh->GetAncestors( linEdge );
for ( ; ancestIt.More() && !nodesAreUsed; ancestIt.Next() )
if ( ancestIt.Value().ShapeType() == TopAbs_FACE )
nodesAreUsed = (!mesh->GetSubMesh( ancestIt.Value() )->IsEmpty());
if ( !nodesAreUsed ) {
// rebuild them
mesh->GetSubMesh( linEdge )->ComputeStateEngine( SMESH_subMesh::CLEAN );
if ( linEdgeComputed ) *linEdgeComputed = false;
}
else if ( myLayerPositions.size() != nodeParams.size()-2 ) {
return error("Radial edge is meshed by other algorithm");
}
}
}
return !myLayerPositions.empty();
} }
@ -966,113 +1073,82 @@ bool StdMeshers_RadialQuadrangle_1D2D::Evaluate(SMESH_Mesh& aMesh,
if( aShape.ShapeType() != TopAbs_FACE ) { if( aShape.ShapeType() != TopAbs_FACE ) {
return false; return false;
} }
SMESH_subMesh * smf = aMesh.GetSubMesh(aShape); SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
MapShapeNbElemsItr anIt = aResMap.find(smf); if( aResMap.count(sm) )
if( anIt != aResMap.end() ) {
return false; return false;
}
myLayerPositions.clear(); vector<int>& aResVec =
gp_Pnt P0(0,0,0); aResMap.insert( make_pair(sm, vector<int>(SMDSEntity_Last,0))).first->second;
gp_Pnt P1(100,0,0);
computeLayerPositions(P0,P1);
TopoDS_Edge E1,E2,E3; myHelper = new SMESH_MesherHelper( aMesh );
Handle(Geom_Curve) C1,C2,C3; myHelper->SetSubShape( aShape );
double f1,l1,f2,l2,f3,l3; auto_ptr<SMESH_MesherHelper> helperDeleter( myHelper );
int nbe = 0;
TopExp_Explorer exp; TNodeDistributor* algo1d = TNodeDistributor::GetDistributor(aMesh);
for ( exp.Init( aShape, TopAbs_EDGE ); exp.More(); exp.Next() ) {
nbe++;
TopoDS_Edge E = TopoDS::Edge( exp.Current() );
if(nbe==1) {
E1 = E;
C1 = BRep_Tool::Curve(E,f1,l1);
}
else if(nbe==2) {
E2 = E;
C2 = BRep_Tool::Curve(E,f2,l2);
}
else if(nbe==3) {
E3 = E;
C3 = BRep_Tool::Curve(E,f3,l3);
}
}
TopoDS_Edge CircEdge, LinEdge1, LinEdge2; TopoDS_Edge CircEdge, LinEdge1, LinEdge2;
int nbe = analyseFace( aShape, CircEdge, LinEdge1, LinEdge2 );
if( nbe>3 || nbe < 1 || CircEdge.IsNull() )
return false;
Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge ));
if( aCirc.IsNull() )
return error(COMPERR_BAD_SHAPE);
gp_Pnt P0 = aCirc->Location();
gp_Pnt P1 = aCirc->Value(0.);
computeLayerPositions( P0, P1, LinEdge1 );
int nb0d=0, nb2d_tria=0, nb2d_quad=0; int nb0d=0, nb2d_tria=0, nb2d_quad=0;
bool isQuadratic = false; bool isQuadratic = false, ok = true;
if(nbe==1) { if(nbe==1)
{
// C1 must be a circle // C1 must be a circle
Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast(C1); ok = algo1d->EvaluateCircularEdge( aMesh, CircEdge, aResMap );
if( !aCirc.IsNull() ) { if(ok) {
bool ok = _gen->Evaluate( aMesh, CircEdge, aResMap ); const vector<int>& aVec = aResMap[aMesh.GetSubMesh(CircEdge)];
if(ok) { isQuadratic = aVec[SMDSEntity_Quad_Edge]>aVec[SMDSEntity_Edge];
SMESH_subMesh * sm = aMesh.GetSubMesh(CircEdge); if(isQuadratic) {
MapShapeNbElemsItr anIt = aResMap.find(sm); // main nodes
vector<int> aVec = (*anIt).second; nb0d = (aVec[SMDSEntity_Node]+1) * myLayerPositions.size();
isQuadratic = aVec[SMDSEntity_Quad_Edge]>aVec[SMDSEntity_Edge]; // radial medium nodes
if(isQuadratic) { nb0d += (aVec[SMDSEntity_Node]+1) * (myLayerPositions.size()+1);
// main nodes // other medium nodes
nb0d = (aVec[SMDSEntity_Node]+1) * myLayerPositions.size(); nb0d += (aVec[SMDSEntity_Node]+1) * myLayerPositions.size();
// radial medium nodes
nb0d += (aVec[SMDSEntity_Node]+1) * (myLayerPositions.size()+1);
// other medium nodes
nb0d += (aVec[SMDSEntity_Node]+1) * myLayerPositions.size();
}
else {
nb0d = (aVec[SMDSEntity_Node]+1) * myLayerPositions.size();
}
nb2d_tria = aVec[SMDSEntity_Node] + 1;
nb2d_quad = nb0d;
} }
else {
nb0d = (aVec[SMDSEntity_Node]+1) * myLayerPositions.size();
}
nb2d_tria = aVec[SMDSEntity_Node] + 1;
nb2d_quad = nb0d;
} }
} }
else if(nbe==2) { else if(nbe==2 && LinEdge1.Orientation() != TopAbs_INTERNAL)
{
// one curve must be a half of circle and other curve must be // one curve must be a half of circle and other curve must be
// a segment of line // a segment of line
Handle(Geom_TrimmedCurve) tc = Handle(Geom_TrimmedCurve)::DownCast(C1); double fp, lp;
while( !tc.IsNull() ) { Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast( getCurve( CircEdge, &fp, &lp ));
C1 = tc->BasisCurve();
tc = Handle(Geom_TrimmedCurve)::DownCast(C1);
}
tc = Handle(Geom_TrimmedCurve)::DownCast(C2);
while( !tc.IsNull() ) {
C2 = tc->BasisCurve();
tc = Handle(Geom_TrimmedCurve)::DownCast(C2);
}
Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast(C1);
Handle(Geom_Line) aLine = Handle(Geom_Line)::DownCast(C2);
CircEdge = E1;
LinEdge1 = E2;
double fp = f1;
double lp = l1;
if( aCirc.IsNull() ) {
aCirc = Handle(Geom_Circle)::DownCast(C2);
CircEdge = E2;
LinEdge1 = E1;
fp = f2;
lp = l2;
aLine = Handle(Geom_Line)::DownCast(C3);
}
bool ok = !aCirc.IsNull() && !aLine.IsNull();
if( fabs(fabs(lp-fp)-PI) > Precision::Confusion() ) { if( fabs(fabs(lp-fp)-PI) > Precision::Confusion() ) {
// not half of circle // not half of circle
ok = false; return error(COMPERR_BAD_SHAPE);
} }
SMESH_subMesh* sm1 = aMesh.GetSubMesh(LinEdge1); Handle(Geom_Line) aLine = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 ));
MapShapeNbElemsItr anIt = aResMap.find(sm1); if( aLine.IsNull() ) {
if( anIt!=aResMap.end() ) { // other curve not line
ok = false; return error(COMPERR_BAD_SHAPE);
}
ok = !aResMap.count( aMesh.GetSubMesh(LinEdge1) );
if ( !ok ) {
const vector<int>& aVec = aResMap[ aMesh.GetSubMesh(LinEdge1) ];
ok = ( aVec[SMDSEntity_Node] == myLayerPositions.size() );
} }
if(ok) { if(ok) {
ok = _gen->Evaluate( aMesh, CircEdge, aResMap ); ok = algo1d->EvaluateCircularEdge( aMesh, CircEdge, aResMap );
} }
if(ok) { if(ok) {
SMESH_subMesh * sm = aMesh.GetSubMesh(CircEdge); const vector<int>& aVec = aResMap[ aMesh.GetSubMesh(CircEdge) ];
MapShapeNbElemsItr anIt = aResMap.find(sm); isQuadratic = aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge];
vector<int> aVec = (*anIt).second;
isQuadratic = aVec[SMDSEntity_Quad_Edge]>aVec[SMDSEntity_Edge];
if(isQuadratic) { if(isQuadratic) {
// main nodes // main nodes
nb0d = aVec[SMDSEntity_Node] * myLayerPositions.size(); nb0d = aVec[SMDSEntity_Node] * myLayerPositions.size();
@ -1087,8 +1163,7 @@ bool StdMeshers_RadialQuadrangle_1D2D::Evaluate(SMESH_Mesh& aMesh,
nb2d_tria = aVec[SMDSEntity_Node] + 1; nb2d_tria = aVec[SMDSEntity_Node] + 1;
nb2d_quad = nb2d_tria * myLayerPositions.size(); nb2d_quad = nb2d_tria * myLayerPositions.size();
// add evaluation for edges // add evaluation for edges
vector<int> aResVec(SMDSEntity_Last); vector<int> aResVec(SMDSEntity_Last,0);
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
if(isQuadratic) { if(isQuadratic) {
aResVec[SMDSEntity_Node] = 4*myLayerPositions.size() + 3; aResVec[SMDSEntity_Node] = 4*myLayerPositions.size() + 3;
aResVec[SMDSEntity_Quad_Edge] = 2*myLayerPositions.size() + 2; aResVec[SMDSEntity_Quad_Edge] = 2*myLayerPositions.size() + 2;
@ -1097,74 +1172,49 @@ bool StdMeshers_RadialQuadrangle_1D2D::Evaluate(SMESH_Mesh& aMesh,
aResVec[SMDSEntity_Node] = 2*myLayerPositions.size() + 1; aResVec[SMDSEntity_Node] = 2*myLayerPositions.size() + 1;
aResVec[SMDSEntity_Edge] = 2*myLayerPositions.size() + 2; aResVec[SMDSEntity_Edge] = 2*myLayerPositions.size() + 2;
} }
sm = aMesh.GetSubMesh(LinEdge1); aResMap[ aMesh.GetSubMesh(LinEdge1) ] = aResVec;
aResMap.insert(make_pair(sm,aResVec));
} }
} }
else { // nbe==3 else // nbe==3 or ( nbe==2 && linEdge is INTERNAL )
{
if (nbe==2 && LinEdge1.Orientation() == TopAbs_INTERNAL )
LinEdge2 = LinEdge1;
// one curve must be a part of circle and other curves must be // one curve must be a part of circle and other curves must be
// segments of line // segments of line
Handle(Geom_TrimmedCurve) tc = Handle(Geom_TrimmedCurve)::DownCast(C1); Handle(Geom_Line) aLine1 = Handle(Geom_Line)::DownCast( getCurve( LinEdge1 ));
while( !tc.IsNull() ) { Handle(Geom_Line) aLine2 = Handle(Geom_Line)::DownCast( getCurve( LinEdge2 ));
C1 = tc->BasisCurve(); if( aLine1.IsNull() || aLine2.IsNull() ) {
tc = Handle(Geom_TrimmedCurve)::DownCast(C1); // other curve not line
return error(COMPERR_BAD_SHAPE);
} }
tc = Handle(Geom_TrimmedCurve)::DownCast(C2); int nbLayers = myLayerPositions.size();
while( !tc.IsNull() ) { computeLayerPositions( P0, P1, LinEdge2 );
C2 = tc->BasisCurve(); if ( nbLayers != myLayerPositions.size() )
tc = Handle(Geom_TrimmedCurve)::DownCast(C2); return error("Different hypotheses apply to radial edges");
}
tc = Handle(Geom_TrimmedCurve)::DownCast(C3); bool ok = !aResMap.count( aMesh.GetSubMesh(LinEdge1));
while( !tc.IsNull() ) { if ( !ok ) {
C3 = tc->BasisCurve(); if ( myDistributionHypo || myNbLayerHypo )
tc = Handle(Geom_TrimmedCurve)::DownCast(C3); ok = true; // override other 1d hyps
} else {
Handle(Geom_Circle) aCirc = Handle(Geom_Circle)::DownCast(C1); const vector<int>& aVec = aResMap[ aMesh.GetSubMesh(LinEdge1) ];
Handle(Geom_Line) aLine1 = Handle(Geom_Line)::DownCast(C2); ok = ( aVec[SMDSEntity_Node] == myLayerPositions.size() );
Handle(Geom_Line) aLine2 = Handle(Geom_Line)::DownCast(C3);
CircEdge = E1;
LinEdge1 = E2;
LinEdge2 = E3;
double fp = f1;
double lp = l1;
if( aCirc.IsNull() ) {
aCirc = Handle(Geom_Circle)::DownCast(C2);
CircEdge = E2;
LinEdge1 = E3;
LinEdge2 = E1;
fp = f2;
lp = l2;
aLine1 = Handle(Geom_Line)::DownCast(C3);
aLine2 = Handle(Geom_Line)::DownCast(C1);
if( aCirc.IsNull() ) {
aCirc = Handle(Geom_Circle)::DownCast(C3);
CircEdge = E3;
LinEdge1 = E1;
LinEdge2 = E2;
fp = f3;
lp = l3;
aLine1 = Handle(Geom_Line)::DownCast(C1);
aLine2 = Handle(Geom_Line)::DownCast(C2);
} }
} }
bool ok = !aCirc.IsNull() && !aLine1.IsNull() && !aLine1.IsNull(); if( ok && aResMap.count( aMesh.GetSubMesh(LinEdge2) )) {
SMESH_subMesh* sm = aMesh.GetSubMesh(LinEdge1); if ( myDistributionHypo || myNbLayerHypo )
MapShapeNbElemsItr anIt = aResMap.find(sm); ok = true; // override other 1d hyps
if( anIt!=aResMap.end() ) { else {
ok = false; const vector<int>& aVec = aResMap[ aMesh.GetSubMesh(LinEdge2) ];
} ok = ( aVec[SMDSEntity_Node] == myLayerPositions.size() );
sm = aMesh.GetSubMesh(LinEdge2); }
anIt = aResMap.find(sm);
if( anIt!=aResMap.end() ) {
ok = false;
} }
if(ok) { if(ok) {
ok = _gen->Evaluate( aMesh, CircEdge, aResMap ); ok = algo1d->EvaluateCircularEdge( aMesh, CircEdge, aResMap );
} }
if(ok) { if(ok) {
SMESH_subMesh * sm = aMesh.GetSubMesh(CircEdge); const vector<int>& aVec = aResMap[ aMesh.GetSubMesh(CircEdge) ];
MapShapeNbElemsItr anIt = aResMap.find(sm);
vector<int> aVec = (*anIt).second;
isQuadratic = aVec[SMDSEntity_Quad_Edge]>aVec[SMDSEntity_Edge]; isQuadratic = aVec[SMDSEntity_Quad_Edge]>aVec[SMDSEntity_Edge];
if(isQuadratic) { if(isQuadratic) {
// main nodes // main nodes
@ -1180,8 +1230,7 @@ bool StdMeshers_RadialQuadrangle_1D2D::Evaluate(SMESH_Mesh& aMesh,
nb2d_tria = aVec[SMDSEntity_Node] + 1; nb2d_tria = aVec[SMDSEntity_Node] + 1;
nb2d_quad = nb2d_tria * myLayerPositions.size(); nb2d_quad = nb2d_tria * myLayerPositions.size();
// add evaluation for edges // add evaluation for edges
vector<int> aResVec(SMDSEntity_Last); vector<int> aResVec(SMDSEntity_Last, 0);
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
if(isQuadratic) { if(isQuadratic) {
aResVec[SMDSEntity_Node] = 2*myLayerPositions.size() + 1; aResVec[SMDSEntity_Node] = 2*myLayerPositions.size() + 1;
aResVec[SMDSEntity_Quad_Edge] = myLayerPositions.size() + 1; aResVec[SMDSEntity_Quad_Edge] = myLayerPositions.size() + 1;
@ -1191,17 +1240,12 @@ bool StdMeshers_RadialQuadrangle_1D2D::Evaluate(SMESH_Mesh& aMesh,
aResVec[SMDSEntity_Edge] = myLayerPositions.size() + 1; aResVec[SMDSEntity_Edge] = myLayerPositions.size() + 1;
} }
sm = aMesh.GetSubMesh(LinEdge1); sm = aMesh.GetSubMesh(LinEdge1);
aResMap.insert(make_pair(sm,aResVec)); aResMap[sm] = aResVec;
sm = aMesh.GetSubMesh(LinEdge2); sm = aMesh.GetSubMesh(LinEdge2);
aResMap.insert(make_pair(sm,aResVec)); aResMap[sm] = aResVec;
} }
} }
vector<int> aResVec(SMDSEntity_Last);
for(int i=SMDSEntity_Node; i<SMDSEntity_Last; i++) aResVec[i] = 0;
SMESH_subMesh * sm = aMesh.GetSubMesh(aShape);
//cout<<"nb0d = "<<nb0d<<" nb2d_tria = "<<nb2d_tria<<" nb2d_quad = "<<nb2d_quad<<endl;
if(nb0d>0) { if(nb0d>0) {
aResVec[0] = nb0d; aResVec[0] = nb0d;
if(isQuadratic) { if(isQuadratic) {
@ -1212,12 +1256,11 @@ bool StdMeshers_RadialQuadrangle_1D2D::Evaluate(SMESH_Mesh& aMesh,
aResVec[SMDSEntity_Triangle] = nb2d_tria; aResVec[SMDSEntity_Triangle] = nb2d_tria;
aResVec[SMDSEntity_Quadrangle] = nb2d_quad; aResVec[SMDSEntity_Quadrangle] = nb2d_quad;
} }
aResMap.insert(make_pair(sm,aResVec));
return true; return true;
} }
// invalid case // invalid case
aResMap.insert(make_pair(sm,aResVec)); sm = aMesh.GetSubMesh(aShape);
SMESH_ComputeErrorPtr& smError = sm->GetComputeError(); SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED, smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,
"Submesh can not be evaluated",this)); "Submesh can not be evaluated",this));

View File

@ -29,10 +29,10 @@
#include "SMESH_StdMeshers.hxx" #include "SMESH_StdMeshers.hxx"
#include "SMESH_2D_Algo.hxx" #include "SMESH_2D_Algo.hxx"
//#include "SMDS_MeshNode.hxx"
//#include <vector> #include <TopoDS_Edge.hxx>
//#include <map>
#include <vector>
class StdMeshers_NumberOfLayers; class StdMeshers_NumberOfLayers;
class StdMeshers_LayerDistribution; class StdMeshers_LayerDistribution;
@ -63,8 +63,10 @@ public:
protected: protected:
bool computeLayerPositions(const gp_Pnt& pIn, bool computeLayerPositions(const gp_Pnt& p1,
const gp_Pnt& pOut); const gp_Pnt& p2,
const TopoDS_Edge& linEdge=TopoDS_Edge(),
bool* linEdgeComputed = 0);
const StdMeshers_NumberOfLayers* myNbLayerHypo; const StdMeshers_NumberOfLayers* myNbLayerHypo;