Fix test SALOME_TESTS/Grids/smesh/2D_mesh_QuadranglePreference_01/B6

Case of a ring with sub-meshes on both wires
This commit is contained in:
eap 2016-06-16 16:23:35 +03:00
parent aae848792f
commit 466da2436e
8 changed files with 352 additions and 209 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.5 KiB

View File

@ -66,7 +66,7 @@ objects.
There is also a number of more specific algorithms: There is also a number of more specific algorithms:
<ul> <ul>
<li>\subpage prism_3d_algo_page "for meshing prismatic 3D shapes with hexahedra and prisms"</li> <li>\subpage prism_3d_algo_page "for meshing prismatic 3D shapes with hexahedra and prisms"</li>
<li>\subpage quad_from_ma_algo_page "for quadrangle meshing of faces with sinuous borders"</li> <li>\subpage quad_from_ma_algo_page "for quadrangle meshing of faces with sinuous borders and rings"</li>
<li> <b>Polygon per Face</b> meshing algorithm - generates one mesh <li> <b>Polygon per Face</b> meshing algorithm - generates one mesh
face (either a triangle, a quadrangle or a polygon) per a geometrical face (either a triangle, a quadrangle or a polygon) per a geometrical
face using all nodes from the face boundary.</li> face using all nodes from the face boundary.</li>

View File

@ -32,4 +32,5 @@ The Medial Axis is used in two ways:
borders to find positions of nodes.</li> borders to find positions of nodes.</li>
</ol> </ol>
\image html quad_from_ma_ring_mesh.png "Mesh depends on defined sub-meshes: to the left - sub-meshes on both wires, to the right - a sub-mesh on internal wire only"
*/ */

View File

@ -412,7 +412,7 @@ bool SMESH_Algo::GetSortedNodesOnEdge(const SMESHDS_Mesh* theM
return false; return false;
SMESHDS_SubMesh * eSubMesh = theMesh->MeshElements( theEdge ); SMESHDS_SubMesh * eSubMesh = theMesh->MeshElements( theEdge );
if ( !eSubMesh || ( eSubMesh->NbElements()==0 && eSubMesh->NbNodes() == 0)) if ( !eSubMesh || ( eSubMesh->NbElements() == 0 && eSubMesh->NbNodes() == 0))
return false; // edge is not meshed return false; // edge is not meshed
int nbNodes = 0; int nbNodes = 0;

View File

@ -1504,6 +1504,12 @@ class Mesh:
pass pass
return ok return ok
## Return a list of error messages (SMESH.ComputeError) of the last Compute()
def GetComputeErrors(self, shape=0 ):
if shape == 0:
shape = self.mesh.GetShapeToMesh()
return self.smeshpyD.GetComputeErrors( self.mesh, shape )
## Return a name of a sub-shape by its ID ## Return a name of a sub-shape by its ID
# @param subShapeID a unique ID of a sub-shape # @param subShapeID a unique ID of a sub-shape
# @return a string describing the sub-shape; possible variants: # @return a string describing the sub-shape; possible variants:

View File

@ -548,8 +548,8 @@ const vector<UVPtStruct>& StdMeshers_FaceSide::SimulateUVPtStruct(int nbSeg,
bool isXConst, bool isXConst,
double constValue) const double constValue) const
{ {
if ( myFalsePoints.empty() ) { if ( myFalsePoints.empty() )
{
if ( NbEdges() == 0 ) return myFalsePoints; if ( NbEdges() == 0 ) return myFalsePoints;
vector<uvPtStruct>* points = const_cast<vector<uvPtStruct>*>( &myFalsePoints ); vector<uvPtStruct>* points = const_cast<vector<uvPtStruct>*>( &myFalsePoints );
@ -557,28 +557,29 @@ const vector<UVPtStruct>& StdMeshers_FaceSide::SimulateUVPtStruct(int nbSeg,
int EdgeIndex = 0; int EdgeIndex = 0;
double prevNormPar = 0, paramSize = myNormPar[ EdgeIndex ]; double prevNormPar = 0, paramSize = myNormPar[ EdgeIndex ];
for ( size_t i = 0 ; i < myFalsePoints.size(); ++i ) { gp_Pnt2d p;
for ( size_t i = 0 ; i < myFalsePoints.size(); ++i )
{
double normPar = double(i) / double(nbSeg); double normPar = double(i) / double(nbSeg);
UVPtStruct & uvPt = (*points)[i]; UVPtStruct & uvPt = (*points)[i];
uvPt.node = 0; uvPt.node = 0;
uvPt.x = uvPt.y = uvPt.param = uvPt.normParam = normPar; uvPt.x = uvPt.y = uvPt.param = uvPt.normParam = normPar;
if ( isXConst ) uvPt.x = constValue; if ( isXConst ) uvPt.x = constValue;
else uvPt.y = constValue; else uvPt.y = constValue;
if ( myNormPar[ EdgeIndex ] < normPar ) { if ( myNormPar[ EdgeIndex ] < normPar )
{
prevNormPar = myNormPar[ EdgeIndex ]; prevNormPar = myNormPar[ EdgeIndex ];
++EdgeIndex; ++EdgeIndex;
paramSize = myNormPar[ EdgeIndex ] - prevNormPar; paramSize = myNormPar[ EdgeIndex ] - prevNormPar;
} }
double r = ( normPar - prevNormPar )/ paramSize; double r = ( normPar - prevNormPar )/ paramSize;
uvPt.param = myFirst[EdgeIndex] * ( 1 - r ) + myLast[EdgeIndex] * r; uvPt.param = myFirst[EdgeIndex] * ( 1 - r ) + myLast[EdgeIndex] * r;
if ( !myC2d[ EdgeIndex ].IsNull() ) { if ( !myC2d[ EdgeIndex ].IsNull() )
gp_Pnt2d p = myC2d[ EdgeIndex ]->Value( uvPt.param ); p = myC2d[ EdgeIndex ]->Value( uvPt.param );
uvPt.u = p.X(); else
uvPt.v = p.Y(); p = Value2d( normPar );
} uvPt.u = p.X();
else { uvPt.v = p.Y();
uvPt.u = uvPt.v = 1e+100;
}
} }
} }
return myFalsePoints; return myFalsePoints;

View File

@ -160,7 +160,7 @@ StdMeshers_QuadFromMedialAxis_1D2D::StdMeshers_QuadFromMedialAxis_1D2D(int
_shapeType = (1 << TopAbs_FACE); _shapeType = (1 << TopAbs_FACE);
_onlyUnaryInput = true; // FACE by FACE so far _onlyUnaryInput = true; // FACE by FACE so far
_requireDiscreteBoundary = false; // make 1D by myself _requireDiscreteBoundary = false; // make 1D by myself
_supportSubmeshes = true; // make 1D by myself _supportSubmeshes = true; // make 1D by myself
_neededLowerHyps[ 1 ] = true; // suppress warning on hiding a global 1D algo _neededLowerHyps[ 1 ] = true; // suppress warning on hiding a global 1D algo
_neededLowerHyps[ 2 ] = true; // suppress warning on hiding a global 2D algo _neededLowerHyps[ 2 ] = true; // suppress warning on hiding a global 2D algo
_compatibleHypothesis.clear(); _compatibleHypothesis.clear();
@ -1363,6 +1363,116 @@ namespace
return; return;
} // separateNodes() } // separateNodes()
//================================================================================
/*!
* \brief Find association of nodes existing on the sinuous sides of a ring
*
* TMAPar2NPoints filled here is used in setQuadSides() only if theSinuFace.IsRing()
* to find most distant nodes of the inner and the outer wires
*/
//================================================================================
void assocNodes( SMESH_MesherHelper& theHelper,
SinuousFace& theSinuFace,
const SMESH_MAT2d::MedialAxis& theMA,
TMAPar2NPoints & thePointsOnE )
{
list< TopoDS_Edge > ee1( theSinuFace._sinuSide [0].begin(), theSinuFace._sinuSide [0].end() );
list< TopoDS_Edge > ee2( theSinuFace._sinuSide [1].begin(), theSinuFace._sinuSide [1].end() );
StdMeshers_FaceSide sideOut( theSinuFace.Face(), ee1, theHelper.GetMesh(), true, true );
StdMeshers_FaceSide sideIn ( theSinuFace.Face(), ee2, theHelper.GetMesh(), true, true );
const UVPtStructVec& uvsOut = sideOut.GetUVPtStruct();
const UVPtStructVec& uvsIn = sideIn.GetUVPtStruct();
// if ( uvs1.size() != uvs2.size() )
// return;
const SMESH_MAT2d::Branch& branch = *theMA.getBranch(0);
SMESH_MAT2d::BoundaryPoint bp[2];
SMESH_MAT2d::BranchPoint brp;
SMESHDS_Mesh* meshDS = theHelper.GetMeshDS();
map< double, const SMDS_MeshNode* > nodeParams; // params of existing nodes
map< double, const SMDS_MeshNode* >::iterator u2n;
// find a node of sideOut most distant from sideIn
vector< BRepAdaptor_Curve > curvesIn( theSinuFace._sinuSide[1].size() );
for ( size_t iE = 0; iE < theSinuFace._sinuSide[1].size(); ++iE )
curvesIn[ iE ].Initialize( theSinuFace._sinuSide[1][iE] );
double maxDist = 0;
SMESH_MAT2d::BoundaryPoint bpIn; // closest IN point
const SMDS_MeshNode* nOut = 0;
const size_t nbEOut = theSinuFace._sinuSide[0].size();
for ( size_t iE = 0; iE < nbEOut; ++iE )
{
const TopoDS_Edge& E = theSinuFace._sinuSide[0][iE];
if ( !SMESH_Algo::GetSortedNodesOnEdge( meshDS, E, /*skipMedium=*/true, nodeParams ))
return;
for ( u2n = nodeParams.begin(); u2n != nodeParams.end(); ++u2n )
{
// point on EDGE (u2n) --> MA point (brp)
if ( !theMA.getBoundary().getBranchPoint( iE, u2n->first, brp ) ||
!branch.getBoundaryPoints( brp, bp[0], bp[1] ))
return;
gp_Pnt pOut = SMESH_TNodeXYZ( u2n->second );
gp_Pnt pIn = curvesIn[ bp[1]._edgeIndex - nbEOut ].Value( bp[1]._param );
double dist = pOut.SquareDistance( pIn );
if ( dist > maxDist )
{
maxDist = dist;
nOut = u2n->second;
bpIn = bp[1];
}
}
}
const SMDS_MeshNode* nIn = 0;
if ( !SMESH_Algo::GetSortedNodesOnEdge( meshDS,
theSinuFace._sinuEdges[ bpIn._edgeIndex ],
/*skipMedium=*/true,
nodeParams ))
return;
u2n = nodeParams.lower_bound( bpIn._param );
if ( u2n == nodeParams.end() )
nIn = nodeParams.rbegin()->second;
else
nIn = u2n->second;
// find position of distant nodes in uvsOut and uvsIn
size_t iDistOut, iDistIn;
for ( iDistOut = 0; iDistOut < uvsOut.size(); ++iDistOut )
{
if ( uvsOut[iDistOut].node == nOut )
break;
}
for ( iDistIn = 0; iDistIn < uvsIn.size(); ++iDistIn )
{
if ( uvsIn[iDistIn].node == nIn )
break;
}
if ( iDistOut == uvsOut.size() || iDistIn == uvsIn.size() )
return;
// store opposite nodes in thePointsOnE (param and EDGE have no sense)
pair< NodePoint, NodePoint > oppNodes( NodePoint( nOut, 0, 0 ), NodePoint( nIn, 0, 0));
thePointsOnE.insert( make_pair( uvsOut[ iDistOut ].normParam, oppNodes ));
int iOut = iDistOut, iIn = iDistIn;
int i, nbNodes = std::min( uvsOut.size(), uvsIn.size() );
if ( nbNodes > 5 ) nbNodes = 5;
for ( i = 0, ++iOut, --iIn; i < nbNodes; ++iOut, --iIn, ++i )
{
iOut = theHelper.WrapIndex( iOut, uvsOut.size() );
iIn = theHelper.WrapIndex( iIn, uvsIn.size() );
oppNodes.first._node = uvsOut[ iOut ].node;
oppNodes.second._node = uvsIn[ iIn ].node;
thePointsOnE.insert( make_pair( uvsOut[ iOut ].normParam, oppNodes ));
}
return;
} // assocNodes()
//================================================================================ //================================================================================
/*! /*!
* \brief Setup sides of SinuousFace::_quad * \brief Setup sides of SinuousFace::_quad
@ -1387,9 +1497,9 @@ namespace
list< TopoDS_Edge > side[4]; list< TopoDS_Edge > side[4];
side[0].insert( side[0].end(), theFace._shortSide[0].begin(), theFace._shortSide[0].end() ); side[0].insert( side[0].end(), theFace._shortSide[0].begin(), theFace._shortSide[0].end() );
side[1].insert( side[1].end(), theFace._sinuSide[1].begin(), theFace._sinuSide[1].end() ); side[1].insert( side[1].end(), theFace._sinuSide [1].begin(), theFace._sinuSide [1].end() );
side[2].insert( side[2].end(), theFace._shortSide[1].begin(), theFace._shortSide[1].end() ); side[2].insert( side[2].end(), theFace._shortSide[1].begin(), theFace._shortSide[1].end() );
side[3].insert( side[3].end(), theFace._sinuSide[0].begin(), theFace._sinuSide[0].end() ); side[3].insert( side[3].end(), theFace._sinuSide [0].begin(), theFace._sinuSide [0].end() );
for ( int i = 0; i < 4; ++i ) for ( int i = 0; i < 4; ++i )
{ {
@ -1406,6 +1516,11 @@ namespace
if ( thePointsOnEdges.size() < 4 ) if ( thePointsOnEdges.size() < 4 )
return false; return false;
int nbOut = theFace._quad->side[ 1 ].GetUVPtStruct().size();
int nbIn = theFace._quad->side[ 3 ].GetUVPtStruct().size();
if ( nbOut == 0 || nbIn == 0 )
return false;
// find most distant opposite nodes // find most distant opposite nodes
double maxDist = 0, dist; double maxDist = 0, dist;
TMAPar2NPoints::const_iterator u2NPdist, u2NP = thePointsOnEdges.begin(); TMAPar2NPoints::const_iterator u2NPdist, u2NP = thePointsOnEdges.begin();
@ -1416,7 +1531,7 @@ namespace
if ( dist > maxDist ) if ( dist > maxDist )
{ {
u2NPdist = u2NP; u2NPdist = u2NP;
maxDist = dist; maxDist = dist;
} }
} }
// compute distribution of radial nodes // compute distribution of radial nodes
@ -1428,6 +1543,8 @@ namespace
params ); params );
// add a radial quad side // add a radial quad side
theHelper.SetElementsOnShape( true );
u2NP = thePointsOnEdges.begin(); u2NP = thePointsOnEdges.begin();
const SMDS_MeshNode* nOut = u2NP->second.first._node; const SMDS_MeshNode* nOut = u2NP->second.first._node;
const SMDS_MeshNode* nIn = u2NP->second.second._node; const SMDS_MeshNode* nIn = u2NP->second.second._node;
@ -1457,13 +1574,10 @@ namespace
theFace._quad->side[ 0 ] = StdMeshers_FaceSide::New( uvsNew ); theFace._quad->side[ 0 ] = StdMeshers_FaceSide::New( uvsNew );
theFace._quad->side[ 2 ] = theFace._quad->side[ 0 ]; theFace._quad->side[ 2 ] = theFace._quad->side[ 0 ];
if ( nbIn != nbOut )
if ( theFace._quad->side[ 1 ].GetUVPtStruct().empty() || theFace._quad->side[ 2 ] = StdMeshers_FaceSide::New( uvsNew );
theFace._quad->side[ 3 ].GetUVPtStruct().empty() )
return false;
// assure that the outer sinuous side starts at nOut // assure that the outer sinuous side starts at nOut
if ( theFace._sinuSide[0].size() > 1 )
{ {
const UVPtStructVec& uvsOut = theFace._quad->side[ 3 ].GetUVPtStruct(); // _sinuSide[0] const UVPtStructVec& uvsOut = theFace._quad->side[ 3 ].GetUVPtStruct(); // _sinuSide[0]
size_t i; // find UVPtStruct holding nOut size_t i; // find UVPtStruct holding nOut
@ -1485,6 +1599,7 @@ namespace
} }
// rotate the IN side if opposite nodes of IN and OUT sides don't match // rotate the IN side if opposite nodes of IN and OUT sides don't match
const SMDS_MeshNode * nIn0 = theFace._quad->side[ 1 ].First().node; const SMDS_MeshNode * nIn0 = theFace._quad->side[ 1 ].First().node;
if ( nIn0 != nIn ) if ( nIn0 != nIn )
{ {
@ -1571,210 +1686,225 @@ namespace
const SMESH_MAT2d::Branch& branch = *theMA.getBranch(0); const SMESH_MAT2d::Branch& branch = *theMA.getBranch(0);
SMESH_MAT2d::BoundaryPoint bp[2]; SMESH_MAT2d::BoundaryPoint bp[2];
vector< std::size_t > edgeIDs1, edgeIDs2; // indices in theSinuEdges TMAPar2NPoints pointsOnE;
vector< SMESH_MAT2d::BranchPoint > divPoints; // check that computed EDGEs are opposite and equally meshed
if ( !allComputed ) if ( allComputed )
{
// int nbNodes[2] = { 0, 0 };
// for ( int iSide = 0; iSide < 2; ++iSide ) // loop on two sinuous sides
// nbNodes[ iSide ] += meshDS->MeshElements( theSinuFace._sinuSide[ iSide ])->NbNodes() - 1;
// if ( nbNodes[0] != nbNodes[1] )
// return false;
if ( theSinuFace.IsRing() )
assocNodes( theHelper, theSinuFace, theMA, pointsOnE );
}
else
{
vector< std::size_t > edgeIDs1, edgeIDs2; // indices in theSinuEdges
vector< SMESH_MAT2d::BranchPoint > divPoints;
branch.getOppositeGeomEdges( edgeIDs1, edgeIDs2, divPoints ); branch.getOppositeGeomEdges( edgeIDs1, edgeIDs2, divPoints );
for ( size_t i = 0; i < edgeIDs1.size(); ++i ) for ( size_t i = 0; i < edgeIDs1.size(); ++i )
if ( isComputed[ edgeIDs1[i]] && if ( isComputed[ edgeIDs1[i]] &&
isComputed[ edgeIDs2[i]] ) isComputed[ edgeIDs2[i]] )
{
int nbNodes1 = meshDS->MeshElements(edgeIDs[ edgeIDs1[i]] )->NbNodes();
int nbNodes2 = meshDS->MeshElements(edgeIDs[ edgeIDs2[i]] )->NbNodes();
if ( nbNodes1 != nbNodes2 )
return false;
if (( i-1 >= 0 ) &&
( edgeIDs1[i-1] == edgeIDs1[i] ||
edgeIDs2[i-1] == edgeIDs2[i] ))
return false;
if (( i+1 < edgeIDs1.size() ) &&
( edgeIDs1[i+1] == edgeIDs1[i] ||
edgeIDs2[i+1] == edgeIDs2[i] ))
return false;
}
// map (param on MA) to (parameters of nodes on a pair of theSinuEdges)
TMAPar2NPoints pointsOnE;
vector<double> maParams;
set<int> projectedEdges; // treated EDGEs which 'isComputed'
// compute params of nodes on EDGEs by projecting division points from MA
for ( size_t iEdgePair = 0; iEdgePair < edgeIDs1.size(); ++iEdgePair )
// loop on pairs of opposite EDGEs
{
if ( projectedEdges.count( edgeIDs1[ iEdgePair ]) ||
projectedEdges.count( edgeIDs2[ iEdgePair ]) )
continue;
// --------------------------------------------------------------------------------
if ( isComputed[ edgeIDs1[ iEdgePair ]] != // one EDGE is meshed
isComputed[ edgeIDs2[ iEdgePair ]])
{
// "projection" from one side to the other
size_t iEdgeComputed = edgeIDs1[iEdgePair], iSideComputed = 0;
if ( !isComputed[ iEdgeComputed ])
++iSideComputed, iEdgeComputed = edgeIDs2[iEdgePair];
map< double, const SMDS_MeshNode* > nodeParams; // params of existing nodes
if ( !SMESH_Algo::GetSortedNodesOnEdge( meshDS, theSinuEdges[ iEdgeComputed ], /*skipMedium=*/true, nodeParams ))
return false;
projectedEdges.insert( iEdgeComputed );
SMESH_MAT2d::BoundaryPoint& bndPnt = bp[ 1-iSideComputed ];
SMESH_MAT2d::BranchPoint brp;
NodePoint npN, npB; // NodePoint's initialized by node and BoundaryPoint
NodePoint& np0 = iSideComputed ? npB : npN;
NodePoint& np1 = iSideComputed ? npN : npB;
double maParam1st, maParamLast, maParam;
if ( !theMA.getBoundary().getBranchPoint( iEdgeComputed, nodeParams.begin()->first, brp ))
return false;
branch.getParameter( brp, maParam1st );
if ( !theMA.getBoundary().getBranchPoint( iEdgeComputed, nodeParams.rbegin()->first, brp ))
return false;
branch.getParameter( brp, maParamLast );
map< double, const SMDS_MeshNode* >::iterator u2n = nodeParams.begin(), u2nEnd = nodeParams.end();
TMAPar2NPoints::iterator end = pointsOnE.end(), pos = end;
TMAPar2NPoints::iterator & hint = (maParamLast > maParam1st) ? end : pos;
for ( ++u2n, --u2nEnd; u2n != u2nEnd; ++u2n )
{ {
// point on EDGE (u2n) --> MA point (brp) int nbNodes1 = meshDS->MeshElements(edgeIDs[ edgeIDs1[i]] )->NbNodes();
if ( !theMA.getBoundary().getBranchPoint( iEdgeComputed, u2n->first, brp )) int nbNodes2 = meshDS->MeshElements(edgeIDs[ edgeIDs2[i]] )->NbNodes();
if ( nbNodes1 != nbNodes2 )
return false; return false;
// MA point --> points on 2 EDGEs (bp) if (( int(i)-1 >= 0 ) &&
if ( !branch.getBoundaryPoints( brp, bp[0], bp[1] ) || ( edgeIDs1[i-1] == edgeIDs1[i] ||
!branch.getParameter( brp, maParam )) edgeIDs2[i-1] == edgeIDs2[i] ))
return false;
if (( i+1 < edgeIDs1.size() ) &&
( edgeIDs1[i+1] == edgeIDs1[i] ||
edgeIDs2[i+1] == edgeIDs2[i] ))
return false; return false;
npN = NodePoint( u2n->second, u2n->first, iEdgeComputed );
npB = NodePoint( bndPnt );
pos = pointsOnE.insert( hint, make_pair( maParam, make_pair( np0, np1 )));
} }
}
// --------------------------------------------------------------------------------
else if ( !isComputed[ edgeIDs1[ iEdgePair ]] && // none of EDGEs is meshed
!isComputed[ edgeIDs2[ iEdgePair ]])
{
// "projection" from MA
maParams.clear();
if ( !getParamsForEdgePair( iEdgePair, divPoints, theMAParams, maParams ))
return false;
for ( size_t i = 1; i < maParams.size()-1; ++i ) // map (param on MA) to (parameters of nodes on a pair of theSinuEdges)
vector<double> maParams;
set<int> projectedEdges; // treated EDGEs which 'isComputed'
// compute params of nodes on EDGEs by projecting division points from MA
for ( size_t iEdgePair = 0; iEdgePair < edgeIDs1.size(); ++iEdgePair )
// loop on pairs of opposite EDGEs
{
if ( projectedEdges.count( edgeIDs1[ iEdgePair ]) ||
projectedEdges.count( edgeIDs2[ iEdgePair ]) )
continue;
// --------------------------------------------------------------------------------
if ( isComputed[ edgeIDs1[ iEdgePair ]] != // one EDGE is meshed
isComputed[ edgeIDs2[ iEdgePair ]])
{ {
if ( !branch.getBoundaryPoints( maParams[i], bp[0], bp[1] )) // "projection" from one side to the other
size_t iEdgeComputed = edgeIDs1[iEdgePair], iSideComputed = 0;
if ( !isComputed[ iEdgeComputed ])
++iSideComputed, iEdgeComputed = edgeIDs2[iEdgePair];
map< double, const SMDS_MeshNode* > nodeParams; // params of existing nodes
if ( !SMESH_Algo::GetSortedNodesOnEdge( meshDS, theSinuEdges[ iEdgeComputed ], /*skipMedium=*/true, nodeParams ))
return false; return false;
pointsOnE.insert( pointsOnE.end(), make_pair( maParams[i], make_pair( NodePoint(bp[0]), projectedEdges.insert( iEdgeComputed );
NodePoint(bp[1]))));
}
}
// --------------------------------------------------------------------------------
else if ( isComputed[ edgeIDs1[ iEdgePair ]] && // equally meshed EDGES
isComputed[ edgeIDs2[ iEdgePair ]])
{
// add existing nodes
size_t iE0 = edgeIDs1[ iEdgePair ]; SMESH_MAT2d::BoundaryPoint& bndPnt = bp[ 1-iSideComputed ];
size_t iE1 = edgeIDs2[ iEdgePair ]; SMESH_MAT2d::BranchPoint brp;
map< double, const SMDS_MeshNode* > nodeParams[2]; // params of existing nodes NodePoint npN, npB; // NodePoint's initialized by node and BoundaryPoint
if ( !SMESH_Algo::GetSortedNodesOnEdge( meshDS, theSinuEdges[ iE0 ], NodePoint& np0 = iSideComputed ? npB : npN;
/*skipMedium=*/false, nodeParams[0] ) || NodePoint& np1 = iSideComputed ? npN : npB;
!SMESH_Algo::GetSortedNodesOnEdge( meshDS, theSinuEdges[ iE1 ],
/*skipMedium=*/false, nodeParams[1] ) ||
nodeParams[0].size() != nodeParams[1].size() )
return false;
if ( nodeParams[0].size() <= 2 ) double maParam1st, maParamLast, maParam;
continue; // nodes on VERTEXes only if ( !theMA.getBoundary().getBranchPoint( iEdgeComputed, nodeParams.begin()->first, brp ))
bool reverse = ( theSinuEdges[0].Orientation() == theSinuEdges[1].Orientation() );
double maParam;
SMESH_MAT2d::BranchPoint brp;
std::pair< NodePoint, NodePoint > npPair;
map< double, const SMDS_MeshNode* >::iterator
u2n0F = ++nodeParams[0].begin(),
u2n1F = ++nodeParams[1].begin();
map< double, const SMDS_MeshNode* >::reverse_iterator
u2n1R = ++nodeParams[1].rbegin();
for ( ; u2n0F != nodeParams[0].end(); ++u2n0F )
{
if ( !theMA.getBoundary().getBranchPoint( iE0, u2n0F->first, brp ) ||
!branch.getParameter( brp, maParam ))
return false; return false;
branch.getParameter( brp, maParam1st );
if ( !theMA.getBoundary().getBranchPoint( iEdgeComputed, nodeParams.rbegin()->first, brp ))
return false;
branch.getParameter( brp, maParamLast );
npPair.first = NodePoint( u2n0F->second, u2n0F->first, iE0 ); map< double, const SMDS_MeshNode* >::iterator u2n = nodeParams.begin(), u2nEnd = nodeParams.end();
if ( reverse ) TMAPar2NPoints::iterator end = pointsOnE.end(), pos = end;
TMAPar2NPoints::iterator & hint = (maParamLast > maParam1st) ? end : pos;
for ( ++u2n, --u2nEnd; u2n != u2nEnd; ++u2n )
{ {
npPair.second = NodePoint( u2n1R->second, u2n1R->first, iE1 ); // point on EDGE (u2n) --> MA point (brp)
++u2n1R; if ( !theMA.getBoundary().getBranchPoint( iEdgeComputed, u2n->first, brp ))
return false;
// MA point --> points on 2 EDGEs (bp)
if ( !branch.getBoundaryPoints( brp, bp[0], bp[1] ) ||
!branch.getParameter( brp, maParam ))
return false;
npN = NodePoint( u2n->second, u2n->first, iEdgeComputed );
npB = NodePoint( bndPnt );
pos = pointsOnE.insert( hint, make_pair( maParam, make_pair( np0, np1 )));
} }
else }
// --------------------------------------------------------------------------------
else if ( !isComputed[ edgeIDs1[ iEdgePair ]] && // none of EDGEs is meshed
!isComputed[ edgeIDs2[ iEdgePair ]])
{
// "projection" from MA
maParams.clear();
if ( !getParamsForEdgePair( iEdgePair, divPoints, theMAParams, maParams ))
return false;
for ( size_t i = 1; i < maParams.size()-1; ++i )
{ {
npPair.second = NodePoint( u2n1F->second, u2n1F->first, iE1 ); if ( !branch.getBoundaryPoints( maParams[i], bp[0], bp[1] ))
++u2n1F; return false;
pointsOnE.insert( pointsOnE.end(), make_pair( maParams[i], make_pair( NodePoint(bp[0]),
NodePoint(bp[1]))));
} }
pointsOnE.insert( make_pair( maParam, npPair )); }
// --------------------------------------------------------------------------------
else if ( isComputed[ edgeIDs1[ iEdgePair ]] && // equally meshed EDGES
isComputed[ edgeIDs2[ iEdgePair ]])
{
// add existing nodes
size_t iE0 = edgeIDs1[ iEdgePair ];
size_t iE1 = edgeIDs2[ iEdgePair ];
map< double, const SMDS_MeshNode* > nodeParams[2]; // params of existing nodes
if ( !SMESH_Algo::GetSortedNodesOnEdge( meshDS, theSinuEdges[ iE0 ],
/*skipMedium=*/false, nodeParams[0] ) ||
!SMESH_Algo::GetSortedNodesOnEdge( meshDS, theSinuEdges[ iE1 ],
/*skipMedium=*/false, nodeParams[1] ) ||
nodeParams[0].size() != nodeParams[1].size() )
return false;
if ( nodeParams[0].size() <= 2 )
continue; // nodes on VERTEXes only
bool reverse = ( theSinuEdges[0].Orientation() == theSinuEdges[1].Orientation() );
double maParam;
SMESH_MAT2d::BranchPoint brp;
std::pair< NodePoint, NodePoint > npPair;
map< double, const SMDS_MeshNode* >::iterator
u2n0F = ++nodeParams[0].begin(),
u2n1F = ++nodeParams[1].begin();
map< double, const SMDS_MeshNode* >::reverse_iterator
u2n1R = ++nodeParams[1].rbegin();
for ( ; u2n0F != nodeParams[0].end(); ++u2n0F )
{
if ( !theMA.getBoundary().getBranchPoint( iE0, u2n0F->first, brp ) ||
!branch.getParameter( brp, maParam ))
return false;
npPair.first = NodePoint( u2n0F->second, u2n0F->first, iE0 );
if ( reverse )
{
npPair.second = NodePoint( u2n1R->second, u2n1R->first, iE1 );
++u2n1R;
}
else
{
npPair.second = NodePoint( u2n1F->second, u2n1F->first, iE1 );
++u2n1F;
}
pointsOnE.insert( make_pair( maParam, npPair ));
}
}
} // loop on pairs of opposite EDGEs
if ( !projectVertices( theHelper, theMA, divPoints, edgeIDs1, edgeIDs2,
isComputed, pointsOnE, theSinuFace ))
return false;
separateNodes( theHelper, theMA, pointsOnE, theSinuFace, isComputed );
// create nodes
TMAPar2NPoints::iterator u2np = pointsOnE.begin();
for ( ; u2np != pointsOnE.end(); ++u2np )
{
NodePoint* np[2] = { & u2np->second.first, & u2np->second.second };
for ( int iSide = 0; iSide < 2; ++iSide )
{
if ( np[ iSide ]->_node ) continue;
size_t iEdge = np[ iSide ]->_edgeInd;
double u = np[ iSide ]->_u;
gp_Pnt p = curves[ iEdge ]->Value( u );
np[ iSide ]->_node = meshDS->AddNode( p.X(), p.Y(), p.Z() );
meshDS->SetNodeOnEdge( np[ iSide ]->_node, edgeIDs[ iEdge ], u );
} }
} }
} // loop on pairs of opposite EDGEs
if ( !projectVertices( theHelper, theMA, divPoints, edgeIDs1, edgeIDs2, // create mesh segments on EDGEs
isComputed, pointsOnE, theSinuFace )) theHelper.SetElementsOnShape( false );
return false; TopoDS_Face face = TopoDS::Face( theHelper.GetSubShape() );
for ( size_t i = 0; i < theSinuEdges.size(); ++i )
separateNodes( theHelper, theMA, pointsOnE, theSinuFace, isComputed );
// create nodes
TMAPar2NPoints::iterator u2np = pointsOnE.begin();
for ( ; u2np != pointsOnE.end(); ++u2np )
{
NodePoint* np[2] = { & u2np->second.first, & u2np->second.second };
for ( int iSide = 0; iSide < 2; ++iSide )
{ {
if ( np[ iSide ]->_node ) continue; SMESH_subMesh* sm = mesh->GetSubMesh( theSinuEdges[i] );
size_t iEdge = np[ iSide ]->_edgeInd; if ( sm->GetSubMeshDS() && sm->GetSubMeshDS()->NbElements() > 0 )
double u = np[ iSide ]->_u; continue;
gp_Pnt p = curves[ iEdge ]->Value( u );
np[ iSide ]->_node = meshDS->AddNode( p.X(), p.Y(), p.Z() ); StdMeshers_FaceSide side( face, theSinuEdges[i], mesh,
meshDS->SetNodeOnEdge( np[ iSide ]->_node, edgeIDs[ iEdge ], u ); /*isFwd=*/true, /*skipMediumNodes=*/true );
vector<const SMDS_MeshNode*> nodes = side.GetOrderedNodes();
for ( size_t in = 1; in < nodes.size(); ++in )
{
const SMDS_MeshElement* seg = theHelper.AddEdge( nodes[in-1], nodes[in], 0, false );
meshDS->SetMeshElementOnShape( seg, edgeIDs[ i ] );
}
} }
}
// create mesh segments on EDGEs // update sub-meshes on VERTEXes
theHelper.SetElementsOnShape( false ); for ( size_t i = 0; i < theSinuEdges.size(); ++i )
TopoDS_Face face = TopoDS::Face( theHelper.GetSubShape() );
for ( size_t i = 0; i < theSinuEdges.size(); ++i )
{
SMESH_subMesh* sm = mesh->GetSubMesh( theSinuEdges[i] );
if ( sm->GetSubMeshDS() && sm->GetSubMeshDS()->NbElements() > 0 )
continue;
StdMeshers_FaceSide side( face, theSinuEdges[i], mesh,
/*isFwd=*/true, /*skipMediumNodes=*/true );
vector<const SMDS_MeshNode*> nodes = side.GetOrderedNodes();
for ( size_t in = 1; in < nodes.size(); ++in )
{ {
const SMDS_MeshElement* seg = theHelper.AddEdge( nodes[in-1], nodes[in], 0, false ); mesh->GetSubMesh( theHelper.IthVertex( 0, theSinuEdges[i] ))
meshDS->SetMeshElementOnShape( seg, edgeIDs[ i ] ); ->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
mesh->GetSubMesh( theHelper.IthVertex( 1, theSinuEdges[i] ))
->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
} }
} }
// update sub-meshes on VERTEXes
for ( size_t i = 0; i < theSinuEdges.size(); ++i )
{
mesh->GetSubMesh( theHelper.IthVertex( 0, theSinuEdges[i] ))
->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
mesh->GetSubMesh( theHelper.IthVertex( 1, theSinuEdges[i] ))
->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
}
// Setup sides of a quadrangle // Setup sides of a quadrangle
if ( !setQuadSides( theHelper, pointsOnE, theSinuFace, the1dAlgo )) if ( !setQuadSides( theHelper, pointsOnE, theSinuFace, the1dAlgo ))
return false; return false;
@ -1969,21 +2099,25 @@ bool StdMeshers_QuadFromMedialAxis_1D2D::computeQuads( SMESH_MesherHelper& theHe
int nbNodesShort0 = theQuad->side[0].NbPoints(); int nbNodesShort0 = theQuad->side[0].NbPoints();
int nbNodesShort1 = theQuad->side[2].NbPoints(); int nbNodesShort1 = theQuad->side[2].NbPoints();
int nbNodesSinu0 = theQuad->side[1].NbPoints();
int nbNodesSinu1 = theQuad->side[3].NbPoints();
// compute UV of internal points // compute UV of internal points
myQuadList.push_back( theQuad ); myQuadList.push_back( theQuad );
if ( !StdMeshers_Quadrangle_2D::setNormalizedGrid( theQuad )) // if ( !StdMeshers_Quadrangle_2D::setNormalizedGrid( theQuad ))
return false; // return false;
// elliptic smooth of internal points to get boundary cell normal to the boundary // elliptic smooth of internal points to get boundary cell normal to the boundary
bool isRing = theQuad->side[0].grid->Edge(0).IsNull(); bool isRing = theQuad->side[0].grid->Edge(0).IsNull();
if ( !isRing ) if ( !isRing ) {
if ( !StdMeshers_Quadrangle_2D::setNormalizedGrid( theQuad ))
return false;
ellipticSmooth( theQuad, 1 ); ellipticSmooth( theQuad, 1 );
}
// create quadrangles // create quadrangles
bool ok; bool ok;
theHelper.SetElementsOnShape( true ); theHelper.SetElementsOnShape( true );
if ( nbNodesShort0 == nbNodesShort1 ) if ( nbNodesShort0 == nbNodesShort1 && nbNodesSinu0 == nbNodesSinu1 )
ok = StdMeshers_Quadrangle_2D::computeQuadDominant( *theHelper.GetMesh(), ok = StdMeshers_Quadrangle_2D::computeQuadDominant( *theHelper.GetMesh(),
theQuad->face, theQuad ); theQuad->face, theQuad );
else else

View File

@ -609,8 +609,8 @@ bool StdMeshers_Quadrangle_2D::computeQuadDominant(SMESH_Mesh& aMesh,
int stop = 0; int stop = 0;
if ( quad->side[3].grid->Edge(0).IsNull() ) // left side is simulated one if ( quad->side[3].grid->Edge(0).IsNull() ) // left side is simulated one
{ {
// quad divided at I but not at J, as nbvertic==nbright==2 if ( nbright == 2 ) // quad divided at I but not at J (2D_mesh_QuadranglePreference_01/B1)
stop++; // we stop at a second node stop++; // we stop at a second node
} }
else else
{ {
@ -657,7 +657,8 @@ bool StdMeshers_Quadrangle_2D::computeQuadDominant(SMESH_Mesh& aMesh,
} }
// for each node of the up edge find nearest node // for each node of the up edge find nearest node
// in the first row of the regular grid and link them // in the first row of the regular grid and link them
for ( ; i > stop; i--) { for ( ; i > stop; i--)
{
a = uv_e2[i].node; a = uv_e2[i].node;
b = uv_e2[i - 1].node; b = uv_e2[i - 1].node;
gp_Pnt pb = SMESH_TNodeXYZ( b ); gp_Pnt pb = SMESH_TNodeXYZ( b );
@ -791,8 +792,8 @@ bool StdMeshers_Quadrangle_2D::computeQuadDominant(SMESH_Mesh& aMesh,
} }
} }
} else { } else {
if (quad->nbNodeOut(3) && nbhoriz == 2) { if (quad->nbNodeOut(3) && nbhoriz == 2)
// MESSAGE("left edge is out"); {
int g = nbvertic - 1; // last processed node in the grid int g = nbvertic - 1; // last processed node in the grid
int stop = 0; int stop = 0;
i = quad->side[ QUAD_LEFT_SIDE ].to-1; // nbleft - 1; i = quad->side[ QUAD_LEFT_SIDE ].to-1; // nbleft - 1;