PAL10467 Meshing in quadrangles even if the number of nodes on opposite edges is not the same

This commit is contained in:
eap 2005-12-30 07:16:14 +00:00
parent e769c63ae6
commit 584d5262ff
2 changed files with 750 additions and 38 deletions

View File

@ -51,10 +51,21 @@ using namespace std;
#include <Precision.hxx>
#include <gp_Pnt2d.hxx>
#include <TColStd_ListIteratorOfListOfInteger.hxx>
#include <TColStd_SequenceOfReal.hxx>
#include <TColgp_SequenceOfXY.hxx>
#include "utilities.h"
#include "Utils_ExceptHandlers.hxx"
#ifndef StdMeshers_Array2OfNode_HeaderFile
#define StdMeshers_Array2OfNode_HeaderFile
typedef const SMDS_MeshNode* SMDS_MeshNodePtr;
#include <NCollection_DefineArray2.hxx>
DEFINE_BASECOLLECTION (StdMeshers_BaseCollectionNodePtr, SMDS_MeshNodePtr)
DEFINE_ARRAY2(StdMeshers_Array2OfNode,
StdMeshers_BaseCollectionNodePtr, SMDS_MeshNodePtr)
#endif
//=============================================================================
/*!
@ -117,7 +128,28 @@ bool StdMeshers_Quadrangle_2D::Compute (SMESH_Mesh& aMesh,
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
aMesh.GetSubMesh(aShape);
FaceQuadStruct *quad = CheckAnd2Dcompute(aMesh, aShape);
//FaceQuadStruct *quad = CheckAnd2Dcompute(aMesh, aShape);
FaceQuadStruct* quad = CheckNbEdges(aMesh, aShape);
if (!quad)
return false;
if(myQuadranglePreference) {
int n1 = quad->nbPts[0];
int n2 = quad->nbPts[1];
int n3 = quad->nbPts[2];
int n4 = quad->nbPts[3];
int nfull = n1+n2+n3+n4;
int ntmp = nfull/2;
ntmp = ntmp*2;
if( nfull==ntmp && ( (n1!=n3) || (n2!=n4) ) ) {
// special path for using only quandrangle faces
return ComputeQuadPref(aMesh, aShape, quad);
}
}
// set normalized grid on unit square in parametric domain
SetNormalizedGrid(aMesh, aShape, quad);
if (!quad)
return false;
@ -490,6 +522,56 @@ bool StdMeshers_Quadrangle_2D::Compute (SMESH_Mesh& aMesh,
return isOk;
}
//=============================================================================
/*!
*
*/
//=============================================================================
FaceQuadStruct* StdMeshers_Quadrangle_2D::CheckNbEdges(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape)
throw(SALOME_Exception)
{
Unexpect aCatch(SalomeException);
const TopoDS_Face & F = TopoDS::Face(aShape);
// verify 1 wire only, with 4 edges
if (NumberOfWires(F) != 1) {
INFOS("only 1 wire by face (quadrangles)");
return 0;
}
const TopoDS_Wire& W = BRepTools::OuterWire(F);
BRepTools_WireExplorer wexp (W, F);
FaceQuadStruct* quad = new FaceQuadStruct;
for (int i = 0; i < 4; i++)
quad->uv_edges[i] = 0;
quad->uv_grid = 0;
int nbEdges = 0;
for (wexp.Init(W, F); wexp.More(); wexp.Next()) {
const TopoDS_Edge& E = wexp.Current();
int nb = aMesh.GetSubMesh(E)->GetSubMeshDS()->NbNodes();
if (nbEdges < 4) {
quad->edge[nbEdges] = E;
quad->nbPts[nbEdges] = nb + 2; // internal points + 2 extrema
}
nbEdges++;
}
if (nbEdges != 4) {
INFOS("face must have 4 edges /quadrangles");
QuadDelete(quad);
return 0;
}
return quad;
}
//=============================================================================
/*!
*
@ -501,46 +583,12 @@ FaceQuadStruct *StdMeshers_Quadrangle_2D::CheckAnd2Dcompute
{
Unexpect aCatch(SalomeException);
const TopoDS_Face & F = TopoDS::Face(aShape);
FaceQuadStruct *quad = CheckNbEdges(aMesh, aShape);
// verify 1 wire only, with 4 edges
if (NumberOfWires(F) != 1)
{
INFOS("only 1 wire by face (quadrangles)");
return 0;
}
const TopoDS_Wire& W = BRepTools::OuterWire(F);
BRepTools_WireExplorer wexp (W, F);
FaceQuadStruct *quad = new FaceQuadStruct;
for (int i = 0; i < 4; i++)
quad->uv_edges[i] = 0;
quad->uv_grid = 0;
int nbEdges = 0;
for (wexp.Init(W, F); wexp.More(); wexp.Next())
{
const TopoDS_Edge& E = wexp.Current();
int nb = aMesh.GetSubMesh(E)->GetSubMeshDS()->NbNodes();
if (nbEdges < 4)
{
quad->edge[nbEdges] = E;
quad->nbPts[nbEdges] = nb + 2; // internal points + 2 extrema
}
nbEdges++;
}
if (nbEdges != 4)
{
INFOS("face must have 4 edges /quadrangles");
QuadDelete(quad);
return 0;
}
if(!quad) return 0;
// set normalized grid on unit square in parametric domain
SetNormalizedGrid(aMesh, F, quad);
SetNormalizedGrid(aMesh, aShape, quad);
return quad;
}
@ -789,6 +837,654 @@ void StdMeshers_Quadrangle_2D::SetNormalizedGrid (SMESH_Mesh & aMesh,
}
}
//=======================================================================
//function : ShiftQuad
//purpose : auxilary function for ComputeQuadPref
//=======================================================================
static void ShiftQuad(FaceQuadStruct* quad, const int num, bool WisF)
{
if(num>3) return;
int i;
for(i=1; i<=num; i++) {
int nbPts3 = quad->nbPts[0];
quad->nbPts[0] = quad->nbPts[1];
quad->nbPts[1] = quad->nbPts[2];
quad->nbPts[2] = quad->nbPts[3];
quad->nbPts[3] = nbPts3;
TopoDS_Edge edge3 = quad->edge[0];
quad->edge[0] = quad->edge[1];
quad->edge[1] = quad->edge[2];
quad->edge[2] = quad->edge[3];
quad->edge[3] = edge3;
double first3 = quad->first[0];
quad->first[0] = quad->first[1];
quad->first[1] = quad->first[2];
quad->first[2] = quad->first[3];
quad->first[3] = first3;
double last3 = quad->last[0];
quad->last[0] = quad->last[1];
quad->last[1] = quad->last[2];
quad->last[2] = quad->last[3];
quad->last[3] = last3;
bool isEdgeForward3 = quad->isEdgeForward[0];
quad->isEdgeForward[0] = quad->isEdgeForward[1];
quad->isEdgeForward[1] = quad->isEdgeForward[2];
quad->isEdgeForward[2] = quad->isEdgeForward[3];
quad->isEdgeForward[3] = isEdgeForward3;
bool isEdgeOut3 = quad->isEdgeOut[0];
quad->isEdgeOut[0] = quad->isEdgeOut[1];
quad->isEdgeOut[1] = quad->isEdgeOut[2];
quad->isEdgeOut[2] = quad->isEdgeOut[3];
quad->isEdgeOut[3] = isEdgeOut3;
UVPtStruct* uv_edges3 = quad->uv_edges[0];
quad->uv_edges[0] = quad->uv_edges[1];
quad->uv_edges[1] = quad->uv_edges[2];
quad->uv_edges[2] = quad->uv_edges[3];
quad->uv_edges[3] = uv_edges3;
}
if(!WisF) {
// replacement left and right edges
int nbPts3 = quad->nbPts[1];
quad->nbPts[1] = quad->nbPts[3];
quad->nbPts[3] = nbPts3;
TopoDS_Edge edge3 = quad->edge[1];
quad->edge[1] = quad->edge[3];
quad->edge[3] = edge3;
double first3 = quad->first[1];
quad->first[1] = quad->first[3];
quad->first[3] = first3;
double last3 = quad->last[1];
quad->last[1] = quad->last[2];
quad->last[3] = last3;
bool isEdgeForward3 = quad->isEdgeForward[1];
quad->isEdgeForward[1] = quad->isEdgeForward[3];
quad->isEdgeForward[3] = isEdgeForward3;
bool isEdgeOut3 = quad->isEdgeOut[1];
quad->isEdgeOut[1] = quad->isEdgeOut[3];
quad->isEdgeOut[3] = isEdgeOut3;
UVPtStruct* uv_edges3 = quad->uv_edges[1];
quad->uv_edges[1] = quad->uv_edges[3];
quad->uv_edges[3] = uv_edges3;
}
}
//=======================================================================
//function : CalcUV
//purpose : auxilary function for ComputeQuadPref
//=======================================================================
static gp_XY CalcUV(double x0, double x1, double y0, double y1,
FaceQuadStruct* quad,
const gp_Pnt2d& a0, const gp_Pnt2d& a1,
const gp_Pnt2d& a2, const gp_Pnt2d& a3,
const Handle(Geom2d_Curve)& c2db,
const Handle(Geom2d_Curve)& c2dr,
const Handle(Geom2d_Curve)& c2dt,
const Handle(Geom2d_Curve)& c2dl)
{
int nb = quad->nbPts[0];
int nr = quad->nbPts[1];
int nt = quad->nbPts[2];
int nl = quad->nbPts[3];
UVPtStruct* uv_eb = quad->uv_edges[0];
UVPtStruct* uv_er = quad->uv_edges[1];
UVPtStruct* uv_et = quad->uv_edges[2];
UVPtStruct* uv_el = quad->uv_edges[3];
double x = (x0 + y0 * (x1 - x0)) / (1 - (y1 - y0) * (x1 - x0));
double y = y0 + x * (y1 - y0);
double param_b = uv_eb[0].param + x * (uv_eb[nb-1].param - uv_eb[0].param);
double param_t = uv_et[0].param + x * (uv_et[nt-1].param - uv_et[0].param);
double param_r = uv_er[0].param + y * (uv_er[nr-1].param - uv_er[0].param);
double param_l = uv_el[0].param + y * (uv_el[nl-1].param - uv_el[0].param);
gp_Pnt2d p0 = c2db->Value(param_b);
gp_Pnt2d p1 = c2dr->Value(param_r);
gp_Pnt2d p2 = c2dt->Value(param_t);
gp_Pnt2d p3 = c2dl->Value(param_l);
double u = (1 - y) * p0.X() + x * p1.X() + y * p2.X() + (1 - x) * p3.X();
double v = (1 - y) * p0.Y() + x * p1.Y() + y * p2.Y() + (1 - x) * p3.Y();
u -= (1 - x) * (1 - y) * a0.X() + x * (1 - y) * a1.X() +
x * y * a2.X() + (1 - x) * y * a3.X();
v -= (1 - x) * (1 - y) * a0.Y() + x * (1 - y) * a1.Y() +
x * y * a2.Y() + (1 - x) * y * a3.Y();
//cout<<"x0="<<x0<<" x1="<<x1<<" y0="<<y0<<" y1="<<y1<<endl;
//cout<<"x="<<x<<" y="<<y<<endl;
//cout<<"param_b="<<param_b<<" param_t="<<param_t<<" param_r="<<param_r<<" param_l="<<param_l<<endl;
//cout<<"u="<<u<<" v="<<v<<endl;
return gp_XY(u,v);
}
//=======================================================================
//function : ComputeQuadPref
//purpose :
//=======================================================================
/*!
* Special function for creation only quandrangle faces
*/
bool StdMeshers_Quadrangle_2D::ComputeQuadPref
(SMESH_Mesh & aMesh,
const TopoDS_Shape& aShape,
FaceQuadStruct* quad) throw (SALOME_Exception)
{
Unexpect aCatch(SalomeException);
SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();
const TopoDS_Face& F = TopoDS::Face(aShape);
Handle(Geom_Surface) S = BRep_Tool::Surface(F);
const TopoDS_Wire& W = BRepTools::OuterWire(F);
bool WisF = false;
if(W.Orientation()==TopAbs_FORWARD)
WisF = true;
//if(WisF) cout<<"W is FORWARD"<<endl;
//else cout<<"W is REVERSED"<<endl;
bool FisF = (F.Orientation()==TopAbs_FORWARD);
if(!FisF) WisF = !WisF;
int i,j,geomFaceID = meshDS->ShapeToIndex( F );
int nb = quad->nbPts[0];
int nr = quad->nbPts[1];
int nt = quad->nbPts[2];
int nl = quad->nbPts[3];
int dh = abs(nb-nt);
int dv = abs(nr-nl);
if( dh>=dv ) {
if( nt>nb ) {
// it is a base case => not shift quad but me be replacement is need
ShiftQuad(quad,0,WisF);
}
else {
// we have to shift quad on 2
ShiftQuad(quad,2,WisF);
}
}
else {
if( nr>nl ) {
// we have to shift quad on 3
ShiftQuad(quad,3,WisF);
}
else {
// we have to shift quad on 1
ShiftQuad(quad,1,WisF);
}
}
nb = quad->nbPts[0];
nr = quad->nbPts[1];
nt = quad->nbPts[2];
nl = quad->nbPts[3];
dh = abs(nb-nt);
dv = abs(nr-nl);
int nbh = Max(nb,nt);
int nbv = Max(nr,nl);
int addh = 0;
int addv = 0;
// orientation of face and 3 main domain for future faces
// 0 top 1
// 1------------1
// | | | |
// | | | |
// | L | | R |
// left | | | | rigth
// | / \ |
// | / C \ |
// |/ \|
// 0------------0
// 0 bottom 1
if(dh>dv) {
addv = (dh-dv)/2;
nbv = nbv + addv;
}
else { // dv>=dh
addh = (dv-dh)/2;
nbh = nbh + addh;
}
Handle(Geom2d_Curve) c2d[4];
for(i=0; i<4; i++) {
c2d[i] = BRep_Tool::CurveOnSurface(quad->edge[i], F,
quad->first[i], quad->last[i]);
}
bool loadOk = true;
for(i=0; i<2; i++) {
quad->uv_edges[i] = LoadEdgePoints2(aMesh, F, quad->edge[i], false);
if(!quad->uv_edges[i]) loadOk = false;
}
for(i=2; i<4; i++) {
quad->uv_edges[i] = LoadEdgePoints2(aMesh, F, quad->edge[i], true);
if (!quad->uv_edges[i]) loadOk = false;
}
if (!loadOk) {
INFOS("StdMeshers_Quadrangle_2D::ComputeQuadPref - LoadEdgePoints failed");
QuadDelete( quad );
quad = 0;
return false;
}
UVPtStruct* uv_eb = quad->uv_edges[0];
UVPtStruct* uv_er = quad->uv_edges[1];
UVPtStruct* uv_et = quad->uv_edges[2];
UVPtStruct* uv_el = quad->uv_edges[3];
// arrays for normalized params
//cout<<"Dump B:"<<endl;
TColStd_SequenceOfReal npb, npr, npt, npl;
for(i=0; i<nb; i++) {
npb.Append(uv_eb[i].normParam);
//cout<<"i="<<i<<" par="<<uv_eb[i].param<<" npar="<<uv_eb[i].normParam;
//const SMDS_MeshNode* N = uv_eb[i].node;
//cout<<" node("<<N->X()<<","<<N->Y()<<","<<N->Z()<<")"<<endl;
}
for(i=0; i<nr; i++) {
npr.Append(uv_er[i].normParam);
}
for(i=0; i<nt; i++) {
npt.Append(uv_et[i].normParam);
}
for(i=0; i<nl; i++) {
npl.Append(uv_el[i].normParam);
}
// we have to add few values of params to right and left
// insert them after first param
// insert to right
int dr = nbv - nr;
double dpr = (npr.Value(2) - npr.Value(1))/(dr+1);
for(i=1; i<=dr; i++) {
npr.InsertAfter(1,npr.Value(2)-dpr);
}
// insert to left
int dl = nbv - nl;
dpr = (npl.Value(2) - npl.Value(1))/(dl+1);
for(i=1; i<=dl; i++) {
npl.InsertAfter(1,npl.Value(2)-dpr);
}
//cout<<"npb:";
//for(i=1; i<=npb.Length(); i++) {
// cout<<" "<<npb.Value(i);
//}
//cout<<endl;
gp_Pnt2d a[4];
c2d[0]->D0(uv_eb[0].param,a[0]);
c2d[0]->D0(uv_eb[nb-1].param,a[1]);
c2d[2]->D0(uv_et[nt-1].param,a[2]);
c2d[2]->D0(uv_et[0].param,a[3]);
//cout<<" a[0]("<<a[0].X()<<","<<a[0].Y()<<")"<<" a[1]("<<a[1].X()<<","<<a[1].Y()<<")"
// <<" a[2]("<<a[2].X()<<","<<a[2].Y()<<")"<<" a[3]("<<a[3].X()<<","<<a[3].Y()<<")"<<endl;
int nnn = Min(nr,nl);
// auxilary sequence of XY for creation nodes
// in the bottom part of central domain
// it's length must be == nbv-nnn-1
TColgp_SequenceOfXY UVL;
TColgp_SequenceOfXY UVR;
// step1: create faces for left domain
StdMeshers_Array2OfNode NodesL(1,dl+1,1,nl);
// add left nodes
for(j=1; j<=nl; j++)
NodesL.SetValue(1,j,uv_el[j-1].node);
if(dl>0) {
// add top nodes
for(i=1; i<=dl; i++)
NodesL.SetValue(i+1,nl,uv_et[i].node);
// create and add needed nodes
TColgp_SequenceOfXY UVtmp;
for(i=1; i<=dl; i++) {
double x0 = npt.Value(i+1);
double x1 = x0;
// diagonal node
double y0 = npl.Value(i+1);
double y1 = npr.Value(i+1);
gp_XY UV = CalcUV(x0, x1, y0, y1, quad, a[0], a[1], a[2], a[3],
c2d[0], c2d[1], c2d[2], c2d[3]);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesL.SetValue(i+1,1,N);
if(UVL.Length()<nbv-nnn-1) UVL.Append(UV);
// internal nodes
for(j=2; j<nl; j++) {
double y0 = npl.Value(dl+j);
double y1 = npr.Value(dl+j);
gp_XY UV = CalcUV(x0, x1, y0, y1, quad, a[0], a[1], a[2], a[3],
c2d[0], c2d[1], c2d[2], c2d[3]);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesL.SetValue(i+1,j,N);
if( i==dl ) UVtmp.Append(UV);
}
}
for(i=1; i<=UVtmp.Length() && UVL.Length()<nbv-nnn-1; i++) {
UVL.Append(UVtmp.Value(i));
}
//cout<<"Dump NodesL:"<<endl;
//for(i=1; i<=dl+1; i++) {
// cout<<"i="<<i;
// for(j=1; j<=nl; j++) {
// cout<<" ("<<NodesL.Value(i,j)->X()<<","<<NodesL.Value(i,j)->Y()<<","<<NodesL.Value(i,j)->Z()<<")";
// }
// cout<<endl;
//}
// create faces
for(i=1; i<=dl; i++) {
for(j=1; j<nl; j++) {
if(WisF) {
SMDS_MeshFace* F =
meshDS->AddFace(NodesL.Value(i,j), NodesL.Value(i+1,j),
NodesL.Value(i+1,j+1), NodesL.Value(i,j+1));
meshDS->SetMeshElementOnShape(F, geomFaceID);
}
else {
SMDS_MeshFace* F =
meshDS->AddFace(NodesL.Value(i,j), NodesL.Value(i,j+1),
NodesL.Value(i+1,j+1), NodesL.Value(i+1,j));
meshDS->SetMeshElementOnShape(F, geomFaceID);
}
}
}
}
else {
// fill UVL using c2d
for(i=1; i<npl.Length() && UVL.Length()<nbv-nnn-1; i++) {
gp_Pnt2d p2d;
c2d[3]->D0(uv_el[i].param,p2d);
UVL.Append(p2d.XY());
}
}
// step2: create faces for right domain
StdMeshers_Array2OfNode NodesR(1,dr+1,1,nr);
// add right nodes
for(j=1; j<=nr; j++)
NodesR.SetValue(1,j,uv_er[nr-j].node);
if(dr>0) {
// add top nodes
for(i=1; i<=dr; i++)
NodesR.SetValue(i+1,1,uv_et[nt-1-i].node);
// create and add needed nodes
TColgp_SequenceOfXY UVtmp;
for(i=1; i<=dr; i++) {
double x0 = npt.Value(nt-i);
double x1 = x0;
// diagonal node
double y0 = npl.Value(i+1);
double y1 = npr.Value(i+1);
gp_XY UV = CalcUV(x0, x1, y0, y1, quad, a[0], a[1], a[2], a[3],
c2d[0], c2d[1], c2d[2], c2d[3]);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode * N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesR.SetValue(i+1,nr,N);
if(UVR.Length()<nbv-nnn-1) UVR.Append(UV);
// internal nodes
for(j=2; j<nr; j++) {
double y0 = npl.Value(nbv-j+1);
double y1 = npr.Value(nbv-j+1);
gp_XY UV = CalcUV(x0, x1, y0, y1, quad, a[0], a[1], a[2], a[3],
c2d[0], c2d[1], c2d[2], c2d[3]);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesR.SetValue(i+1,j,N);
if( i==dr ) UVtmp.Prepend(UV);
}
}
for(i=1; i<=UVtmp.Length() && UVR.Length()<nbv-nnn-1; i++) {
UVR.Append(UVtmp.Value(i));
}
// create faces
for(i=1; i<=dr; i++) {
for(j=1; j<nr; j++) {
if(WisF) {
SMDS_MeshFace* F =
meshDS->AddFace(NodesR.Value(i,j), NodesR.Value(i+1,j),
NodesR.Value(i+1,j+1), NodesR.Value(i,j+1));
meshDS->SetMeshElementOnShape(F, geomFaceID);
}
else {
SMDS_MeshFace* F =
meshDS->AddFace(NodesR.Value(i,j), NodesR.Value(i,j+1),
NodesR.Value(i+1,j+1), NodesR.Value(i+1,j));
meshDS->SetMeshElementOnShape(F, geomFaceID);
}
}
}
}
else {
// fill UVR using c2d
for(i=1; i<npr.Length() && UVR.Length()<nbv-nnn-1; i++) {
gp_Pnt2d p2d;
c2d[1]->D0(uv_er[i].param,p2d);
UVR.Append(p2d.XY());
}
}
// step3: create faces for central domain
StdMeshers_Array2OfNode NodesC(1,nb,1,nbv);
// add first string using NodesL
for(i=1; i<=dl+1; i++)
NodesC.SetValue(1,i,NodesL(i,1));
for(i=2; i<=nl; i++)
NodesC.SetValue(1,dl+i,NodesL(dl+1,i));
// add last string using NodesR
for(i=1; i<=dr+1; i++)
NodesC.SetValue(nb,i,NodesR(i,nr));
for(i=1; i<nr; i++)
NodesC.SetValue(nb,dr+i+1,NodesR(dr+1,nr-i));
// add top nodes (last columns)
for(i=dl+2; i<nbh-dr; i++)
NodesC.SetValue(i-dl,nbv,uv_et[i-1].node);
// add bottom nodes (first columns)
for(i=2; i<nb; i++) {
NodesC.SetValue(i,1,uv_eb[i-1].node);
gp_Pnt2d p2d;
c2d[0]->D0(uv_eb[i-1].param,p2d);
}
// create and add needed nodes
// add linear layers
for(i=2; i<nb; i++) {
double x0 = npt.Value(dl+i);
double x1 = x0;
for(j=1; j<nnn; j++) {
double y0 = npl.Value(nbv-nnn+j);
double y1 = npr.Value(nbv-nnn+j);
gp_XY UV = CalcUV(x0, x1, y0, y1, quad, a[0], a[1], a[2], a[3],
c2d[0], c2d[1], c2d[2], c2d[3]);
gp_Pnt P = S->Value(UV.X(),UV.Y());
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, UV.X(), UV.Y());
NodesC.SetValue(i,nbv-nnn+j,N);
}
}
// add diagonal layers
//cout<<"UVL.Length()="<<UVL.Length()<<" UVR.Length()="<<UVR.Length()<<endl;
//cout<<"Dump UVL:"<<endl;
//for(i=1; i<=UVL.Length(); i++) {
// cout<<" ("<<UVL.Value(i).X()<<","<<UVL.Value(i).Y()<<")";
//}
//cout<<endl;
for(i=1; i<nbv-nnn; i++) {
double du = UVR.Value(i).X() - UVL.Value(i).X();
double dv = UVR.Value(i).Y() - UVL.Value(i).Y();
for(j=2; j<nb; j++) {
double u = UVL.Value(i).X() + du*npb.Value(j);
double v = UVL.Value(i).Y() + dv*npb.Value(j);
gp_Pnt P = S->Value(u,v);
SMDS_MeshNode* N = meshDS->AddNode(P.X(), P.Y(), P.Z());
meshDS->SetNodeOnFace(N, geomFaceID, u, v);
NodesC.SetValue(j,i+1,N);
}
}
// create faces
for(i=1; i<nb; i++) {
for(j=1; j<nbv; j++) {
if(WisF) {
SMDS_MeshFace* F =
meshDS->AddFace(NodesC.Value(i,j), NodesC.Value(i+1,j),
NodesC.Value(i+1,j+1), NodesC.Value(i,j+1));
meshDS->SetMeshElementOnShape(F, geomFaceID);
}
else {
SMDS_MeshFace* F =
meshDS->AddFace(NodesC.Value(i,j), NodesC.Value(i,j+1),
NodesC.Value(i+1,j+1), NodesC.Value(i+1,j));
meshDS->SetMeshElementOnShape(F, geomFaceID);
}
}
}
QuadDelete(quad);
bool isOk = true;
return isOk;
}
//=============================================================================
/*!
* LoadEdgePoints2
*/
//=============================================================================
UVPtStruct* StdMeshers_Quadrangle_2D::LoadEdgePoints2 (SMESH_Mesh & aMesh,
const TopoDS_Face& F,
const TopoDS_Edge& E,
bool IsReverse)
{
//MESSAGE("StdMeshers_Quadrangle_2D::LoadEdgePoints");
// --- IDNodes of first and last Vertex
TopoDS_Vertex VFirst, VLast;
TopExp::Vertices(E, VFirst, VLast); // corresponds to f and l
ASSERT(!VFirst.IsNull());
SMDS_NodeIteratorPtr lid = aMesh.GetSubMesh(VFirst)->GetSubMeshDS()->GetNodes();
if (!lid->more()) {
MESSAGE ( "NO NODE BUILT ON VERTEX" );
return 0;
}
const SMDS_MeshNode* idFirst = lid->next();
ASSERT(!VLast.IsNull());
lid = aMesh.GetSubMesh(VLast)->GetSubMeshDS()->GetNodes();
if (!lid->more()) {
MESSAGE ( "NO NODE BUILT ON VERTEX" );
return 0;
}
const SMDS_MeshNode* idLast = lid->next();
// --- edge internal IDNodes (relies on good order storage, not checked)
map<double, const SMDS_MeshNode *> params;
SMDS_NodeIteratorPtr ite = aMesh.GetSubMesh(E)->GetSubMeshDS()->GetNodes();
while(ite->more()) {
const SMDS_MeshNode* node = ite->next();
const SMDS_EdgePosition* epos =
static_cast<const SMDS_EdgePosition*>(node->GetPosition().get());
double param = epos->GetUParameter();
params[param] = node;
}
int nbPoints = aMesh.GetSubMesh(E)->GetSubMeshDS()->NbNodes();
if (nbPoints != params.size()) {
MESSAGE( "BAD NODE ON EDGE POSITIONS" );
return 0;
}
UVPtStruct* uvslf = new UVPtStruct[nbPoints + 2];
double f, l;
Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E, F, f, l);
const TopoDS_Wire& W = BRepTools::OuterWire(F);
bool FisF = (F.Orientation()==TopAbs_FORWARD);
bool WisF = (W.Orientation()==TopAbs_FORWARD);
bool isForward = (E.Orientation()==TopAbs_FORWARD);
//if(isForward) cout<<"E is FORWARD"<<endl;
//else cout<<"E is REVERSED"<<endl;
if(!WisF) isForward = !isForward;
if(!FisF) isForward = !isForward;
//bool isForward = !(E.Orientation()==TopAbs_FORWARD);
if(IsReverse) isForward = !isForward;
double paramin = 0;
double paramax = 0;
if (isForward) {
paramin = f;
paramax = l;
gp_Pnt2d p = C2d->Value(f); // first point = Vertex Forward
uvslf[0].x = p.X();
uvslf[0].y = p.Y();
uvslf[0].param = f;
uvslf[0].node = idFirst;
//MESSAGE("__ f "<<f<<" "<<uvslf[0].x <<" "<<uvslf[0].y);
map < double, const SMDS_MeshNode* >::iterator itp = params.begin();
for (int i = 1; i <= nbPoints; i++) { // nbPoints internal
double param = (*itp).first;
gp_Pnt2d p = C2d->Value(param);
uvslf[i].x = p.X();
uvslf[i].y = p.Y();
uvslf[i].param = param;
uvslf[i].node = (*itp).second;
//MESSAGE("__ "<<i<<" "<<param<<" "<<uvslf[i].x <<" "<<uvslf[i].y);
itp++;
}
p = C2d->Value(l); // last point = Vertex Reversed
uvslf[nbPoints + 1].x = p.X();
uvslf[nbPoints + 1].y = p.Y();
uvslf[nbPoints + 1].param = l;
uvslf[nbPoints + 1].node = idLast;
//MESSAGE("__ l "<<l<<" "<<uvslf[nbPoints+1].x <<" "<<uvslf[nbPoints+1].y);
}
else {
paramin = l;
paramax = f;
gp_Pnt2d p = C2d->Value(l); // first point = Vertex Reversed
uvslf[0].x = p.X();
uvslf[0].y = p.Y();
uvslf[0].param = l;
uvslf[0].node = idLast;
//MESSAGE("__ l "<<l<<" "<<uvslf[0].x <<" "<<uvslf[0].y);
map < double, const SMDS_MeshNode* >::reverse_iterator itp = params.rbegin();
for (int j = nbPoints; j >= 1; j--) { // nbPoints internal
double param = (*itp).first;
int i = nbPoints + 1 - j;
gp_Pnt2d p = C2d->Value(param);
uvslf[i].x = p.X();
uvslf[i].y = p.Y();
uvslf[i].param = param;
uvslf[i].node = (*itp).second;
//MESSAGE("__ "<<i<<" "<<param<<" "<<uvslf[i].x <<" "<<uvslf[i].y);
itp++;
}
p = C2d->Value(f); // last point = Vertex Forward
uvslf[nbPoints + 1].x = p.X();
uvslf[nbPoints + 1].y = p.Y();
uvslf[nbPoints + 1].param = f;
uvslf[nbPoints + 1].node = idFirst;
//MESSAGE("__ f "<<f<<" "<<uvslf[nbPoints+1].x <<" "<<uvslf[nbPoints+1].y);
}
ASSERT(paramin != paramax);
for (int i = 0; i < nbPoints + 2; i++) {
uvslf[i].normParam = (uvslf[i].param - paramin) / (paramax - paramin);
}
return uvslf;
}
//=============================================================================
/*!
* LoadEdgePoints

View File

@ -87,11 +87,27 @@ public:
protected:
FaceQuadStruct* CheckNbEdges(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape)
throw (SALOME_Exception);
void SetNormalizedGrid(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
FaceQuadStruct* quad)
throw (SALOME_Exception);
/**
* Special function for creation only quandrangle faces
*/
bool ComputeQuadPref(SMESH_Mesh& aMesh,
const TopoDS_Shape& aShape,
FaceQuadStruct* quad)
throw (SALOME_Exception);
UVPtStruct* LoadEdgePoints2(SMESH_Mesh& aMesh,
const TopoDS_Face& F, const TopoDS_Edge& E,
bool IsReverse);
UVPtStruct* LoadEdgePoints(SMESH_Mesh& aMesh,
const TopoDS_Face& F, const TopoDS_Edge& E,
double first, double last);