Fix SALOME_TESTS/Grids/smesh/imps_09/K0

Fix Triangulator for the case of self-intersecting but valid polygon

+ some fixes for #16469

1) ElementsOnShape: fix too high octree of classifiers in case of large tolerance
2) SMESH_MeshEditor::SewFreeBorder() SIGSEGV on over-constrained elements
3) Project(): adjust radius to avoid checking too many elements
4) Protect SMESH_Gen_i::Compute() from CORBA error in case of a removed mesh
5) smeshBuilder.Mesh.FindCoincidentNodesOnPart() - fix for a case of ID list
This commit is contained in:
eap 2019-02-22 21:17:20 +03:00
parent b9b6785c00
commit 6ca4db2d7c
10 changed files with 442 additions and 152 deletions

View File

@ -4242,6 +4242,7 @@ struct ElementsOnShape::Classifier
TopAbs_ShapeEnum ShapeType() const { return myShape.ShapeType(); } TopAbs_ShapeEnum ShapeType() const { return myShape.ShapeType(); }
const TopoDS_Shape& Shape() const { return myShape; } const TopoDS_Shape& Shape() const { return myShape; }
const Bnd_B3d* GetBndBox() const { return & myBox; } const Bnd_B3d* GetBndBox() const { return & myBox; }
double Tolerance() const { return myTol; }
bool IsChecked() { return myFlags & theIsCheckedFlag; } bool IsChecked() { return myFlags & theIsCheckedFlag; }
bool IsSetFlag( int flag ) const { return myFlags & flag; } bool IsSetFlag( int flag ) const { return myFlags & flag; }
void SetChecked( bool is ) { is ? SetFlag( theIsCheckedFlag ) : UnsetFlag( theIsCheckedFlag ); } void SetChecked( bool is ) { is ? SetFlag( theIsCheckedFlag ) : UnsetFlag( theIsCheckedFlag ); }
@ -4458,10 +4459,9 @@ bool ElementsOnShape::IsSatisfy (const SMDS_MeshElement* elem)
myOctree = new OctreeClassifier( myWorkClassifiers ); myOctree = new OctreeClassifier( myWorkClassifiers );
} }
SMDS_ElemIteratorPtr aNodeItr = elem->nodesIterator(); for ( int i = 0, nb = elem->NbNodes(); i < nb && (isSatisfy == myAllNodesFlag); ++i )
while (aNodeItr->more() && (isSatisfy == myAllNodesFlag))
{ {
SMESH_TNodeXYZ aPnt( aNodeItr->next() ); SMESH_TNodeXYZ aPnt( elem->GetNode( i ));
centerXYZ += aPnt; centerXYZ += aPnt;
isNodeOut = true; isNodeOut = true;
@ -4816,7 +4816,8 @@ void ElementsOnShape::OctreeClassifier::buildChildrenData()
for ( int i = 0; i < nbChildren(); i++ ) for ( int i = 0; i < nbChildren(); i++ )
{ {
OctreeClassifier* child = static_cast<OctreeClassifier*>( myChildren[ i ]); OctreeClassifier* child = static_cast<OctreeClassifier*>( myChildren[ i ]);
child->myIsLeaf = ( child->myClassifiers.size() <= 5 ); child->myIsLeaf = ( child->myClassifiers.size() <= 5 ||
child->maxSize() < child->myClassifiers[0]->Tolerance() );
} }
} }

View File

@ -7588,35 +7588,37 @@ bool SMESH_MeshEditor::FindFreeBorder (const SMDS_MeshNode* theFirst
theNodes.push_back( theSecondNode ); theNodes.push_back( theSecondNode );
const SMDS_MeshNode *nIgnore = theFirstNode, *nStart = theSecondNode; const SMDS_MeshNode *nIgnore = theFirstNode, *nStart = theSecondNode;
TIDSortedElemSet foundElems; //TIDSortedElemSet foundElems;
bool needTheLast = ( theLastNode != 0 ); bool needTheLast = ( theLastNode != 0 );
vector<const SMDS_MeshNode*> nodes;
while ( nStart != theLastNode ) { while ( nStart != theLastNode ) {
if ( nStart == theFirstNode ) if ( nStart == theFirstNode )
return !needTheLast; return !needTheLast;
// find all free border faces sharing form nStart // find all free border faces sharing nStart
list< const SMDS_MeshElement* > curElemList; list< const SMDS_MeshElement* > curElemList;
list< const SMDS_MeshNode* > nStartList; list< const SMDS_MeshNode* > nStartList;
SMDS_ElemIteratorPtr invElemIt = nStart->GetInverseElementIterator(SMDSAbs_Face); SMDS_ElemIteratorPtr invElemIt = nStart->GetInverseElementIterator(SMDSAbs_Face);
while ( invElemIt->more() ) { while ( invElemIt->more() ) {
const SMDS_MeshElement* e = invElemIt->next(); const SMDS_MeshElement* e = invElemIt->next();
if ( e == curElem || foundElems.insert( e ).second ) { //if ( e == curElem || foundElems.insert( e ).second ) // e can encounter twice in border
{
// get nodes // get nodes
int iNode = 0, nbNodes = e->NbNodes();
vector<const SMDS_MeshNode*> nodes( nbNodes+1 );
nodes.assign( SMDS_MeshElement::iterator( e->interlacedNodesIterator() ), nodes.assign( SMDS_MeshElement::iterator( e->interlacedNodesIterator() ),
SMDS_MeshElement::iterator() ); SMDS_MeshElement::iterator() );
nodes.push_back( nodes[ 0 ]); nodes.push_back( nodes[ 0 ]);
// check 2 links // check 2 links
int iNode = 0, nbNodes = nodes.size() - 1;
for ( iNode = 0; iNode < nbNodes; iNode++ ) for ( iNode = 0; iNode < nbNodes; iNode++ )
if ((( nodes[ iNode ] == nStart && nodes[ iNode + 1] != nIgnore ) || if ((( nodes[ iNode ] == nStart && nodes[ iNode + 1] != nIgnore ) ||
( nodes[ iNode + 1] == nStart && nodes[ iNode ] != nIgnore )) && ( nodes[ iNode + 1] == nStart && nodes[ iNode ] != nIgnore )) &&
ControlFreeBorder( &nodes[ iNode ], e->GetID() )) ( ControlFreeBorder( &nodes[ iNode ], e->GetID() )))
{ {
nStartList.push_back( nodes[ iNode + ( nodes[ iNode ] == nStart ? 1 : 0 )]); nStartList.push_back( nodes[ iNode + ( nodes[ iNode ] == nStart )]);
curElemList.push_back( e ); curElemList.push_back( e );
} }
} }
@ -7682,10 +7684,8 @@ bool SMESH_MeshEditor::FindFreeBorder (const SMDS_MeshNode* theFirst
theNodes.pop_back(); // remove nIgnore theNodes.pop_back(); // remove nIgnore
theNodes.pop_back(); // remove nStart theNodes.pop_back(); // remove nStart
theFaces.pop_back(); // remove curElem theFaces.pop_back(); // remove curElem
list< const SMDS_MeshNode* >::iterator nIt = cNL->begin(); theNodes.splice( theNodes.end(), *cNL );
list< const SMDS_MeshElement* >::iterator fIt = cFL->begin(); theFaces.splice( theFaces.end(), *cFL );
for ( ; nIt != cNL->end(); nIt++ ) theNodes.push_back( *nIt );
for ( ; fIt != cFL->end(); fIt++ ) theFaces.push_back( *fIt );
return true; return true;
} // several continuations found } // several continuations found
@ -8026,6 +8026,10 @@ SMESH_MeshEditor::SewFreeBorder (const SMDS_MeshNode* theBordFirstNode,
nIt[0] = nSide[0].begin(); eIt[0] = eSide[0].begin(); nIt[0] = nSide[0].begin(); eIt[0] = eSide[0].begin();
nIt[1] = nSide[1].begin(); eIt[1] = eSide[1].begin(); nIt[1] = nSide[1].begin(); eIt[1] = eSide[1].begin();
// element can be split while iterating on border if it has two edges in the border
std::map< const SMDS_MeshElement* , const SMDS_MeshElement* > elemReplaceMap;
std::map< const SMDS_MeshElement* , const SMDS_MeshElement* >::iterator elemReplaceMapIt;
TElemOfNodeListMap insertMap; TElemOfNodeListMap insertMap;
TElemOfNodeListMap::iterator insertMapIt; TElemOfNodeListMap::iterator insertMapIt;
// insertMap is // insertMap is
@ -8073,12 +8077,15 @@ SMESH_MeshEditor::SewFreeBorder (const SMDS_MeshNode* theBordFirstNode,
const SMDS_MeshNode* nIns = *nIt [ 1 - intoBord ]; const SMDS_MeshNode* nIns = *nIt [ 1 - intoBord ];
if ( intoBord == 1 ) { if ( intoBord == 1 ) {
// move node of the border to be on a link of elem of the side // move node of the border to be on a link of elem of the side
gp_XYZ p1 (n1->X(), n1->Y(), n1->Z()); SMESH_NodeXYZ p1( n1 ), p2( n2 );
gp_XYZ p2 (n2->X(), n2->Y(), n2->Z());
double ratio = du / ( param[ 1 ][ i[1] ] - param[ 1 ][ i[1]-1 ]); double ratio = du / ( param[ 1 ][ i[1] ] - param[ 1 ][ i[1]-1 ]);
gp_XYZ p = p2 * ( 1 - ratio ) + p1 * ratio; gp_XYZ p = p2 * ( 1 - ratio ) + p1 * ratio;
GetMeshDS()->MoveNode( nIns, p.X(), p.Y(), p.Z() ); GetMeshDS()->MoveNode( nIns, p.X(), p.Y(), p.Z() );
} }
elemReplaceMapIt = elemReplaceMap.find( elem );
if ( elemReplaceMapIt != elemReplaceMap.end() )
elem = elemReplaceMapIt->second;
insertMapIt = insertMap.find( elem ); insertMapIt = insertMap.find( elem );
bool notFound = ( insertMapIt == insertMap.end() ); bool notFound = ( insertMapIt == insertMap.end() );
bool otherLink = ( !notFound && (*insertMapIt).second.front() != n1 ); bool otherLink = ( !notFound && (*insertMapIt).second.front() != n1 );
@ -8101,8 +8108,10 @@ SMESH_MeshEditor::SewFreeBorder (const SMDS_MeshNode* theBordFirstNode,
UpdateVolumes(n12, n22, nodeList); UpdateVolumes(n12, n22, nodeList);
} }
// 3. find an element appeared on n1 and n2 after the insertion // 3. find an element appeared on n1 and n2 after the insertion
insertMap.erase( elem ); insertMap.erase( insertMapIt );
elem = findAdjacentFace( n1, n2, 0 ); const SMDS_MeshElement* elem2 = findAdjacentFace( n1, n2, 0 );
elemReplaceMap.insert( std::make_pair( elem, elem2 ));
elem = elem2;
} }
if ( notFound || otherLink ) { if ( notFound || otherLink ) {
// add element and nodes of the side into the insertMap // add element and nodes of the side into the insertMap

View File

@ -1254,18 +1254,43 @@ gp_XYZ SMESH_ElementSearcherImpl::Project(const gp_Pnt& point,
gp_XYZ p = point.XYZ(); gp_XYZ p = point.XYZ();
ElementBndBoxTree* ebbLeaf = ebbTree->getLeafAtPoint( p ); ElementBndBoxTree* ebbLeaf = ebbTree->getLeafAtPoint( p );
const Bnd_B3d* box = ebbLeaf ? ebbLeaf->getBox() : ebbTree->getBox(); const Bnd_B3d* box = ebbLeaf ? ebbLeaf->getBox() : ebbTree->getBox();
double radius = ( box->CornerMax() - box->CornerMin() ).Modulus(); gp_XYZ pMin = box->CornerMin(), pMax = box->CornerMax();
double radius = Precision::Infinite();
if ( ebbLeaf || !box->IsOut( p ))
{
for ( int i = 1; i <= 3; ++i )
{
double d = 0.5 * ( pMax.Coord(i) - pMin.Coord(i) );
if ( d > Precision::Confusion() )
radius = Min( d, radius );
}
if ( !ebbLeaf )
radius /= ebbTree->getHeight( /*full=*/true );
}
else // p outside of box
{
for ( int i = 1; i <= 3; ++i )
{
double d = 0;
if ( point.Coord(i) < pMin.Coord(i) )
d = pMin.Coord(i) - point.Coord(i);
else if ( point.Coord(i) > pMax.Coord(i) )
d = point.Coord(i) - pMax.Coord(i);
if ( d > Precision::Confusion() )
radius = Min( d, radius );
}
}
ElementBndBoxTree::TElemSeq elems; ElementBndBoxTree::TElemSeq elems;
ebbTree->getElementsInSphere( p, radius, elems ); ebbTree->getElementsInSphere( p, radius, elems );
while ( elems.empty() && radius < 1e100 ) while ( elems.empty() && radius < 1e100 )
{ {
radius *= 1.5; radius *= 1.1;
ebbTree->getElementsInSphere( p, radius, elems ); ebbTree->getElementsInSphere( p, radius, elems );
} }
gp_XYZ proj, bestProj; gp_XYZ proj, bestProj;
const SMDS_MeshElement* elem = 0; const SMDS_MeshElement* elem = 0;
double minDist = 2 * radius; double minDist = Precision::Infinite();
ElementBndBoxTree::TElemSeq::iterator e = elems.begin(); ElementBndBoxTree::TElemSeq::iterator e = elems.begin();
for ( ; e != elems.end(); ++e ) for ( ; e != elems.end(); ++e )
{ {
@ -2346,18 +2371,6 @@ void SMESH_MeshAlgos::Get1DBranches( SMDS_ElemIteratorPtr theEdgeIt,
// put the found branches to the result // put the found branches to the result
if ( nbBranches == 2 && !startIsBranchEnd ) // join two branches starting at the same node if ( nbBranches == 2 && !startIsBranchEnd ) // join two branches starting at the same node
{
if ( nodeBranches[0].back() == nodeBranches[1].back() )
{
// it is a closed branch, keep theStartNode first
nodeBranches[0].pop_back();
nodeBranches[0].reserve( nodeBranches[0].size() + nodeBranches[1].size() );
nodeBranches[0].insert( nodeBranches[0].end(),
nodeBranches[1].rbegin(), nodeBranches[1].rend() );
branches[0].reserve( branches[0].size() + branches[1].size() );
branches[0].insert( branches[0].end(), branches[1].rbegin(), branches[1].rend() );
}
else
{ {
std::reverse( nodeBranches[0].begin(), nodeBranches[0].end() ); std::reverse( nodeBranches[0].begin(), nodeBranches[0].end() );
nodeBranches[0].pop_back(); nodeBranches[0].pop_back();
@ -2368,7 +2381,7 @@ void SMESH_MeshAlgos::Get1DBranches( SMDS_ElemIteratorPtr theEdgeIt,
std::reverse( branches[0].begin(), branches[0].end() ); std::reverse( branches[0].begin(), branches[0].end() );
branches[0].reserve( branches[0].size() + branches[1].size() ); branches[0].reserve( branches[0].size() + branches[1].size() );
branches[0].insert( branches[0].end(), branches[1].begin(), branches[1].end() ); branches[0].insert( branches[0].end(), branches[1].begin(), branches[1].end() );
}
nodeBranches[1].clear(); nodeBranches[1].clear();
branches[1].clear(); branches[1].clear();
} }

View File

@ -443,27 +443,11 @@ namespace SMESH_MeshAlgos
bool triangulate( std::vector< const SMDS_MeshNode*>& nodes, const size_t nbNodes ); bool triangulate( std::vector< const SMDS_MeshNode*>& nodes, const size_t nbNodes );
/*! struct PolyVertex;
* \brief Vertex of a polygon. Together with 2 neighbor Vertices represents a triangle
*/
struct PolyVertex
{
SMESH_NodeXYZ _nxyz;
size_t _index;
gp_XY _xy;
PolyVertex* _prev;
PolyVertex* _next;
void SetNodeAndNext( const SMDS_MeshNode* n, PolyVertex& v, size_t index );
void GetTriaNodes( const SMDS_MeshNode** nodes, size_t* nodeIndices) const;
double TriaArea() const;
bool IsInsideTria( const PolyVertex* v );
PolyVertex* Delete();
};
struct Optimizer; struct Optimizer;
struct Data;
std::vector< PolyVertex > _pv; Data* _data;
std::vector< size_t > _nodeIndex;
Optimizer* _optimizer; Optimizer* _optimizer;
}; };

View File

@ -141,11 +141,11 @@ namespace
EdgeLoop() : SMDS_PolygonalFaceOfNodes( std::vector<const SMDS_MeshNode *>() ) {} EdgeLoop() : SMDS_PolygonalFaceOfNodes( std::vector<const SMDS_MeshNode *>() ) {}
void Clear() { myLinks.clear(); myIsBndConnected = false; myHasPending = false; } void Clear() { myLinks.clear(); myIsBndConnected = false; myHasPending = false; }
bool SetConnected() { bool was = myIsBndConnected; myIsBndConnected = true; return !was; } bool SetConnected() { bool was = myIsBndConnected; myIsBndConnected = true; return !was; }
bool Contains( const SMDS_MeshNode* n ) const size_t Contains( const SMDS_MeshNode* n ) const
{ {
for ( size_t i = 0; i < myLinks.size(); ++i ) for ( size_t i = 0; i < myLinks.size(); ++i )
if ( myLinks[i]->myNode1 == n ) return true; if ( myLinks[i]->myNode1 == n ) return i + 1;
return false; return 0;
} }
virtual int NbNodes() const { return myLinks.size(); } virtual int NbNodes() const { return myLinks.size(); }
virtual SMDS_ElemIteratorPtr nodesIterator() const virtual SMDS_ElemIteratorPtr nodesIterator() const
@ -224,6 +224,24 @@ namespace
myLoopOfEdge[ Index( *loop->myLinks[ iE ] )] = 0; myLoopOfEdge[ Index( *loop->myLinks[ iE ] )] = 0;
loop->Clear(); loop->Clear();
} }
void Join( EdgeLoop& loop1, size_t iAfterConcact,
EdgeLoop& loop2, size_t iFromEdge2 )
{
std::vector< const EdgePart* > linksAfterContact( loop1.myLinks.begin() + iAfterConcact,
loop1.myLinks.end() );
loop1.myLinks.reserve( loop2.myLinks.size() + loop1.myLinks.size() );
loop1.myLinks.resize( iAfterConcact );
loop1.myLinks.insert( loop1.myLinks.end(),
loop2.myLinks.begin() + iFromEdge2, loop2.myLinks.end() );
loop1.myLinks.insert( loop1.myLinks.end(),
loop2.myLinks.begin(), loop2.myLinks.begin() + iFromEdge2 );
loop1.myLinks.insert( loop1.myLinks.end(),
linksAfterContact.begin(), linksAfterContact.end() );
loop1.myIsBndConnected = loop2.myIsBndConnected;
loop2.Clear();
for ( size_t iE = 0; iE < loop1.myLinks.size(); ++iE )
myLoopOfEdge[ Index( *loop1.myLinks[ iE ] )] = & loop1;
}
size_t Index( const EdgePart& edge ) const { return &edge - myEdge0; } size_t Index( const EdgePart& edge ) const { return &edge - myEdge0; }
EdgeLoop* GetLoopOf( const EdgePart* edge ) { return myLoopOfEdge[ Index( *edge )]; } EdgeLoop* GetLoopOf( const EdgePart* edge ) { return myLoopOfEdge[ Index( *edge )]; }
}; };
@ -2558,7 +2576,8 @@ namespace
//================================================================================ //================================================================================
/*! /*!
* \brief Remove loops that are not connected to boundary edges of myFace by * \brief Remove loops that are not connected to boundary edges of myFace by
* adding edges connecting these loops to the boundary * adding edges connecting these loops to the boundary.
* Such loops must be removed as they form polygons with ring topology.
*/ */
//================================================================================ //================================================================================
@ -2607,13 +2626,48 @@ namespace
while ( prevNbReached < nbReachedLoops ); while ( prevNbReached < nbReachedLoops );
// add links connecting internal loops with the boundary ones
for ( size_t iL = 0; iL < theLoops.myNbLoops; ++iL ) for ( size_t iL = 0; iL < theLoops.myNbLoops; ++iL )
{ {
EdgeLoop& loop = theLoops.myLoops[ iL ]; EdgeLoop& loop = theLoops.myLoops[ iL ];
if ( loop.myIsBndConnected || loop.myLinks.size() == 0 )
continue;
if ( loop.myHasPending )
{
// try to join the loop to another one, with which it contacts at a node
// look for a node where the loop reverses
const EdgePart* edgePrev = loop.myLinks.back();
for ( size_t iE = 0; iE < loop.myLinks.size(); edgePrev = loop.myLinks[ iE++ ] )
{
if ( !edgePrev->IsTwin( *loop.myLinks[ iE ]))
continue;
const SMDS_MeshNode* reverseNode = edgePrev->myNode2;
// look for a loop including reverseNode
size_t iContactEdge2; // index(+1) of edge starting at reverseNode
for ( size_t iL2 = 0; iL2 < theLoops.myNbLoops; ++iL2 )
{
if ( iL == iL2 )
continue;
EdgeLoop& loop2 = theLoops.myLoops[ iL2 ];
if ( ! ( iContactEdge2 = loop2.Contains( reverseNode )))
continue;
// insert loop2 into the loop
theLoops.Join( loop, iE, loop2, iContactEdge2 - 1 );
break;
}
if ( loop.myIsBndConnected )
break;
}
if ( loop.myIsBndConnected ) if ( loop.myIsBndConnected )
continue; continue;
}
// add links connecting internal loops with the boundary ones
// find a pair of closest nodes // find a pair of closest nodes
const SMDS_MeshNode *closestNode1, *closestNode2; const SMDS_MeshNode *closestNode1, *closestNode2;
@ -2689,7 +2743,7 @@ namespace
while ( !theLoops.AllEdgesUsed() ) while ( !theLoops.AllEdgesUsed() )
{ {
theLoops.AddNewLoop(); EdgeLoop& loop = theLoops.AddNewLoop();
// add 1st edge to a new loop // add 1st edge to a new loop
size_t i1; size_t i1;
@ -2720,7 +2774,7 @@ namespace
// choose among candidates // choose among candidates
if ( theLoops.myCandidates.size() == 0 ) if ( theLoops.myCandidates.size() == 0 )
{ {
theLoops.GetLoopOf( lastEdge )->myHasPending = true; loop.myHasPending = bool( twinEdge );
lastEdge = twinEdge; lastEdge = twinEdge;
} }
else if ( theLoops.myCandidates.size() == 1 ) else if ( theLoops.myCandidates.size() == 1 )
@ -2751,6 +2805,10 @@ namespace
} }
while ( lastNode != firstNode ); while ( lastNode != firstNode );
if ( twinEdge == & myLinks[ i1 ])
loop.myHasPending = true;
} // while ( !theLoops.AllEdgesUsed() ) } // while ( !theLoops.AllEdgesUsed() )
return; return;

View File

@ -52,7 +52,17 @@ namespace
int mySrcPntInd; //!< start point index int mySrcPntInd; //!< start point index
TIDSortedElemSet myElemSet, myAvoidSet; TIDSortedElemSet myElemSet, myAvoidSet;
Path(): myLength(0.0), myFace(0) {} Path(const SMDS_MeshElement* face=0, int srcInd=-1):
myLength(0.0), myFace(face), mySrcPntInd( srcInd ) {}
void CopyNoPoints( const Path& other );
bool Extend( const gp_XYZ& plnNorm, const gp_XYZ& plnOrig, std::vector< Path > * paths = 0 );
bool SetCutAtCorner( const SMESH_NodeXYZ& cornerNode,
const gp_XYZ& plnNorm,
const gp_XYZ& plnOrig,
std::vector< Path >* paths);
bool SetCutAtCorner( const SMESH_NodeXYZ& cornerNode, bool SetCutAtCorner( const SMESH_NodeXYZ& cornerNode,
const SMDS_MeshElement* face, const SMDS_MeshElement* face,
@ -61,8 +71,6 @@ namespace
void AddPoint( const gp_XYZ& p ); void AddPoint( const gp_XYZ& p );
bool Extend( const gp_XYZ& plnNorm, const gp_XYZ& plnOrig );
bool ReachSamePoint( const Path& other ); bool ReachSamePoint( const Path& other );
static void Remove( std::vector< Path > & paths, size_t& i ); static void Remove( std::vector< Path > & paths, size_t& i );
@ -80,6 +88,25 @@ namespace
myFace == other.myFace ); myFace == other.myFace );
} }
//================================================================================
/*!
* \brief Copy data except points
*/
//================================================================================
void Path::CopyNoPoints( const Path& other )
{
myLength = other.myLength;
mySrcPntInd = other.mySrcPntInd;
myFace = other.myFace;
myNode1 = other.myNode1;
myNode2 = other.myNode2;
myNodeInd1 = other.myNodeInd1;
myNodeInd2 = other.myNodeInd2;
myDot1 = other.myDot1;
myDot2 = other.myDot2;
}
//================================================================================ //================================================================================
/*! /*!
* \brief Remove a path from a vector * \brief Remove a path from a vector
@ -93,16 +120,8 @@ namespace
size_t j = paths.size() - 1; // last item to be removed size_t j = paths.size() - 1; // last item to be removed
if ( i < j ) if ( i < j )
{ {
paths[ i ].CopyNoPoints ( paths[ j ]);
paths[ i ].myPoints.swap( paths[ j ].myPoints ); paths[ i ].myPoints.swap( paths[ j ].myPoints );
paths[ i ].myLength = paths[ j ].myLength;
paths[ i ].mySrcPntInd = paths[ j ].mySrcPntInd;
paths[ i ].myFace = paths[ j ].myFace;
paths[ i ].myNode1 = paths[ j ].myNode1;
paths[ i ].myNode2 = paths[ j ].myNode2;
paths[ i ].myNodeInd1 = paths[ j ].myNodeInd1;
paths[ i ].myNodeInd2 = paths[ j ].myNodeInd2;
paths[ i ].myDot1 = paths[ j ].myDot1;
paths[ i ].myDot2 = paths[ j ].myDot2;
} }
} }
paths.pop_back(); paths.pop_back();
@ -110,6 +129,62 @@ namespace
--i; --i;
} }
//================================================================================
/*!
* \brief Try to extend self by a point located at a node.
* Return a success flag.
*/
//================================================================================
bool Path::SetCutAtCorner( const SMESH_NodeXYZ& cornerNode,
const gp_XYZ& plnNorm,
const gp_XYZ& plnOrig,
std::vector< Path > * paths )
{
bool ok = false;
const bool isContinuation = myFace; // extend this path or find all possible paths?
const SMDS_MeshElement* lastFace = myFace;
myAvoidSet.clear();
SMDS_ElemIteratorPtr fIt = cornerNode->GetInverseElementIterator(SMDSAbs_Face);
while ( fIt->more() )
{
Path path( lastFace, mySrcPntInd );
if ( !path.SetCutAtCorner( cornerNode, fIt->next(), plnNorm, plnOrig ))
continue;
if ( !myAvoidSet.insert( path.myNode1.Node() ).second ||
!myAvoidSet.insert( path.myNode2.Node() ).second )
continue;
if ( isContinuation )
{
if ( ok ) // non-manifold continuation
{
path.myPoints = myPoints;
path.myLength = myLength;
path.AddPoint( cornerNode );
paths->push_back( path );
}
else
{
double len = myLength;
this->CopyNoPoints( path );
this->myLength = len;
this->AddPoint( path.myPoints.back() );
}
}
else
{
paths->push_back( path );
}
ok = true;
}
return ok;
}
//================================================================================ //================================================================================
/*! /*!
* \brief Store a point that is at a node of a face if the face is intersected by plane. * \brief Store a point that is at a node of a face if the face is intersected by plane.
@ -169,11 +244,14 @@ namespace
* \brief Try to find the next point * \brief Try to find the next point
* \param [in] plnNorm - cutting plane normal * \param [in] plnNorm - cutting plane normal
* \param [in] plnOrig - cutting plane origin * \param [in] plnOrig - cutting plane origin
* \param [in] paths - all paths
*/ */
//================================================================================ //================================================================================
bool Path::Extend( const gp_XYZ& plnNorm, const gp_XYZ& plnOrig ) bool Path::Extend( const gp_XYZ& plnNorm, const gp_XYZ& plnOrig, std::vector< Path > * paths )
{ {
bool ok = false;
int nodeInd3 = ( myNodeInd1 + 1 ) % myFace->NbCornerNodes(); int nodeInd3 = ( myNodeInd1 + 1 ) % myFace->NbCornerNodes();
if ( myNodeInd2 == nodeInd3 ) if ( myNodeInd2 == nodeInd3 )
nodeInd3 = ( myNodeInd1 + 2 ) % myFace->NbCornerNodes(); nodeInd3 = ( myNodeInd1 + 2 ) % myFace->NbCornerNodes();
@ -195,20 +273,13 @@ namespace
} }
else if ( dot3 == 0. ) else if ( dot3 == 0. )
{ {
SMDS_ElemIteratorPtr fIt = node3._node->GetInverseElementIterator(SMDSAbs_Face); ok = SetCutAtCorner( node3, plnNorm, plnOrig, paths );
while ( fIt->more() ) return ok;
if ( SetCutAtCorner( node3, fIt->next(), plnNorm, plnOrig ))
return true;
return false;
} }
else if ( myDot2 == 0. ) else if ( myDot2 == 0. )
{ {
SMESH_NodeXYZ node2 = myNode2; // copy as myNode2 changes in SetCutAtCorner() ok = SetCutAtCorner( myNode2, plnNorm, plnOrig, paths );
SMDS_ElemIteratorPtr fIt = node2._node->GetInverseElementIterator(SMDSAbs_Face); return ok;
while ( fIt->more() )
if ( SetCutAtCorner( node2, fIt->next(), plnNorm, plnOrig ))
return true;
return false;
} }
double r = Abs( myDot1 / ( myDot2 - myDot1 )); double r = Abs( myDot1 / ( myDot2 - myDot1 ));
@ -216,10 +287,32 @@ namespace
myAvoidSet.clear(); myAvoidSet.clear();
myAvoidSet.insert( myFace ); myAvoidSet.insert( myFace );
myFace = SMESH_MeshAlgos::FindFaceInSet( myNode1._node, myNode2._node, const SMDS_MeshElement* nextFace;
int ind1, ind2;
while (( nextFace = SMESH_MeshAlgos::FindFaceInSet( myNode1._node, myNode2._node,
myElemSet, myAvoidSet, myElemSet, myAvoidSet,
&myNodeInd1, &myNodeInd2 ); &ind1, &ind2 )))
return myFace; {
if ( ok ) // non-manifold continuation
{
paths->push_back( *this );
paths->back().myFace = nextFace;
paths->back().myNodeInd1 = ind1;
paths->back().myNodeInd2 = ind2;
}
else
{
myFace = nextFace;
myNodeInd1 = ind1;
myNodeInd2 = ind2;
}
ok = true;
if ( !paths )
break;
myAvoidSet.insert( nextFace );
}
return ok;
} }
//================================================================================ //================================================================================
@ -263,6 +356,13 @@ namespace
{ {
SMESH_MeshAlgos::PolySegment& polySeg = mySegments[ iSeg ]; SMESH_MeshAlgos::PolySegment& polySeg = mySegments[ iSeg ];
if ( ( polySeg.myXYZ[0] - polySeg.myXYZ[1] ).SquareModulus() == 0 )
{
myPaths[ iSeg ].AddPoint( polySeg.myXYZ[0] );
myPaths[ iSeg ].AddPoint( polySeg.myXYZ[1] );
return;
}
// the cutting plane // the cutting plane
gp_XYZ plnNorm = ( polySeg.myXYZ[0] - polySeg.myXYZ[1] ) ^ polySeg.myVector.XYZ(); gp_XYZ plnNorm = ( polySeg.myXYZ[0] - polySeg.myXYZ[1] ) ^ polySeg.myVector.XYZ();
gp_XYZ plnOrig = polySeg.myXYZ[1]; gp_XYZ plnOrig = polySeg.myXYZ[1];
@ -275,14 +375,13 @@ namespace
for ( int iP = 0; iP < 2; ++iP ) // loop on the polySeg end points for ( int iP = 0; iP < 2; ++iP ) // loop on the polySeg end points
{ {
Path path; Path path( 0, iP );
path.mySrcPntInd = iP;
size_t nbPaths = paths.size(); size_t nbPaths = paths.size();
if ( polySeg.myFace[ iP ]) // the end point lies on polySeg.myFace[ iP ] if ( polySeg.myFace[ iP ]) // the end point lies on polySeg.myFace[ iP ]
{ {
// check coincidence of polySeg.myXYZ[ iP ] with nodes // check coincidence of polySeg.myXYZ[ iP ] with nodes
const double tol = 1e-20; const double tol = 1e-17;
SMESH_NodeXYZ nodes[4]; SMESH_NodeXYZ nodes[4];
for ( int i = 0; i < 3 && !polySeg.myNode1[ iP ]; ++i ) for ( int i = 0; i < 3 && !polySeg.myNode1[ iP ]; ++i )
{ {
@ -292,6 +391,11 @@ namespace
} }
nodes[ 3 ] = nodes[ 0 ]; nodes[ 3 ] = nodes[ 0 ];
double dot[ 4 ];
for ( int i = 0; i < 3; ++i )
dot[ i ] = plnNorm * ( nodes[ i ] - plnOrig );
dot[ 3 ] = dot[ 0 ];
// check coincidence of polySeg.myXYZ[ iP ] with edges // check coincidence of polySeg.myXYZ[ iP ] with edges
for ( int i = 0; i < 3 && !polySeg.myNode1[ iP ]; ++i ) for ( int i = 0; i < 3 && !polySeg.myNode1[ iP ]; ++i )
{ {
@ -300,16 +404,35 @@ namespace
{ {
polySeg.myNode1[ iP ] = nodes[ i ].Node(); polySeg.myNode1[ iP ] = nodes[ i ].Node();
polySeg.myNode2[ iP ] = nodes[ i + 1 ].Node(); polySeg.myNode2[ iP ] = nodes[ i + 1 ].Node();
int i3 = ( i + 2 ) % 3;
if ( dot[ i ] * dot [ i3 ] > 0 &&
dot[ i+1 ] * dot [ i3 ] > 0 ) // point iP is inside a neighbor triangle
{
path.myAvoidSet.insert( polySeg.myFace[ iP ]);
const SMDS_MeshElement* face2 =
SMESH_MeshAlgos::FindFaceInSet( polySeg.myNode1[ iP ],
polySeg.myNode2[ iP ],
path.myElemSet,
path.myAvoidSet );
if ( face2 )
polySeg.myFace[ iP ] = face2;
else
;// ??
for ( int i = 0; i < 3; ++i )
{
nodes[ i ] = polySeg.myFace[ iP ]->GetNode( i );
dot[ i ] = plnNorm * ( nodes[ i ] - plnOrig );
}
dot[ 3 ] = dot[ 0 ];
polySeg.myNode1[ iP ] = polySeg.myNode2[ iP ] = 0;
break;
}
} }
} }
if ( !polySeg.myNode1[ iP ] ) // polySeg.myXYZ[ iP ] is within polySeg.myFace[ iP ] if ( !polySeg.myNode1[ iP ] ) // polySeg.myXYZ[ iP ] is within polySeg.myFace[ iP ]
{ {
double dot[ 4 ];
for ( int i = 0; i < 3; ++i )
dot[ i ] = plnNorm * ( nodes[ i ] - plnOrig );
dot[ 3 ] = dot[ 0 ];
int iCut = 0; // index of a cut edge int iCut = 0; // index of a cut edge
if ( dot[ 1 ] * dot[ 2 ] < 0. ) iCut = 1; if ( dot[ 1 ] * dot[ 2 ] < 0. ) iCut = 1;
else if ( dot[ 2 ] * dot[ 3 ] < 0. ) iCut = 2; else if ( dot[ 2 ] * dot[ 3 ] < 0. ) iCut = 2;
@ -364,27 +487,45 @@ namespace
path.AddPoint( polySeg.myXYZ[ iP ]); path.AddPoint( polySeg.myXYZ[ iP ]);
path.myAvoidSet.insert( path.myFace ); path.myAvoidSet.insert( path.myFace );
paths.push_back( path ); paths.push_back( path );
std::swap( polySeg.myNode1[ iP ], polySeg.myNode2[ iP ]);
} }
if ( nbPaths == paths.size() ) if ( nbPaths == paths.size() )
throw SALOME_Exception ( SMESH_Comment("No face edge found by point ") << iP+1 throw SALOME_Exception ( SMESH_Comment("No face edge found by point ") << iP+1
<< " in a PolySegment " << iSeg ); << " in a PolySegment " << iSeg );
if ( path.myDot1 == 0. &&
path.myDot2 == 0. &&
paths.size() - nbPaths >= 2 ) // use a face non-parallel to the plane
{
const SMDS_MeshElement* goodFace = 0;
for ( size_t j = nbPaths; j < paths.size(); ++j )
{
path = paths[j];
if ( path.Extend( plnNorm, plnOrig ))
goodFace = paths[j].myFace;
else
paths[j].myFace = 0;
} }
if ( !goodFace )
throw SALOME_Exception ( SMESH_Comment("Cant move from point ") << iP+1
<< " of a PolySegment " << iSeg );
for ( size_t j = nbPaths; j < paths.size(); ++j )
if ( !paths[j].myFace )
{
paths[j].myFace = goodFace;
paths[j].myNodeInd1 = goodFace->GetNodeIndex( paths[j].myNode1.Node() );
paths[j].myNodeInd2 = goodFace->GetNodeIndex( paths[j].myNode2.Node() );
}
}
}
else if ( polySeg.myNode1[ iP ] ) // the end point is at a node else if ( polySeg.myNode1[ iP ] ) // the end point is at a node
{ {
std::set<const SMDS_MeshNode* > nodes; path.myFace = 0;
SMDS_ElemIteratorPtr fIt = polySeg.myNode1[ iP ]->GetInverseElementIterator(SMDSAbs_Face); path.SetCutAtCorner( polySeg.myNode1[ iP ], plnNorm, plnOrig, &paths );
while ( fIt->more() )
{
path.myPoints.clear();
if ( path.SetCutAtCorner( polySeg.myNode1[ iP ], fIt->next(), plnNorm, plnOrig ))
{
if (( path.myDot1 * path.myDot2 != 0 ) ||
( nodes.insert( path.myDot1 == 0 ? path.myNode1._node : path.myNode2._node ).second ))
paths.push_back( path );
}
}
} }
// look for a one-segment path // look for a one-segment path
for ( size_t i = 0; i < nbPaths; ++i ) for ( size_t i = 0; i < nbPaths; ++i )
for ( size_t j = nbPaths; j < paths.size(); ++j ) for ( size_t j = nbPaths; j < paths.size(); ++j )
@ -394,7 +535,9 @@ namespace
myPaths[ iSeg ].myPoints.push_back( paths[j].myPoints[0] ); myPaths[ iSeg ].myPoints.push_back( paths[j].myPoints[0] );
paths.clear(); paths.clear();
} }
}
} // loop on the polySeg end points to initialize all possible paths
// 2) extend paths and compose the shortest one connecting the two points // 2) extend paths and compose the shortest one connecting the two points
@ -405,7 +548,7 @@ namespace
for ( size_t i = 0; i < paths.size(); ++i ) for ( size_t i = 0; i < paths.size(); ++i )
{ {
Path& path = paths[ i ]; Path& path = paths[ i ];
if ( !path.Extend( plnNorm, plnOrig ) || // path reached a mesh boundary if ( !path.Extend( plnNorm, plnOrig, &paths ) || // path reached a mesh boundary
path.myLength > myPaths[ iSeg ].myLength ) // path is longer than others path.myLength > myPaths[ iSeg ].myLength ) // path is longer than others
{ {
Path::Remove( paths, i ); Path::Remove( paths, i );
@ -428,8 +571,10 @@ namespace
paths[j].myPoints.rbegin(), paths[j].myPoints.rbegin(),
paths[j].myPoints.rend() ); paths[j].myPoints.rend() );
} }
if ( i < j ) std::swap( i, j );
Path::Remove( paths, i ); Path::Remove( paths, i );
Path::Remove( paths, j ); Path::Remove( paths, j );
break;
} }
} }
} }
@ -504,7 +649,7 @@ void SMESH_MeshAlgos::MakePolyLine( SMDS_Mesh* theMes
gp_XYZ plnNorm = ( p1 - p2 ) ^ polySeg.myVector.XYZ(); gp_XYZ plnNorm = ( p1 - p2 ) ^ polySeg.myVector.XYZ();
isVectorOK[ iSeg ] = ( plnNorm.Modulus() > std::numeric_limits<double>::min() ); isVectorOK[ iSeg ] = ( plnNorm.Modulus() > std::numeric_limits<double>::min() );
if ( !isVectorOK[ iSeg ]) if ( !isVectorOK[ iSeg ] && ( p1 - p2 ).SquareModulus() > 0. )
{ {
gp_XYZ pMid = 0.5 * ( p1 + p2 ); gp_XYZ pMid = 0.5 * ( p1 + p2 );
const SMDS_MeshElement* face; const SMDS_MeshElement* face;
@ -512,14 +657,35 @@ void SMESH_MeshAlgos::MakePolyLine( SMDS_Mesh* theMes
polySeg.myVector = polySeg.myMidProjPoint.XYZ() - pMid; polySeg.myVector = polySeg.myMidProjPoint.XYZ() - pMid;
gp_XYZ faceNorm; gp_XYZ faceNorm;
SMESH_MeshAlgos::FaceNormal( face, faceNorm ); SMESH_MeshAlgos::FaceNormal( face, faceNorm, /*normalized=*/false );
if ( polySeg.myVector.Magnitude() < Precision::Confusion() || const double tol = Precision::Confusion();
polySeg.myVector * faceNorm < Precision::Confusion() ) if ( polySeg.myVector.Magnitude() < tol || polySeg.myVector * faceNorm < tol )
{ {
polySeg.myVector = faceNorm; polySeg.myVector = faceNorm;
polySeg.myMidProjPoint = pMid + faceNorm * ( p1 - p2 ).Modulus() * planarCoef; polySeg.myMidProjPoint = pMid + faceNorm * ( p1 - p2 ).Modulus() * planarCoef;
} }
plnNorm = ( p1 - p2 ) ^ polySeg.myVector.XYZ();
if ( plnNorm.SquareModulus() == 0 ) // p1-p2 perpendicular to mesh
{
double radius = faceNorm.Modulus();
std::vector< const SMDS_MeshElement* > foundElems;
while ( plnNorm.SquareModulus() == 0 && radius < 1e200 )
{
foundElems.clear();
searcher->GetElementsInSphere( p1, radius, SMDSAbs_Face, foundElems );
searcher->GetElementsInSphere( p2, radius, SMDSAbs_Face, foundElems );
radius *= 2;
polySeg.myVector.SetCoord( 0,0,0 );
for ( size_t i = 0; i < foundElems.size(); ++i )
{
SMESH_MeshAlgos::FaceNormal( foundElems[i], faceNorm );
polySeg.myVector += faceNorm / foundElems.size();
}
plnNorm = ( p1 - p2 ) ^ polySeg.myVector.XYZ();
}
}
} }
else else
{ {

View File

@ -60,13 +60,47 @@ namespace
} }
bool operator<(const Node& other) const { return _triaIndex < other._triaIndex; } bool operator<(const Node& other) const { return _triaIndex < other._triaIndex; }
}; };
typedef boost::container::flat_set< Node > TNodeSet; typedef boost::container::flat_set< Node > TriaNodeSet;
} }
/*!
* \brief Vertex of a polygon. Together with 2 neighbor Vertices represents a triangle
*/
struct Triangulate::PolyVertex
{
SMESH_NodeXYZ _nxyz;
size_t _index;
gp_XY _xy;
PolyVertex* _prev;
PolyVertex* _next;
void SetNodeAndNext( const SMDS_MeshNode* n, PolyVertex& v, size_t index );
void GetTriaNodes( const SMDS_MeshNode** nodes, size_t* nodeIndices) const;
double TriaArea() const;
bool IsInsideTria( const PolyVertex* v );
PolyVertex* Delete();
struct Compare // compare PolyVertex'es by node
{
bool operator()(const PolyVertex* a, const PolyVertex* b) const
{
return ( a->_nxyz.Node() < b->_nxyz.Node() );
}
};
// set of PolyVertex sorted by mesh node
typedef boost::container::flat_set< PolyVertex*, Compare > PVSet;
};
struct Triangulate::Data
{
std::vector< PolyVertex > _pv;
std::vector< size_t > _nodeIndex;
PolyVertex::PVSet _uniqueNodePV;
};
struct Triangulate::Optimizer struct Triangulate::Optimizer
{ {
std::vector< TNodeSet > _nodeUsage; // inclusions of a node in triangles std::vector< TriaNodeSet > _nodeUsage; // inclusions of a node in triangles
//================================================================================ //================================================================================
/*! /*!
@ -107,19 +141,19 @@ struct Triangulate::Optimizer
size_t i2 = iTria + ( i + 1 ) % 3; size_t i2 = iTria + ( i + 1 ) % 3;
size_t ind1 = nodeIndices[ i1 ]; // node index in points size_t ind1 = nodeIndices[ i1 ]; // node index in points
size_t ind2 = nodeIndices[ i2 ]; size_t ind2 = nodeIndices[ i2 ];
TNodeSet & usage1 = _nodeUsage[ ind1 ]; // triangles using a node TriaNodeSet & usage1 = _nodeUsage[ ind1 ]; // triangles using a node
TNodeSet & usage2 = _nodeUsage[ ind2 ]; TriaNodeSet & usage2 = _nodeUsage[ ind2 ];
if ( usage1.size() < 2 || if ( usage1.size() < 2 ||
usage2.size() < 2 ) usage2.size() < 2 )
continue; continue;
// look for another triangle using two nodes // look for another triangle using two nodes
TNodeSet::iterator usIt1 = usage1.begin(); TriaNodeSet::iterator usIt1 = usage1.begin();
for ( ; usIt1 != usage1.end(); ++usIt1 ) for ( ; usIt1 != usage1.end(); ++usIt1 )
{ {
if ( usIt1->_triaIndex == iTria ) if ( usIt1->_triaIndex == iTria )
continue; // current triangle continue; // current triangle
TNodeSet::iterator usIt2 = usage2.find( *usIt1 ); TriaNodeSet::iterator usIt2 = usage2.find( *usIt1 );
if ( usIt2 == usage2.end() ) if ( usIt2 == usage2.end() )
continue; // no common _triaIndex in two usages continue; // no common _triaIndex in two usages
@ -138,13 +172,13 @@ struct Triangulate::Optimizer
// swap edge by modifying nodeIndices // swap edge by modifying nodeIndices
nodeIndices[ i2 ] = ind4; nodeIndices[ i2 ] = ind4;
_nodeUsage[ ind2 ].erase ({ iTria, i2 - iTria });
_nodeUsage[ ind4 ].insert({ iTria, i2 - iTria }); _nodeUsage[ ind4 ].insert({ iTria, i2 - iTria });
_nodeUsage[ ind2 ].erase ({ iTria, i2 - iTria });
i1 = usIt1->Index(); i1 = usIt1->Index();
nodeIndices[ i1 ] = ind3; nodeIndices[ i1 ] = ind3;
_nodeUsage[ ind1 ].erase ( *usIt1 );
_nodeUsage[ ind3 ].insert( *usIt1 ); _nodeUsage[ ind3 ].insert( *usIt1 );
_nodeUsage[ ind1 ].erase ( *usIt1 );
--i; // to re-check a current edge --i; // to re-check a current edge
badness1 = badness3; badness1 = badness3;
@ -170,16 +204,16 @@ struct Triangulate::Optimizer
std::vector< PolyVertex > & points, std::vector< PolyVertex > & points,
bool checkArea = false ) bool checkArea = false )
{ {
//if ( checkArea ) if ( checkArea )
{ {
points[ i2 ]._prev = & points[ i1 ]; points[ i2 ]._prev = & points[ i1 ];
points[ i2 ]._next = & points[ i3 ]; points[ i2 ]._next = & points[ i3 ];
double a = points[ i2 ].TriaArea(); double a = points[ i2 ].TriaArea();
if ( a < 0 ) // if ( a < 0 )
return std::numeric_limits<double>::max(); // return std::numeric_limits<double>::max();
return 1. / a; // return 1. / a;
if ( points[ i2 ].TriaArea() < 0 ) if ( a < 0 )
return 2; return 2;
} }
const gp_XY & p1 = points[ i1 ]._xy; const gp_XY & p1 = points[ i1 ]._xy;
@ -311,12 +345,28 @@ bool Triangulate::PolyVertex::IsInsideTria( const PolyVertex* v )
bool Triangulate::triangulate( std::vector< const SMDS_MeshNode*>& nodes, bool Triangulate::triangulate( std::vector< const SMDS_MeshNode*>& nodes,
const size_t nbNodes) const size_t nbNodes)
{ {
std::vector< PolyVertex >& _pv = _data->_pv;
std::vector< size_t >& _nodeIndex = _data->_nodeIndex;
PolyVertex::PVSet& _uniqueNodePV = _data->_uniqueNodePV;
// connect nodes into a ring // connect nodes into a ring
_pv.resize( nbNodes ); _pv.resize( nbNodes );
for ( size_t i = 1; i < nbNodes; ++i ) for ( size_t i = 1; i < nbNodes; ++i )
_pv[i-1].SetNodeAndNext( nodes[i-1], _pv[i], i-1 ); _pv[i-1].SetNodeAndNext( nodes[i-1], _pv[i], i-1 );
_pv[ nbNodes-1 ].SetNodeAndNext( nodes[ nbNodes-1 ], _pv[0], nbNodes-1 ); _pv[ nbNodes-1 ].SetNodeAndNext( nodes[ nbNodes-1 ], _pv[0], nbNodes-1 );
// assure correctness of PolyVertex::_index as a node can encounter more than once
// within a polygon boundary
if ( _optimizer && nbNodes > 4 )
{
_uniqueNodePV.clear();
for ( size_t i = 0; i < nbNodes; ++i )
{
PolyVertex::PVSet::iterator pv = _uniqueNodePV.insert( &_pv[i] ).first;
_pv[i]._index = (*pv)->_index;
}
}
// get a polygon normal // get a polygon normal
gp_XYZ normal(0,0,0), p0,v01,v02; gp_XYZ normal(0,0,0), p0,v01,v02;
p0 = _pv[0]._nxyz; p0 = _pv[0]._nxyz;
@ -342,11 +392,16 @@ bool Triangulate::triangulate( std::vector< const SMDS_MeshNode*>& nodes,
_pv[i]._xy.SetY( axes.YDirection().XYZ() * p ); _pv[i]._xy.SetY( axes.YDirection().XYZ() * p );
} }
// compute minimal triangle area
double sumArea = 0;
for ( size_t i = 0; i < nbNodes; ++i )
sumArea += _pv[i].TriaArea();
const double minArea = 1e-6 * sumArea / ( nbNodes - 2 );
// in a loop, find triangles with positive area and having no vertices inside // in a loop, find triangles with positive area and having no vertices inside
int iN = 0, nbTria = nbNodes - 2; int iN = 0, nbTria = nbNodes - 2;
nodes.resize( nbTria * 3 ); nodes.resize( nbTria * 3 );
_nodeIndex.resize( nbTria * 3 ); _nodeIndex.resize( nbTria * 3 );
const double minArea = 1e-6;
PolyVertex* v = &_pv[0], *vi; PolyVertex* v = &_pv[0], *vi;
int nbVertices = nbNodes, nbBadTria = 0, isGoodTria; int nbVertices = nbNodes, nbBadTria = 0, isGoodTria;
while ( nbBadTria < nbVertices ) while ( nbBadTria < nbVertices )
@ -430,6 +485,7 @@ bool Triangulate::triangulate( std::vector< const SMDS_MeshNode*>& nodes,
Triangulate::Triangulate( bool optimize ): _optimizer(0) Triangulate::Triangulate( bool optimize ): _optimizer(0)
{ {
_data = new Data;
if ( optimize ) if ( optimize )
_optimizer = new Optimizer; _optimizer = new Optimizer;
} }
@ -442,6 +498,7 @@ Triangulate::Triangulate( bool optimize ): _optimizer(0)
Triangulate::~Triangulate() Triangulate::~Triangulate()
{ {
delete _data;
delete _optimizer; delete _optimizer;
_optimizer = 0; _optimizer = 0;
} }

View File

@ -1993,7 +1993,8 @@ CORBA::Boolean SMESH_Gen_i::Compute( SMESH::SMESH_Mesh_ptr theMesh,
void SMESH_Gen_i::CancelCompute( SMESH::SMESH_Mesh_ptr theMesh, void SMESH_Gen_i::CancelCompute( SMESH::SMESH_Mesh_ptr theMesh,
GEOM::GEOM_Object_ptr theShapeObject ) GEOM::GEOM_Object_ptr theShapeObject )
{ {
SMESH_Mesh_i* meshServant = dynamic_cast<SMESH_Mesh_i*>( GetServant( theMesh ).in() ); if ( SMESH_Mesh_i* meshServant = dynamic_cast<SMESH_Mesh_i*>( GetServant( theMesh ).in() ))
{
::SMESH_Mesh& myLocMesh = meshServant->GetImpl(); ::SMESH_Mesh& myLocMesh = meshServant->GetImpl();
TopoDS_Shape myLocShape; TopoDS_Shape myLocShape;
if(theMesh->HasShapeToMesh()) if(theMesh->HasShapeToMesh())
@ -2002,6 +2003,7 @@ void SMESH_Gen_i::CancelCompute( SMESH::SMESH_Mesh_ptr theMesh,
myLocShape = SMESH_Mesh::PseudoShape(); myLocShape = SMESH_Mesh::PseudoShape();
myGen.CancelCompute( myLocMesh, myLocShape); myGen.CancelCompute( myLocMesh, myLocShape);
} }
}
//============================================================================= //=============================================================================
/*! /*!

View File

@ -6300,7 +6300,7 @@ class Mesh(metaclass = MeshMeta):
SubMeshOrGroup = [ obj.GetMesh() ] SubMeshOrGroup = [ obj.GetMesh() ]
break break
if isinstance( obj, int ): if isinstance( obj, int ):
SubMeshOrGroup = self.GetIDSource( SubMeshOrGroup, SMESH.NODE ) SubMeshOrGroup = [ self.GetIDSource( SubMeshOrGroup, SMESH.NODE )]
unRegister.set( SubMeshOrGroup ) unRegister.set( SubMeshOrGroup )
break break

View File

@ -1694,7 +1694,7 @@ bool StdMeshers_Projection_2D::Compute(SMESH_Mesh& theMesh, const TopoDS_Shape&
if ( !projDone || is1DComputed ) if ( !projDone || is1DComputed )
// ---------------------------------------------------------------- // ----------------------------------------------------------------
// The mapper can create distorted faces by placing nodes out of the FACE // The mapper can create distorted faces by placing nodes out of the FACE
// boundary, also bad face can be created if EDGEs already discretized // boundary, also bad faces can be created if EDGEs already discretized
// --> fix bad faces by smoothing // --> fix bad faces by smoothing
// ---------------------------------------------------------------- // ----------------------------------------------------------------
if ( helper.IsDistorted2D( tgtSubMesh, /*checkUV=*/false, &helper )) if ( helper.IsDistorted2D( tgtSubMesh, /*checkUV=*/false, &helper ))