Suivi de frontière - départ

This commit is contained in:
Gérald NICOLAS 2020-05-20 17:36:39 +02:00
parent a174b69248
commit 7132a233f4
13 changed files with 2557 additions and 0 deletions

View File

@ -0,0 +1,73 @@
# Copyright (C) 2017-2020 CEA/DEN, EDF R&D
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
#
# --- options ---
# additional include directories
INCLUDE_DIRECTORIES(
${OpenCASCADE_INCLUDE_DIR}
${GEOM_INCLUDE_DIRS}
${MEDFILE_INCLUDE_DIRS}
${MEDCOUPLING_INCLUDE_DIRS}
${TBB_INCLUDE_DIRS}
)
# additional preprocessor / compiler flags
ADD_DEFINITIONS(
${OpenCASCADE_DEFINITIONS}
)
IF(ADAPTFRONTTRACK_USE_TBB)
SET(TBB_LIBS ${TBB_LIBRARIES})
ENDIF(ADAPTFRONTTRACK_USE_TBB)
# libraries to link to
SET(_link_LIBRARIES
${OpenCASCADE_FoundationClasses_LIBRARIES}
${OpenCASCADE_ModelingAlgorithms_LIBRARIES}
${OpenCASCADE_ModelingData_LIBRARIES}
${GEOM_XAO}
${MEDCoupling_medloader}
${TBB_LIBS}
)
# --- headers ---
# header files
SET(ADAPTFRONTTRACK_HEADERS
FrontTrack.hxx
)
# --- sources ---
# sources / static
SET(ADAPTFRONTTRACK_SOURCES
FrontTrack.cxx
FrontTrack_NodeGroups.cxx
FrontTrack_NodesOnGeom.cxx
FrontTrack_Projector.cxx
FrontTrack_Utils.cxx
)
# --- rules ---
ADD_LIBRARY(ADAPTFrontTrack ${ADAPTFRONTTRACK_SOURCES})
TARGET_LINK_LIBRARIES(ADAPTFrontTrack ${_link_LIBRARIES} )
INSTALL(TARGETS ADAPTFrontTrack EXPORT ${PROJECT_NAME}TargetGroup DESTINATION ${SALOME_INSTALL_LIBS})
INSTALL(FILES ${ADAPTFRONTTRACK_HEADERS} DESTINATION ${SALOME_INSTALL_HEADERS})

View File

@ -0,0 +1,164 @@
// Copyright (C) 2017-2020 CEA/DEN, EDF R&D
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : FrontTrack.cxx
// Created : Tue Apr 25 17:20:28 2017
// Author : Edward AGAPOV (eap)
#include "FrontTrack.hxx"
#include "FrontTrack_NodeGroups.hxx"
#include "FrontTrack_Utils.hxx"
#include <MCAuto.hxx>
#include <MEDCouplingMemArray.hxx>
#include <MEDFileMesh.hxx>
#include <XAO_Xao.hxx>
#include <XAO_BrepGeometry.hxx>
#include <stdexcept>
#include <OSD_Parallel.hxx>
/*!
* \brief Relocate nodes to lie on geometry
* \param [in] theInputMedFile - a MED file holding a mesh including nodes that will be
* moved onto the geometry
* \param [in] theOutputMedFile - a MED file to create, that will hold a modified mesh
* \param [in] theInputNodeFiles - an array of names of files describing groups of nodes that
* will be moved onto the geometry
* \param [in] theXaoFileName - a path to a file in XAO format holding the geometry and
* the geometrical groups.
* \param [in] theIsParallel - if \c true, all processors are used to treat boundary shapes
* in parallel.
*/
void FrontTrack::track( const std::string& theInputMedFile,
const std::string& theOutputMedFile,
const std::vector< std::string > & theInputNodeFiles,
const std::string& theXaoFileName,
bool theIsParallel )
{
// check arguments
#ifdef _DEBUG_
std::cout << "FrontTrack::track" << std::endl;
#endif
if ( theInputNodeFiles.empty() )
return;
#ifdef _DEBUG_
std::cout << "Input MED file: " << theInputMedFile << std::endl;
#endif
if ( !FT_Utils::fileExists( theInputMedFile ))
throw std::invalid_argument( "Input MED file does not exist: " + theInputMedFile );
#ifdef _DEBUG_
std::cout << "Output MED file: " << theOutputMedFile << std::endl;
#endif
if ( !FT_Utils::canWrite( theOutputMedFile ))
throw std::invalid_argument( "Can't create the output MED file: " + theOutputMedFile );
std::vector< std::string > theNodeFiles ;
for ( size_t i = 0; i < theInputNodeFiles.size(); ++i )
{
#ifdef _DEBUG_
std::cout << "Initial input node file #"<<i<<": " << theInputNodeFiles[i] << std::endl;
#endif
if ( !FT_Utils::fileExists( theInputNodeFiles[i] ))
throw std::invalid_argument( "Input node file does not exist: " + theInputNodeFiles[i] );
// the name of the groupe on line #1, then the numbers of nodes on line #>1
// keep only files with more than 1 line:
std::ifstream fichier(theInputNodeFiles[i].c_str());
std::string s;
unsigned int nb_lines = 0;
while(std::getline(fichier,s)) ++nb_lines;
// std::cout << ". nb_lines: " << nb_lines << std::endl;
if ( nb_lines >= 2 ) { theNodeFiles.push_back( theInputNodeFiles[i] ); }
}
#ifdef _DEBUG_
for ( size_t i = 0; i < theNodeFiles.size(); ++i )
{ std::cout << "Valid input node file #"<<i<<": " << theNodeFiles[i] << std::endl; }
#endif
#ifdef _DEBUG_
std::cout << "XAO file: " << theXaoFileName << std::endl;
#endif
if ( !FT_Utils::fileExists( theXaoFileName ))
throw std::invalid_argument( "Input XAO file does not exist: " + theXaoFileName );
// read a mesh
#ifdef _DEBUG_
std::cout << "Lecture du maillage" << std::endl;
#endif
MEDCoupling::MCAuto< MEDCoupling::MEDFileUMesh >
mfMesh( MEDCoupling::MEDFileUMesh::New( theInputMedFile ));
if ( mfMesh.isNull() )
throw std::invalid_argument( "Failed to read the input MED file: " + theInputMedFile );
MEDCoupling::DataArrayDouble * nodeCoords = mfMesh->getCoords();
if ( !nodeCoords || nodeCoords->empty() )
throw std::invalid_argument( "No nodes in the input mesh" );
// read a geometry
#ifdef _DEBUG_
std::cout << "Lecture de la geometrie" << std::endl;
#endif
XAO::Xao xao;
if ( !xao.importXAO( theXaoFileName ) || !xao.getGeometry() )
throw std::invalid_argument( "Failed to read the XAO input file: " + theXaoFileName );
#ifdef _DEBUG_
std::cout << "Conversion en BREP" << std::endl;
#endif
XAO::BrepGeometry* xaoGeom = dynamic_cast<XAO::BrepGeometry*>( xao.getGeometry() );
if ( !xaoGeom || xaoGeom->getTopoDS_Shape().IsNull() )
throw std::invalid_argument( "Failed to get a BREP shape from the XAO input file" );
// read groups of nodes and associate them with boundary shapes using names (no projection so far)
#ifdef _DEBUG_
std::cout << "Lecture des groupes" << std::endl;
#endif
FT_NodeGroups nodeGroups;
nodeGroups.read( theNodeFiles, &xao, nodeCoords );
#ifdef _DEBUG_
std::cout << "Nombre de groupes : " << nodeGroups.nbOfGroups() << std::endl;
#endif
// project nodes to the boundary shapes and change their coordinates
#ifdef _DEBUG_
std::cout << "Projection des noeuds, theIsParallel=" << theIsParallel << std::endl;
#endif
OSD_Parallel::For( 0, nodeGroups.nbOfGroups(), nodeGroups, !theIsParallel );
// save the modified mesh
#ifdef _DEBUG_
std::cout << "Ecriture du maillage" << std::endl;
#endif
const int erase = 2;
mfMesh->write( theOutputMedFile, /*mode=*/erase );
if ( !nodeGroups.isOK() )
throw std::runtime_error("Unable to project some nodes");
}

View File

@ -0,0 +1,54 @@
// Copyright (C) 2017-2020 CEA/DEN, EDF R&D
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : FrontTrack.hxx
// Created : Tue Apr 25 17:08:52 2017
// Author : Edward AGAPOV (eap)
#ifndef __FrontTrack_HXX__
#define __FrontTrack_HXX__
#include <vector>
#include <string>
class FrontTrack
{
public:
/*!
* \brief Relocate nodes to lie on geometry
* \param [in] theInputMedFile - a MED file holding a mesh including nodes that will be
* moved onto the geometry
* \param [in] theOutputMedFile - a MED file to create, that will hold a modified mesh
* \param [in] theInputNodeFiles - an array of names of files describing groups of nodes that
* will be moved onto the geometry
* \param [in] theXaoFileName - a path to a file in XAO format holding the geometry and
* the geometrical groups.
* \param [in] theIsParallel - if \c true, all processors are used to treat boundary shapes
* in parallel.
*/
void track( const std::string& theInputMedFile,
const std::string& theOutputMedFile,
const std::vector< std::string > & theInputNodeFiles,
const std::string& theXaoFileName,
bool theIsParallel=true);
};
#endif

View File

@ -0,0 +1,134 @@
// Copyright (C) 2017-2020 CEA/DEN, EDF R&D
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : FrontTrack_NodeGroups.cxx
// Created : Tue Apr 25 19:17:47 2017
// Author : Edward AGAPOV (eap)
#include "FrontTrack_NodeGroups.hxx"
#include "FrontTrack_Projector.hxx"
#include "FrontTrack_Utils.hxx"
#include <MEDCouplingMemArray.hxx>
#include <XAO_BrepGeometry.hxx>
#include <XAO_Xao.hxx>
#include <BRepBndLib.hxx>
#include <Bnd_Box.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_IndexedMapOfShape.hxx>
#include <TopoDS_Shape.hxx>
namespace
{
//================================================================================
/*!
* \brief Initialize FT_Projector's with all sub-shapes of given type
* \param [in] theMainShape - the shape to explore
* \param [in] theSubType - the type of sub-shapes
* \param [out] theProjectors - the projectors
*/
//================================================================================
void getProjectors( const TopoDS_Shape& theMainShape,
const TopAbs_ShapeEnum theSubType,
std::vector< FT_Projector > & theProjectors )
{
TopTools_IndexedMapOfShape subShapes;
TopExp::MapShapes( theMainShape, theSubType, subShapes );
#ifdef _DEBUG_
std::cout << ". Nombre de subShapes : " << subShapes.Size() << std::endl;
#endif
theProjectors.resize( subShapes.Size() );
for ( int i = 1; i <= subShapes.Size(); ++i )
theProjectors[ i-1 ].setBoundaryShape( subShapes( i ));
}
}
//================================================================================
/*!
* \brief Load node groups from files
* \param [in] theNodeFiles - an array of names of files describing groups of nodes that
* will be moved onto geometry
* \param [in] theXaoGeom - the whole geometry to project on
* \param [inout] theNodeCoords - array of node coordinates
*/
//================================================================================
void FT_NodeGroups::read( const std::vector< std::string >& theNodeFiles,
const XAO::Xao* theXao,
MEDCoupling::DataArrayDouble* theNodeCoords )
{
// get projectors for all boundary sub-shapes;
// index of a projector in the vector corresponds to a XAO index of a sub-shape
XAO::BrepGeometry* xaoGeom = dynamic_cast<XAO::BrepGeometry*>( theXao->getGeometry() );
getProjectors( xaoGeom->getTopoDS_Shape(), TopAbs_EDGE, _projectors[0] );
getProjectors( xaoGeom->getTopoDS_Shape(), TopAbs_FACE, _projectors[1] );
_nodesOnGeom.resize( theNodeFiles.size() );
// read node IDs and look for projectors to boundary sub-shapes by group name
FT_Utils::XaoGroups xaoGroups( theXao );
for ( size_t i = 0; i < theNodeFiles.size(); ++i )
{
_nodesOnGeom[i].read( theNodeFiles[i], xaoGroups, theNodeCoords, _projectors );
}
}
//================================================================================
/*!
* \brief Project and move nodes of a given group of nodes
*/
//================================================================================
void FT_NodeGroups::projectAndMove( const int groupIndex )
{
_nodesOnGeom[ groupIndex ].projectAndMove();
}
//================================================================================
/*!
* \brief Return true if all nodes were successfully relocated
*/
//================================================================================
bool FT_NodeGroups::isOK() const
{
for ( size_t i = 0; i < _nodesOnGeom.size(); ++i )
if ( ! _nodesOnGeom[ i ].isOK() )
return false;
return true;
}
//================================================================================
/*!
* \brief Print some statistics on node groups
*/
//================================================================================
void FT_NodeGroups::dumpStat() const
{
for ( size_t i = 0; i < _nodesOnGeom.size(); ++i )
{
std::cout << _nodesOnGeom[i].getShapeDim() << "D "
<< _nodesOnGeom[i].nbNodes() << " nodes" << std::endl;
}
}

View File

@ -0,0 +1,76 @@
// Copyright (C) 2017-2020 CEA/DEN, EDF R&D
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : FrontTrack_NodeGroups.hxx
// Created : Tue Apr 25 19:02:49 2017
// Author : Edward AGAPOV (eap)
#ifndef __FrontTrack_NodeGroups_HXX__
#define __FrontTrack_NodeGroups_HXX__
#include "FrontTrack_NodesOnGeom.hxx"
#include "FrontTrack_Projector.hxx"
#include <vector>
#include <string>
namespace MEDCoupling {
class DataArrayDouble;
}
namespace XAO {
class Xao;
}
/*!
* \brief Container of node groups.
*/
class FT_NodeGroups
{
public:
// Load node groups from files
void read( const std::vector< std::string >& nodeFiles,
const XAO::Xao* xaoGeom,
MEDCoupling::DataArrayDouble* nodeCoords );
// return number of groups of nodes to move
int nbOfGroups() const { return _nodesOnGeom.size(); }
// Move nodes of a group in parallel mode
void operator() ( const int groupIndex ) const
{
const_cast< FT_NodeGroups* >( this )->projectAndMove( groupIndex );
}
// Project and move nodes of a given group of nodes
void projectAndMove( const int groupIndex );
// return true if all nodes were successfully relocated
bool isOK() const;
// print some statistics on node groups
void dumpStat() const;
private:
std::vector< FT_NodesOnGeom > _nodesOnGeom;
std::vector< FT_Projector > _projectors[2]; // curves and surfaces separately
};
#endif

View File

@ -0,0 +1,511 @@
// Copyright (C) 2017-2020 CEA/DEN, EDF R&D
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : FrontTrack_NodesOnGeom.cxx
// Created : Tue Apr 25 20:48:23 2017
// Author : Edward AGAPOV (eap)
#include "FrontTrack_NodesOnGeom.hxx"
#include "FrontTrack_Utils.hxx"
#include <MEDCouplingMemArray.hxx>
#include <cstdio>
#include <cstdlib>
#include <list>
#include <stdexcept>
namespace
{
/*!
* \brief Close a file at destruction
*/
struct FileCloser
{
FILE * _file;
FileCloser( FILE * file ): _file( file ) {}
~FileCloser() { if ( _file ) ::fclose( _file ); }
};
}
//================================================================================
/*!
* \brief Read node ids from a file and find shapes for projection
* \param [in] theNodeFile - a name of file holding IDs of nodes that
* will be moved onto geometry
* \param [in] theXaoGroups - a tool returning FT_Projector's by XAO group name
* \param [inout] theNodeCoords - array of node coordinates
* \param [in] theAllProjectorsByDim - all projectors of 2 dimensions, ordered so that
* a vector index corresponds to a XAO sub-shape ID
*/
//================================================================================
void FT_NodesOnGeom::read( const std::string& theNodeFile,
const FT_Utils::XaoGroups& theXaoGroups,
MEDCoupling::DataArrayDouble* theNodeCoords,
std::vector< FT_Projector > * theAllProjectorsByDim )
{
_nodeCoords = theNodeCoords;
FILE * file = ::fopen( theNodeFile.c_str(), "r" );
if ( !file )
throw std::invalid_argument( "Can't open an input node file: " + theNodeFile );
FileCloser fileCloser( file );
// -------------------------------------
// get shape dimension by the file name
// -------------------------------------
// hope the file name is something like "frnD.**" with n in (1,2)
int dimPos = theNodeFile.size() - 5;
if ( theNodeFile[ dimPos ] == '2' )
_shapeDim = 2;
else if ( theNodeFile[ dimPos ] == '1' )
_shapeDim = 1;
else
throw std::invalid_argument( "Can't define dimension by node file name " + theNodeFile );
#ifdef _DEBUG_
std::cout << ". Dimension of the file " << theNodeFile << ": " << _shapeDim << std::endl;
#endif
// -------------------------------------
// read geom group names; several lines
// -------------------------------------
std::vector< std::string > geomNames;
const int maxLineLen = 256;
char line[ maxLineLen ];
long int pos = ::ftell( file );
while ( ::fgets( line, maxLineLen, file )) // read a line
{
if ( ::feof( file ))
{
return; // no nodes in the file
}
// check if the line describes node ids in format 3I10 (e.g. " 120 1 43\n")
size_t lineLen = strlen( line );
if ( lineLen >= 31 &&
::isdigit( line[9] ) &&
line[10] == ' ' &&
::isdigit( line[19] ) &&
line[20] == ' ' &&
::isdigit( line[29] ) &&
::isspace( line[30] ))
break;
geomNames.push_back( line + 1 ); // skip the 1st white space
pos = ::ftell( file ); // remember the position to return if the next line holds node ids
}
::fseek( file, pos, SEEK_SET ); // return to the 1st line holding nodes ids
// --------------
// read node ids
// --------------
FT_NodeToMove nodeIds;
std::vector< int > ids;
const int nbNodes = theNodeCoords->getNumberOfTuples(); // to check validity of node IDs
while ( ::fgets( line, maxLineLen, file )) // read a line
{
// find node ids in the line
char *beg = line, *end = 0;
long int id;
ids.clear();
while (( id = ::strtol( beg, &end, 10 )) &&
( beg != end ))
{
ids.push_back( id );
if ( id > nbNodes )
throw std::invalid_argument( "Too large node ID: " + FT_Utils::toStr( id ));
beg = end;
}
if ( ids.size() >= 3 )
{
std::vector< int >::iterator i = ids.begin();
nodeIds._nodeToMove = *i;
nodeIds._neighborNodes.assign( ++i, ids.end() );
_nodes.push_back( nodeIds );
}
if ( ::feof( file ))
break;
}
// -----------------------------------------------------------------
// try to find FT_Projector's to boundary sub-shapes by group names
// -----------------------------------------------------------------
_allProjectors = & theAllProjectorsByDim[ _shapeDim - 1 ];
_projectors.reserve( geomNames.size() );
std::vector< const FT_Projector* > projectors;
for ( size_t i = 0; i < geomNames.size(); ++i )
{
std::string & groupName = geomNames[i];
#ifdef _DEBUG_
std::cout << ". Group name: " << groupName << std::endl;
#endif
// remove trailing white spaces
for ( int iC = groupName.size() - 1; iC >= 0; --iC )
{
if ( ::isspace( groupName[iC] ) )
groupName.resize( iC );
else
break;
}
if ( groupName.empty() )
continue;
_groupNames.push_back( groupName ); // keep _groupNames for easier debug :)
// get projectors by group name
theXaoGroups.getProjectors( groupName, _shapeDim,
theAllProjectorsByDim[ _shapeDim-1 ], projectors );
}
// ------------------------------
// check the found FT_Projector's
// ------------------------------
if ( projectors.size() == 1 )
{
_projectors.push_back( *projectors[ 0 ]);
}
else
{
Bnd_Box nodesBox;
for ( size_t i = 0; i < _nodes.size(); ++i )
nodesBox.Add( getPoint( _nodes[i]._nodeToMove ));
if ( projectors.size() > 1 )
{
// more than one boundary shape;
// try to filter off unnecessary projectors using a bounding box of nodes
for ( size_t i = 0; i < projectors.size(); ++i )
if ( !nodesBox.IsOut( projectors[ i ]->getBoundingBox() ))
_projectors.push_back( *projectors[ i ]);
}
if ( _projectors.empty() )
{
// select projectors using a bounding box of nodes
std::vector< FT_Projector > & allProjectors = *_allProjectors;
for ( size_t i = 0; i < allProjectors.size(); ++i )
if ( !nodesBox.IsOut( allProjectors[ i ].getBoundingBox() ))
_projectors.push_back( allProjectors[ i ]);
if ( _projectors.empty() && !_nodes.empty() )
throw std::runtime_error("No boundary shape found for nodes in file " + theNodeFile );
}
}
// prepare for projection - create real projectors
for ( size_t i = 0; i < _projectors.size(); ++i )
_projectors[ i ].prepareForProjection();
}
//================================================================================
/*!
* \brief Project nodes to the shapes and move them to new positions
*/
//================================================================================
void FT_NodesOnGeom::projectAndMove()
{
_OK = true;
//
// 1. Préalables
//
// check if all the shapes are planar
bool isAllPlanar = true;
for ( size_t i = 0; i < _projectors.size() && isAllPlanar; ++i )
isAllPlanar = _projectors[i].isPlanarBoundary();
if ( isAllPlanar )
return;
// set nodes in the order suitable for optimal projection
putNodesInOrder();
// project and move nodes
std::vector< FT_NodeToMove* > notProjectedNodes;
size_t iP, iProjector;
gp_Pnt newXyz;
#ifdef _DEBUG_
std::cout << ".. _projectors.size() = " << _projectors.size() << std::endl;
std::cout << ".. _nodesOrder.size() = " << _nodesOrder.size() << std::endl;
#endif
//
// 2. Calculs
// 2.1. Avec plusieurs shapes
//
if ( _projectors.size() > 1 )
{
// the nodes are to be projected onto several boundary shapes;
// in addition to the projecting, classification on a shape is necessary
// in order to find out on which of the shapes a node is to be projected
iProjector = 0;
for ( size_t i = 0; i < _nodesOrder.size(); ++i )
{
FT_NodeToMove& nn = _nodes[ _nodesOrder[ i ]];
gp_Pnt xyz = getPoint( nn._nodeToMove );
gp_Pnt xyz1 = getPoint( nn._neighborNodes[0] );
gp_Pnt xyz2 = getPoint( nn._neighborNodes[1] );
double maxDist2 = xyz1.SquareDistance( xyz2 ) / 4.;
if ( _projectors[ iProjector ].projectAndClassify( xyz, maxDist2, newXyz,
nn._params, nn._nearParams ))
{
moveNode( nn._nodeToMove, newXyz );
}
else // a node is not on iProjector-th shape, find the shape it is on
{
for ( iP = 1; iP < _projectors.size(); ++iP ) // check _projectors other than iProjector
{
iProjector = ( iProjector + 1 ) % _projectors.size();
if ( _projectors[ iProjector ].projectAndClassify( xyz, maxDist2, newXyz,
nn._params, nn._nearParams ))
{
moveNode( nn._nodeToMove, newXyz );
break;
}
}
if ( iP == _projectors.size() )
{
notProjectedNodes.push_back( &nn );
#ifdef _DEBUG_
std::cerr << "Warning: no shape found for node " << nn._nodeToMove << std::endl;
if ( !_groupNames.empty() )
std::cerr << "Warning: group -- " << _groupNames[0] << std::endl;
#endif
}
}
}
}
//
// 2.2. Avec une seule shape
//
else // one shape
{
for ( size_t i = 0; i < _nodesOrder.size(); ++i )
{
FT_NodeToMove& nn = _nodes[ _nodesOrder[ i ]];
gp_Pnt xyz = getPoint( nn._nodeToMove );
gp_Pnt xyz1 = getPoint( nn._neighborNodes[0] );
gp_Pnt xyz2 = getPoint( nn._neighborNodes[1] );
// maxDist2 : le quart du carré de la distance entre les deux voisins du noeud à bouger
double maxDist2 = xyz1.SquareDistance( xyz2 ) / 4.;
#ifdef _DEBUG_
std::cout << "\n.. maxDist2 = " << maxDist2 << " entre " << nn._neighborNodes[0] << " et " << nn._neighborNodes[1] << " - milieu " << nn._nodeToMove << " - d/2 = " << sqrt(maxDist2) << " - d = " << sqrt(xyz1.SquareDistance( xyz2 )) << std::endl;
#endif
if ( _projectors[ 0 ].project( xyz, maxDist2, newXyz,
nn._params, nn._nearParams ))
moveNode( nn._nodeToMove, newXyz );
else
notProjectedNodes.push_back( &nn );
}
}
//
// 3. Bilan
//
if ( !notProjectedNodes.empty() )
{
// project nodes that are not projected by any of _projectors;
// a proper projector is selected by evaluation of a distance between neighbor nodes
// and a shape
std::vector< FT_Projector > & projectors = *_allProjectors;
iProjector = 0;
for ( size_t i = 0; i < notProjectedNodes.size(); ++i )
{
FT_NodeToMove& nn = *notProjectedNodes[ i ];
gp_Pnt xyz = getPoint( nn._nodeToMove );
gp_Pnt xyz1 = getPoint( nn._neighborNodes[0] );
gp_Pnt xyz2 = getPoint( nn._neighborNodes[1] );
double maxDist2 = xyz1.SquareDistance( xyz2 ) / 4.;
double tol2 = 1e-6 * maxDist2;
bool ok;
for ( iP = 0; iP < projectors.size(); ++iP )
{
projectors[ iProjector ].prepareForProjection();
projectors[ iProjector ].tryWithoutPrevSolution( true );
if (( ok = projectors[ iProjector ].isOnShape( xyz1, tol2, nn._params, nn._nearParams )) &&
( ok = projectors[ iProjector ].isOnShape( xyz2, tol2, nn._params, nn._params )))
{
if ( nn._neighborNodes.size() == 4 )
{
gp_Pnt xyz1 = getPoint( nn._neighborNodes[2] );
gp_Pnt xyz2 = getPoint( nn._neighborNodes[3] );
if (( ok = projectors[ iProjector ].isOnShape( xyz1, tol2, nn._params, nn._params )))
ok = projectors[ iProjector ].isOnShape( xyz2, tol2, nn._params, nn._params );
}
}
if ( ok && projectors[iProjector].project( xyz, maxDist2, newXyz, nn._params, nn._params ))
{
moveNode( nn._nodeToMove, newXyz );
break;
}
iProjector = ( iProjector + 1 ) % projectors.size();
}
if ( iP == projectors.size() )
{
_OK = false;
std::cerr << "Error: not projected node " << nn._nodeToMove << std::endl;
}
}
}
}
//================================================================================
/*!
* \brief Put nodes in the order for optimal projection and set FT_NodeToMove::_nearParams
* to point to a FT_NodeToMove::_params of a node that will be projected earlier
*/
//================================================================================
void FT_NodesOnGeom::putNodesInOrder()
{
if ( !_nodesOrder.empty() )
return;
// check if any of projectors can use parameters of a previously projected node on a shape
// to speed up projection
bool isPrevSolutionUsed = false;
for ( size_t i = 0; i < _projectors.size() && !isPrevSolutionUsed; ++i )
isPrevSolutionUsed = _projectors[i].canUsePrevSolution();
if ( !isPrevSolutionUsed )
{
_nodesOrder.resize( _nodes.size() );
for ( size_t i = 0; i < _nodesOrder.size(); ++i )
_nodesOrder[ i ] = i;
return;
}
// make a map to find a neighbor projected node
// map of { FT_NodeToMove::_neighborNodes[i] } to { FT_NodeToMove* };
// here we call FT_NodeToMove a 'link' as this data links a _neighborNodes[i] node to other nodes
typedef NCollection_DataMap< int, std::vector< FT_NodeToMove* > > TNodeIDToLinksMap;
TNodeIDToLinksMap neigborsMap;
int mapSize = ( _shapeDim == 1 ) ? _nodes.size() + 1 : _nodes.size() * 3;
neigborsMap.Clear();
neigborsMap.ReSize( mapSize );
std::vector< FT_NodeToMove* > linkVec, *linkVecPtr;
const int maxNbLinks = ( _shapeDim == 1 ) ? 2 : 6; // usual nb of links
for ( size_t i = 0; i < _nodes.size(); ++i )
{
FT_NodeToMove& nn = _nodes[i];
for ( size_t iN = 0; iN < nn._neighborNodes.size(); ++iN )
{
if ( !( linkVecPtr = neigborsMap.ChangeSeek( nn._neighborNodes[ iN ] )))
{
linkVecPtr = neigborsMap.Bound( nn._neighborNodes[ iN ], linkVec );
linkVecPtr->reserve( maxNbLinks );
}
linkVecPtr->push_back( & nn );
}
}
// fill in _nodesOrder
_nodesOrder.reserve( _nodes.size() );
std::list< FT_NodeToMove* > queue;
queue.push_back( &_nodes[0] );
_nodes[0]._nearParams = _nodes[0]._params; // to avoid re-adding to the queue
while ( !queue.empty() )
{
FT_NodeToMove* nn = queue.front();
queue.pop_front();
_nodesOrder.push_back( nn - & _nodes[0] );
// add neighbors to the queue and set their _nearParams = nn->_params
for ( size_t iN = 0; iN < nn->_neighborNodes.size(); ++iN )
{
std::vector< FT_NodeToMove* >& linkVec = neigborsMap( nn->_neighborNodes[ iN ]);
for ( size_t iL = 0; iL < linkVec.size(); ++iL )
{
FT_NodeToMove* nnn = linkVec[ iL ];
if ( nnn != nn && nnn->_nearParams == 0 )
{
nnn->_nearParams = nn->_params;
queue.push_back( nnn );
}
}
}
}
_nodes[0]._nearParams = 0; // reset
}
//================================================================================
/*!
* \brief Get node coordinates. Node IDs count from a unit
*/
//================================================================================
gp_Pnt FT_NodesOnGeom::getPoint( const int nodeID )
{
const size_t dim = _nodeCoords->getNumberOfComponents();
const double * xyz = _nodeCoords->getConstPointer() + ( dim * ( nodeID - 1 ));
return gp_Pnt( xyz[0], xyz[1], dim == 2 ? 0 : xyz[2] );
}
//================================================================================
/*!
* \brief change node coordinates
*/
//================================================================================
void FT_NodesOnGeom::moveNode( const int nodeID, const gp_Pnt& newXyz )
{
const size_t dim = _nodeCoords->getNumberOfComponents();
double z, *xyz = _nodeCoords->getPointer() + ( dim * ( nodeID - 1 ));
newXyz.Coord( xyz[0], xyz[1], dim == 2 ? z : xyz[2] );
}

View File

@ -0,0 +1,117 @@
// Copyright (C) 2017-2020 CEA/DEN, EDF R&D
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : FrontTrack_NodesOnGeom.hxx
// Created : Tue Apr 25 19:12:25 2017
// Author : Edward AGAPOV (eap)
#ifndef __FrontTrack_NodesOnGeom_HXX__
#define __FrontTrack_NodesOnGeom_HXX__
#include "FrontTrack_Projector.hxx"
#include <Bnd_Box.hxx>
#include <NCollection_DataMap.hxx>
#include <TopoDS_Shape.hxx>
#include <TColStd_DataMapOfIntegerInteger.hxx>
#include <string>
#include <vector>
namespace FT_Utils {
struct XaoGroups;
}
namespace MEDCoupling {
class DataArrayDouble;
}
namespace XAO {
class BrepGeometry;
}
//--------------------------------------------------------------------------------------------
/*!
* \brief Node group and geometry to project onto
*/
class FT_NodesOnGeom
{
public:
// read node IDs form a file and try to find a boundary sub-shape by name
void read( const std::string& nodesFile,
const FT_Utils::XaoGroups& xaoGroups,
MEDCoupling::DataArrayDouble* nodeCoords,
std::vector< FT_Projector > * allProjectorsByDim);
// chose boundary shapes by evaluating distance between nodes and shapes
//void choseShape( const std::vector< FT_Utils::ShapeAndBndBox >& shapeAndBoxList );
// project nodes to the shapes and move them to new positions
void projectAndMove();
// return true if all nodes were successfully relocated
bool isOK() const { return _OK; }
// return dimension of boundary shapes
int getShapeDim() const { return _shapeDim; }
// return nb of nodes to move
int nbNodes() const { return _nodes.size(); }
private:
// put nodes in the order for optimal projection
void putNodesInOrder();
// get node coordinates
gp_Pnt getPoint( const int nodeID );
// change node coordinates
void moveNode( const int nodeID, const gp_Pnt& xyz );
// Ids of a node to move and its 2 or 4 neighbors
struct FT_NodeToMove
{
int _nodeToMove;
std::vector< int > _neighborNodes;
double _params[2]; // parameters on shape (U or UV) found by projection
double *_nearParams; // _params of a neighbor already projected node
FT_NodeToMove(): _nearParams(0) {}
};
std::vector< std::string > _groupNames;
int _shapeDim; // dimension of boundary shapes
std::vector< FT_NodeToMove > _nodes; // ids of nodes to move and their neighbors
std::vector< FT_Projector > _projectors; // FT_Projector's initialized with boundary shapes
std::vector< FT_Projector > * _allProjectors; // FT_Projector's for all shapes of _shapeDim
MEDCoupling::DataArrayDouble* _nodeCoords;
bool _OK; // projecting is successful
// map of { FT_NodeToMove::_neighborNodes[i] } to { FT_NodeToMove* }
// this map is used to find neighbor nodes
typedef NCollection_DataMap< int, std::vector< FT_NodeToMove* > > TNodeIDToLinksMap;
TNodeIDToLinksMap _neigborsMap;
std::vector<int> _nodesOrder;
};
#endif

View File

@ -0,0 +1,947 @@
// Copyright (C) 2017-2020 CEA/DEN, EDF R&D
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : FrontTrack_Projector.cxx
// Created : Wed Apr 26 20:33:55 2017
// Author : Edward AGAPOV (eap)
#include "FrontTrack_Projector.hxx"
#include <BRepAdaptor_Curve.hxx>
#include <BRepBndLib.hxx>
#include <BRepTopAdaptor_FClass2d.hxx>
#include <BRep_Tool.hxx>
#include <ElCLib.hxx>
#include <ElSLib.hxx>
#include <GCPnts_UniformDeflection.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <GeomLib_IsPlanarSurface.hxx>
#include <ShapeAnalysis_Curve.hxx>
#include <ShapeAnalysis_Surface.hxx>
#include <TopExp.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Vertex.hxx>
#include <gp_Circ.hxx>
#include <gp_Cylinder.hxx>
#include <gp_Dir.hxx>
#include <gp_Pln.hxx>
#include <gp_Pnt.hxx>
#include <gp_Sphere.hxx>
#include <gp_Vec.hxx>
#include <limits>
//-----------------------------------------------------------------------------
/*!
* \brief Root class of a projector of a point to a boundary shape
*/
struct FT_RealProjector
{
virtual ~FT_RealProjector() {}
/*!
* \brief Project a point to a boundary shape
* \param [in] point - the point to project
* \param [out] newSolution - position on the shape (U or UV) found during the projection
* \param [in] prevSolution - position already found during the projection of a neighbor point
* \return gp_Pnt - the projection point
*/
virtual gp_Pnt project( const gp_Pnt& point,
double* newSolution,
const double* prevSolution = 0) = 0;
/*!
* \brief Project a point to a boundary shape and check if the projection is within
* the shape boundary
* \param [in] point - the point to project
* \param [in] maxDist2 - the maximal allowed square distance between point and projection
* \param [out] projection - the projection point
* \param [out] newSolution - position on the shape (U or UV) found during the projection
* \param [in] prevSolution - position already found during the projection of a neighbor point
* \return bool - false if the projection point lies out of the shape boundary or
the distance the point and the projection is more than sqrt(maxDist2)
*/
virtual bool projectAndClassify( const gp_Pnt& point,
const double maxDist2,
gp_Pnt& projection,
double* newSolution,
const double* prevSolution = 0) = 0;
// return true if a previously found solution can be used to speed up the projection
virtual bool canUsePrevSolution() const { return false; }
double _dist; // distance between the point being projected and its projection
};
namespace // actual projection algorithms
{
const double theEPS = 1e-12;
//================================================================================
/*!
* \brief Projector to any curve
*/
//================================================================================
struct CurveProjector : public FT_RealProjector
{
BRepAdaptor_Curve _curve;
double _tol;
ShapeAnalysis_Curve _projector;
double _uRange[2];
//-----------------------------------------------------------------------------
CurveProjector( const TopoDS_Edge& e, const double tol ):
_curve( e ), _tol( tol )
{
BRep_Tool::Range( e, _uRange[0], _uRange[1] );
}
//-----------------------------------------------------------------------------
// project a point to the curve
virtual gp_Pnt project( const gp_Pnt& P,
double* newSolution,
const double* prevSolution = 0)
{
#ifdef _DEBUG_
std::cout << ".. project a point to the curve prevSolution = " << prevSolution << std::endl;
#endif
gp_Pnt proj;
Standard_Real param;
if ( prevSolution )
{
_dist = _projector.NextProject( prevSolution[0], _curve, P, _tol, proj, param );
}
else
{
_dist = _projector.Project( _curve, P, _tol, proj, param, false );
}
#ifdef _DEBUG_
std::cout << ".. _dist : " << _dist << std::endl;
#endif
proj = _curve.Value( param );
newSolution[0] = param;
return proj;
}
//-----------------------------------------------------------------------------
// project a point to a curve and check if the projection is within the curve boundary
virtual bool projectAndClassify( const gp_Pnt& point,
const double maxDist2,
gp_Pnt& projection,
double* newSolution,
const double* prevSolution = 0)
{
#ifdef _DEBUG_
std::cout << ".. project a point to a curve and check " << std::endl;
#endif
projection = project( point, newSolution, prevSolution );
return ( _uRange[0] < newSolution[0] && newSolution[0] < _uRange[1] &&
_dist * _dist < maxDist2 );
}
//-----------------------------------------------------------------------------
// return true if a previously found solution can be used to speed up the projection
virtual bool canUsePrevSolution() const { return true; }
};
//================================================================================
/*!
* \brief Projector to a straight curve. Don't project, classify only
*/
//================================================================================
struct LineProjector : public FT_RealProjector
{
gp_Pnt _p0, _p1;
//-----------------------------------------------------------------------------
LineProjector( TopoDS_Edge e )
{
e.Orientation( TopAbs_FORWARD );
_p0 = BRep_Tool::Pnt( TopExp::FirstVertex( e ));
_p1 = BRep_Tool::Pnt( TopExp::LastVertex ( e ));
}
//-----------------------------------------------------------------------------
// does nothing
virtual gp_Pnt project( const gp_Pnt& P,
double* newSolution,
const double* prevSolution = 0)
{
return P;
}
//-----------------------------------------------------------------------------
// check if a point lies within the line segment
virtual bool projectAndClassify( const gp_Pnt& point,
const double maxDist2,
gp_Pnt& projection,
double* newSolution,
const double* prevSolution = 0)
{
gp_Vec edge( _p0, _p1 );
gp_Vec p0p ( _p0, point );
double u = ( edge * p0p ) / edge.SquareMagnitude(); // param [0,1] on the edge
projection = ( 1. - u ) * _p0.XYZ() + u * _p1.XYZ(); // projection of the point on the edge
if ( u < 0 || 1 < u )
return false;
// check distance
return point.SquareDistance( projection ) < theEPS * theEPS;
}
};
//================================================================================
/*!
* \brief Projector to a circular edge
*/
//================================================================================
struct CircleProjector : public FT_RealProjector
{
gp_Circ _circle;
double _uRange[2];
//-----------------------------------------------------------------------------
CircleProjector( const gp_Circ& c, const double f, const double l ):
_circle( c )
{
_uRange[0] = f;
_uRange[1] = l;
}
//-----------------------------------------------------------------------------
// project a point to the circle
virtual gp_Pnt project( const gp_Pnt& P,
double* newSolution,
const double* prevSolution = 0)
{
// assume that P is already on the the plane of circle, since
// it is in the middle of two points lying on the circle
// move P to the circle
const gp_Pnt& O = _circle.Location();
gp_Vec radiusVec( O, P );
double radius = radiusVec.Magnitude();
if ( radius < std::numeric_limits<double>::min() )
return P; // P in on the axe
gp_Pnt proj = O.Translated( radiusVec.Multiplied( _circle.Radius() / radius ));
_dist = _circle.Radius() - radius;
return proj;
}
//-----------------------------------------------------------------------------
// project and check if a projection lies within the circular edge
virtual bool projectAndClassify( const gp_Pnt& point,
const double maxDist2,
gp_Pnt& projection,
double* newSolution,
const double* prevSolution = 0)
{
_dist = -1;
projection = project( point, newSolution );
if ( _dist < 0 || // ?
_dist * _dist > maxDist2 )
return false;
newSolution[0] = ElCLib::Parameter( _circle, projection );
return ( _uRange[0] < newSolution[0] && newSolution[0] < _uRange[1] );
}
};
//================================================================================
/*!
* \brief Projector to any surface
*/
//================================================================================
struct SurfaceProjector : public FT_RealProjector
{
ShapeAnalysis_Surface _projector;
double _tol;
BRepTopAdaptor_FClass2d* _classifier;
//-----------------------------------------------------------------------------
SurfaceProjector( const TopoDS_Face& face, const double tol, BRepTopAdaptor_FClass2d* cls ):
_projector( BRep_Tool::Surface( face )),
_tol( tol ),
_classifier( cls )
{
}
//-----------------------------------------------------------------------------
// delete _classifier
~SurfaceProjector()
{
delete _classifier;
}
//-----------------------------------------------------------------------------
// project a point to a surface
virtual gp_Pnt project( const gp_Pnt& P,
double* newSolution,
const double* prevSolution = 0)
{
gp_Pnt2d uv;
if ( prevSolution )
{
gp_Pnt2d prevUV( prevSolution[0], prevSolution[1] );
uv = _projector.NextValueOfUV( prevUV, P, _tol );
}
else
{
uv = _projector.ValueOfUV( P, _tol );
}
uv.Coord( newSolution[0], newSolution[1] );
gp_Pnt proj = _projector.Value( uv );
_dist = _projector.Gap();
return proj;
}
//-----------------------------------------------------------------------------
// project a point to a surface and check if the projection is within the surface boundary
virtual bool projectAndClassify( const gp_Pnt& point,
const double maxDist2,
gp_Pnt& projection,
double* newSolution,
const double* prevSolution = 0)
{
projection = project( point, newSolution, prevSolution );
return ( _dist * _dist < maxDist2 ) && classify( newSolution );
}
//-----------------------------------------------------------------------------
// check if the projection is within the shape boundary
bool classify( const double* newSolution )
{
TopAbs_State state = _classifier->Perform( gp_Pnt2d( newSolution[0], newSolution[1]) );
return ( state != TopAbs_OUT );
}
//-----------------------------------------------------------------------------
// return true if a previously found solution can be used to speed up the projection
virtual bool canUsePrevSolution() const { return true; }
};
//================================================================================
/*!
* \brief Projector to a plane. Don't project, classify only
*/
//================================================================================
struct PlaneProjector : public SurfaceProjector
{
gp_Pln _plane;
bool _isRealPlane; // false means that a surface is planar but parametrization is different
//-----------------------------------------------------------------------------
PlaneProjector( const gp_Pln& pln,
const TopoDS_Face& face,
BRepTopAdaptor_FClass2d* cls,
bool isRealPlane=true):
SurfaceProjector( face, 0, cls ),
_plane( pln ),
_isRealPlane( isRealPlane )
{}
//-----------------------------------------------------------------------------
// does nothing
virtual gp_Pnt project( const gp_Pnt& P,
double* newSolution,
const double* prevSolution = 0)
{
return P;
}
//-----------------------------------------------------------------------------
// check if a point lies within the boundry of the planar face
virtual bool projectAndClassify( const gp_Pnt& point,
const double maxDist2,
gp_Pnt& projection,
double* newSolution,
const double* prevSolution = 0)
{
if ( _isRealPlane )
{
ElSLib::PlaneParameters( _plane.Position(), point, newSolution[0], newSolution[1]);
projection = ElSLib::PlaneValue ( newSolution[0], newSolution[1], _plane.Position() );
if ( projection.SquareDistance( point ) > theEPS * theEPS )
return false;
return SurfaceProjector::classify( newSolution );
}
else
{
return SurfaceProjector::projectAndClassify( point, maxDist2, projection,
newSolution, prevSolution );
}
}
//-----------------------------------------------------------------------------
// return true if a previously found solution can be used to speed up the projection
virtual bool canUsePrevSolution() const { return false; }
};
//================================================================================
/*!
* \brief Projector to a cylinder
*/
//================================================================================
struct CylinderProjector : public SurfaceProjector
{
gp_Cylinder _cylinder;
//-----------------------------------------------------------------------------
CylinderProjector( const gp_Cylinder& c,
const TopoDS_Face& face,
BRepTopAdaptor_FClass2d* cls ):
SurfaceProjector( face, 0, cls ),
_cylinder( c )
{}
//-----------------------------------------------------------------------------
// project a point to the cylinder
virtual gp_Pnt project( const gp_Pnt& P,
double* newSolution,
const double* prevSolution = 0)
{
// project the point P to the cylinder axis -> Pp
const gp_Pnt& O = _cylinder.Position().Location();
const gp_Dir& axe = _cylinder.Position().Direction();
gp_Vec trsl = gp_Vec( axe ).Multiplied( gp_Vec( O, P ).Dot( axe ));
gp_Pnt Pp = O.Translated( trsl );
// move Pp to the cylinder
gp_Vec radiusVec( Pp, P );
double radius = radiusVec.Magnitude();
if ( radius < std::numeric_limits<double>::min() )
return P; // P in on the axe
gp_Pnt proj = Pp.Translated( radiusVec.Multiplied( _cylinder.Radius() / radius ));
_dist = _cylinder.Radius() - radius;
return proj;
}
//-----------------------------------------------------------------------------
// project a point to the cylinder and check if the projection is within the surface boundary
virtual bool projectAndClassify( const gp_Pnt& point,
const double maxDist2,
gp_Pnt& projection,
double* newSolution,
const double* prevSolution = 0)
{
ElSLib::CylinderParameters( _cylinder.Position(), _cylinder.Radius(), point,
newSolution[0], newSolution[1]);
projection = ElSLib::CylinderValue( newSolution[0], newSolution[1],
_cylinder.Position(), _cylinder.Radius() );
return ( _dist * _dist < maxDist2 ) && SurfaceProjector::classify( newSolution );
}
//-----------------------------------------------------------------------------
// return true if a previously found solution can be used to speed up the projection
virtual bool canUsePrevSolution() const { return false; }
};
//================================================================================
/*!
* \brief Projector to a cone
*/
//================================================================================
struct ConeProjector : public SurfaceProjector
{
gp_Cone _cone;
//-----------------------------------------------------------------------------
ConeProjector( const gp_Cone& c,
const TopoDS_Face& face,
BRepTopAdaptor_FClass2d* cls ):
SurfaceProjector( face, 0, cls ),
_cone( c )
{}
//-----------------------------------------------------------------------------
// project a point to the cone
virtual gp_Pnt project( const gp_Pnt& point,
double* newSolution,
const double* prevSolution = 0)
{
ElSLib::ConeParameters( _cone.Position(), _cone.RefRadius(), _cone.SemiAngle(),
point, newSolution[0], newSolution[1]);
gp_Pnt proj = ElSLib::ConeValue( newSolution[0], newSolution[1],
_cone.Position(), _cone.RefRadius(), _cone.SemiAngle() );
_dist = point.Distance( proj );
return proj;
}
//-----------------------------------------------------------------------------
// project a point to the cone and check if the projection is within the surface boundary
virtual bool projectAndClassify( const gp_Pnt& point,
const double maxDist2,
gp_Pnt& projection,
double* newSolution,
const double* prevSolution = 0)
{
projection = project( point, newSolution, prevSolution );
return ( _dist * _dist < maxDist2 ) && SurfaceProjector::classify( newSolution );
}
//-----------------------------------------------------------------------------
// return true if a previously found solution can be used to speed up the projection
virtual bool canUsePrevSolution() const { return false; }
};
//================================================================================
/*!
* \brief Projector to a sphere
*/
//================================================================================
struct SphereProjector : public SurfaceProjector
{
gp_Sphere _sphere;
//-----------------------------------------------------------------------------
SphereProjector( const gp_Sphere& s,
const TopoDS_Face& face,
BRepTopAdaptor_FClass2d* cls ):
SurfaceProjector( face, 0, cls ),
_sphere( s )
{}
//-----------------------------------------------------------------------------
// project a point to the sphere
virtual gp_Pnt project( const gp_Pnt& P,
double* newSolution,
const double* prevSolution = 0)
{
// move Pp to the Sphere
const gp_Pnt& O = _sphere.Location();
gp_Vec radiusVec( O, P );
double radius = radiusVec.Magnitude();
if ( radius < std::numeric_limits<double>::min() )
return P; // P is on O
gp_Pnt proj = O.Translated( radiusVec.Multiplied( _sphere.Radius() / radius ));
_dist = _sphere.Radius() - radius;
return proj;
}
//-----------------------------------------------------------------------------
// project a point to the sphere and check if the projection is within the surface boundary
virtual bool projectAndClassify( const gp_Pnt& point,
const double maxDist2,
gp_Pnt& projection,
double* newSolution,
const double* prevSolution = 0)
{
ElSLib::SphereParameters( _sphere.Position(), _sphere.Radius(), point,
newSolution[0], newSolution[1]);
projection = ElSLib::SphereValue( newSolution[0], newSolution[1],
_sphere.Position(), _sphere.Radius() );
return ( _dist * _dist < maxDist2 ) && SurfaceProjector::classify( newSolution );
}
//-----------------------------------------------------------------------------
// return true if a previously found solution can be used to speed up the projection
virtual bool canUsePrevSolution() const { return false; }
};
//================================================================================
/*!
* \brief Projector to a torus
*/
//================================================================================
struct TorusProjector : public SurfaceProjector
{
gp_Torus _torus;
//-----------------------------------------------------------------------------
TorusProjector( const gp_Torus& t,
const TopoDS_Face& face,
BRepTopAdaptor_FClass2d* cls ):
SurfaceProjector( face, 0, cls ),
_torus( t )
{}
//-----------------------------------------------------------------------------
// project a point to the torus
virtual gp_Pnt project( const gp_Pnt& point,
double* newSolution,
const double* prevSolution = 0)
{
ElSLib::TorusParameters( _torus.Position(), _torus.MajorRadius(), _torus.MinorRadius(),
point, newSolution[0], newSolution[1]);
gp_Pnt proj = ElSLib::TorusValue( newSolution[0], newSolution[1],
_torus.Position(), _torus.MajorRadius(), _torus.MinorRadius() );
_dist = point.Distance( proj );
return proj;
}
//-----------------------------------------------------------------------------
// project a point to the torus and check if the projection is within the surface boundary
virtual bool projectAndClassify( const gp_Pnt& point,
const double maxDist2,
gp_Pnt& projection,
double* newSolution,
const double* prevSolution = 0)
{
projection = project( point, newSolution, prevSolution );
return ( _dist * _dist < maxDist2 ) && SurfaceProjector::classify( newSolution );
}
//-----------------------------------------------------------------------------
// return true if a previously found solution can be used to speed up the projection
virtual bool canUsePrevSolution() const { return false; }
};
//================================================================================
/*!
* \brief Check if a curve can be considered straight
*/
//================================================================================
bool isStraight( const GeomAdaptor_Curve& curve, const double tol )
{
// rough check: evaluate how far from a straight line connecting the curve ends
// stand several internal points of the curve
const double f = curve.FirstParameter();
const double l = curve.LastParameter();
const gp_Pnt pf = curve.Value( f );
const gp_Pnt pl = curve.Value( l );
const gp_Vec lineVec( pf, pl );
const double lineLen2 = lineVec.SquareMagnitude();
if ( lineLen2 < std::numeric_limits< double >::min() )
return false; // E seems closed
const double nbSamples = 7;
for ( int i = 0; i < nbSamples; ++i )
{
const double r = ( i + 1 ) / nbSamples;
const gp_Pnt pi = curve.Value( f * r + l * ( 1 - r ));
const gp_Vec vi( pf, pi );
const double h2 = lineVec.Crossed( vi ).SquareMagnitude() / lineLen2;
if ( h2 > tol * tol )
return false;
}
// thorough check
GCPnts_UniformDeflection divider( curve, tol );
return ( divider.IsDone() && divider.NbPoints() < 3 );
}
}
//================================================================================
/*!
* \brief Initialize with a boundary shape
*/
//================================================================================
FT_Projector::FT_Projector(const TopoDS_Shape& shape)
{
_realProjector = 0;
setBoundaryShape( shape );
_tryWOPrevSolution = false;
}
//================================================================================
/*!
* \brief Copy another projector
*/
//================================================================================
FT_Projector::FT_Projector(const FT_Projector& other)
{
_realProjector = 0;
_shape = other._shape;
_bndBox = other._bndBox;
_tryWOPrevSolution = false;
}
//================================================================================
/*!
* \brief Destructor. Delete _realProjector
*/
//================================================================================
FT_Projector::~FT_Projector()
{
delete _realProjector;
}
//================================================================================
/*!
* \brief Initialize with a boundary shape. Compute the bounding box
*/
//================================================================================
void FT_Projector::setBoundaryShape(const TopoDS_Shape& shape)
{
delete _realProjector; _realProjector = 0;
_shape = shape;
if ( shape.IsNull() )
return;
BRepBndLib::Add( shape, _bndBox );
_bndBox.Enlarge( 1e-5 * sqrt( _bndBox.SquareExtent() ));
}
//================================================================================
/*!
* \brief Create a real projector
*/
//================================================================================
void FT_Projector::prepareForProjection()
{
if ( _shape.IsNull() || _realProjector )
return;
if ( _shape.ShapeType() == TopAbs_EDGE )
{
const TopoDS_Edge& edge = TopoDS::Edge( _shape );
double tol = 1e-6 * sqrt( _bndBox.SquareExtent() );
double f,l;
Handle(Geom_Curve) curve = BRep_Tool::Curve( edge, f,l );
if ( curve.IsNull() )
return; // degenerated edge
GeomAdaptor_Curve acurve( curve, f, l );
switch ( acurve.GetType() )
{
case GeomAbs_Line:
_realProjector = new LineProjector( edge );
break;
case GeomAbs_Circle:
_realProjector = new CircleProjector( acurve.Circle(), f, l );
break;
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
case GeomAbs_OffsetCurve:
case GeomAbs_OtherCurve:
if ( isStraight( acurve, tol ))
{
_realProjector = new LineProjector( edge );
break;
}
case GeomAbs_Ellipse:
case GeomAbs_Hyperbola:
case GeomAbs_Parabola:
_realProjector = new CurveProjector( edge, tol );
}
}
else if ( _shape.ShapeType() == TopAbs_FACE )
{
TopoDS_Face face = TopoDS::Face( _shape );
Handle(Geom_Surface) surface = BRep_Tool::Surface( face );
if ( surface.IsNull() )
return;
GeomAdaptor_Surface asurface( surface );
Standard_Real tol = BRep_Tool::Tolerance( face );
Standard_Real toluv = Min( asurface.UResolution( tol ), asurface.VResolution( tol ));
BRepTopAdaptor_FClass2d* classifier = new BRepTopAdaptor_FClass2d( face, toluv );
switch ( asurface.GetType() )
{
case GeomAbs_Plane:
_realProjector = new PlaneProjector( asurface.Plane(), face, classifier );
break;
case GeomAbs_Cylinder:
_realProjector = new CylinderProjector( asurface.Cylinder(), face, classifier );
break;
case GeomAbs_Sphere:
_realProjector = new SphereProjector( asurface.Sphere(), face, classifier );
break;
case GeomAbs_Cone:
_realProjector = new ConeProjector( asurface.Cone(), face, classifier );
break;
case GeomAbs_Torus:
_realProjector = new TorusProjector( asurface.Torus(), face, classifier );
break;
case GeomAbs_BezierSurface:
case GeomAbs_BSplineSurface:
case GeomAbs_SurfaceOfRevolution:
case GeomAbs_SurfaceOfExtrusion:
case GeomAbs_OffsetSurface:
case GeomAbs_OtherSurface:
GeomLib_IsPlanarSurface isPlaneCheck( surface, tol );
if ( isPlaneCheck.IsPlanar() )
{
_realProjector = new PlaneProjector( isPlaneCheck.Plan(), face, classifier,
/*isRealPlane=*/false);
}
else
{
_realProjector = new SurfaceProjector( face, tol, classifier );
}
break;
}
if ( !_realProjector )
delete classifier;
}
}
//================================================================================
/*!
* \brief Return true if projection is not needed
*/
//================================================================================
bool FT_Projector::isPlanarBoundary() const
{
return ( dynamic_cast< LineProjector* >( _realProjector ) ||
dynamic_cast< PlaneProjector* >( _realProjector ) );
}
//================================================================================
/*!
* \brief Check if a point lies on the boundary shape
* \param [in] point - the point to check
* \param [in] tol2 - a square tolerance allowing to decide whether a point is on the shape
* \param [in] newSolution - position on the shape (U or UV) of the point found
* during projecting
* \param [in] prevSolution - position on the shape (U or UV) of a neighbor point
* \return bool - \c true if the point lies on the boundary shape
*
* This method is used to select a shape by checking if all neighbor nodes of a node to move
* lie on a shape.
*/
//================================================================================
bool FT_Projector::isOnShape( const gp_Pnt& point,
const double tol2,
double* newSolution,
const double* prevSolution)
{
if ( _bndBox.IsOut( point ) || !_realProjector )
return false;
gp_Pnt proj;
if ( isPlanarBoundary() )
return projectAndClassify( point, tol2, proj, newSolution, prevSolution );
return project( point, tol2, proj, newSolution, prevSolution );
}
//================================================================================
/*!
* \brief Project a point to the boundary shape
* \param [in] point - the point to project
* \param [in] maxDist2 - the maximal square distance between the point and the projection
* \param [out] projection - the projection
* \param [out] newSolution - position on the shape (U or UV) of the point found
* during projecting
* \param [in] prevSolution - already found position on the shape (U or UV) of a neighbor point
* \return bool - false if the distance between the point and the projection
* is more than sqrt(maxDist2)
*
* This method is used to project a node in the case where only one shape is found by name
*/
//================================================================================
bool FT_Projector::project( const gp_Pnt& point,
const double maxDist2,
gp_Pnt& projection,
double* newSolution,
const double* prevSolution)
{
if ( !_realProjector )
return false;
_realProjector->_dist = 1e100;
projection = _realProjector->project( point, newSolution, prevSolution );
bool ok = ( _realProjector->_dist * _realProjector->_dist < maxDist2 );
if ( !ok && _tryWOPrevSolution && prevSolution )
{
projection = _realProjector->project( point, newSolution );
ok = ( _realProjector->_dist * _realProjector->_dist < maxDist2 );
}
return ok;
}
//================================================================================
/*!
* \brief Project a point to the boundary shape and check if the projection lies within
* the shape boundary
* \param [in] point - the point to project
* \param [in] maxDist2 - the maximal square distance between the point and the projection
* \param [out] projection - the projection
* \param [out] newSolution - position on the shape (U or UV) of the point found
* during projecting
* \param [in] prevSolution - already found position on the shape (U or UV) of a neighbor point
* \return bool - false if the projection point lies out of the shape boundary or
* the distance between the point and the projection is more than sqrt(maxDist2)
*
* This method is used to project a node in the case where several shapes are selected for
* projection of a node group
*/
//================================================================================
bool FT_Projector::projectAndClassify( const gp_Pnt& point,
const double maxDist2,
gp_Pnt& projection,
double* newSolution,
const double* prevSolution)
{
if ( _bndBox.IsOut( point ) || !_realProjector )
return false;
bool ok = _realProjector->projectAndClassify( point, maxDist2, projection,
newSolution, prevSolution );
if ( !ok && _tryWOPrevSolution && prevSolution )
ok = _realProjector->projectAndClassify( point, maxDist2, projection, newSolution );
return ok;
}
//================================================================================
/*!
* \brief Return true if a previously found solution can be used to speed up the projection
*/
//================================================================================
bool FT_Projector::canUsePrevSolution() const
{
return ( _realProjector && _realProjector->canUsePrevSolution() );
}

View File

@ -0,0 +1,95 @@
// Copyright (C) 2017-2020 CEA/DEN, EDF R&D
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : FrontTrack_Projector.hxx
// Created : Wed Apr 26 20:12:13 2017
// Author : Edward AGAPOV (eap)
#ifndef __FrontTrack_Projector_HXX__
#define __FrontTrack_Projector_HXX__
#include <TopoDS_Shape.hxx>
#include <Bnd_Box.hxx>
struct FT_RealProjector;
/*!
* \brief Projector of a point to a boundary shape. Wrapper of a real projection algo
*/
class FT_Projector
{
public:
FT_Projector(const TopoDS_Shape& shape = TopoDS_Shape());
FT_Projector(const FT_Projector& other);
~FT_Projector();
// initialize with a boundary shape, compute the bounding box
void setBoundaryShape(const TopoDS_Shape& shape);
// return the boundary shape
const TopoDS_Shape& getShape() const { return _shape; }
// return the bounding box
const Bnd_Box getBoundingBox() const { return _bndBox; }
// create a real projector
void prepareForProjection();
// return true if a previously found solution can be used to speed up the projection
bool canUsePrevSolution() const;
// return true if projection is not needed
bool isPlanarBoundary() const;
// switch a mode of usage of prevSolution.
// If projection fails, to try to project without usage of prevSolution.
// By default this mode is off
void tryWithoutPrevSolution( bool toTry ) { _tryWOPrevSolution = toTry; }
// project a point to the boundary shape
bool project( const gp_Pnt& point,
const double maxDist2,
gp_Pnt& projection,
double* newSolution,
const double* prevSolution = 0);
// project a point to the boundary shape and check if the projection is within the shape boundary
bool projectAndClassify( const gp_Pnt& point,
const double maxDist2,
gp_Pnt& projection,
double* newSolution,
const double* prevSolution = 0);
// check if a point lies on the boundary shape
bool isOnShape( const gp_Pnt& point,
const double tol2,
double* newSolution,
const double* prevSolution = 0);
private:
FT_RealProjector* _realProjector;
Bnd_Box _bndBox;
TopoDS_Shape _shape;
bool _tryWOPrevSolution;
};
#endif

View File

@ -0,0 +1,164 @@
// Copyright (C) 2017-2020 CEA/DEN, EDF R&D
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : FrontTrack_Utils.cxx
// Created : Tue Apr 25 17:28:58 2017
// Author : Edward AGAPOV (eap)
#include "FrontTrack_Utils.hxx"
#include <XAO_Xao.hxx>
#include <XAO_Group.hxx>
#include <fcntl.h>
#include <boost/filesystem.hpp>
namespace boofs = boost::filesystem;
//================================================================================
/*
* \brief Check if a file exists
*/
//================================================================================
bool FT_Utils::fileExists( const std::string& path )
{
if ( path.empty() )
return false;
boost::system::error_code err;
bool res = boofs::exists( path, err );
return err ? false : res;
}
//================================================================================
/*!
* \brief Check if a file can be created/overwritten
*/
//================================================================================
bool FT_Utils::canWrite( const std::string& path )
{
if ( path.empty() )
return false;
bool can = false;
#ifdef WIN32
HANDLE file = CreateFile( path.c_str(), // name of the write
GENERIC_WRITE, // open for writing
0, // do not share
NULL, // default security
OPEN_ALWAYS, // CREATE NEW or OPEN EXISTING
FILE_ATTRIBUTE_NORMAL, // normal file
NULL); // no attr. template
can = ( file != INVALID_HANDLE_VALUE );
CloseHandle( file );
#else
int file = ::open( path.c_str(),
O_WRONLY | O_CREAT,
S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH ); // rw-r--r--
can = ( file >= 0 );
#endif
return can;
}
//================================================================================
/*!
* \brief Make a map of XAO groups
*/
//================================================================================
FT_Utils::XaoGroups::XaoGroups( const XAO::Xao* theXao )
{
XAO::Xao* xao = const_cast< XAO::Xao* >( theXao );
for ( int iG = 0; iG < theXao->countGroups(); ++iG )
{
XAO::Group* group = xao->getGroup( iG );
if ( group->getDimension() == 1 )
_xaoGroups[ 0 ].insert( std::make_pair( group->getName(), group ));
else if ( group->getDimension() == 2 )
_xaoGroups[ 1 ].insert( std::make_pair( group->getName(), group ));
}
}
//================================================================================
/*!
* \brief Return FT_Projector's by a group name
* \param [in] groupName - the group name
* \param [in] dim - the group dimension
* \param [in] allProjectors - the projector of all shapes of \a dim dimension
* \param [out] groupProjectors - projectors to shapes of the group
* \return int - number of found shapes
*/
//================================================================================
int FT_Utils::XaoGroups::getProjectors( const std::string& groupName,
const int dim,
const std::vector< FT_Projector > & allProjectors,
std::vector< const FT_Projector* > & groupProjectors) const
{
// get namesake groups
const TGroupByNameMap* groupMap = 0;
if ( dim == 1 )
groupMap = &_xaoGroups[ 0 ];
else if ( dim == 2 )
groupMap = &_xaoGroups[ 1 ];
else
return 0;
TGroupByNameMap::const_iterator name2gr = groupMap->find( groupName );
if ( name2gr == groupMap->end() )
return 0;
std::vector< XAO::Group* > groups;
groups.push_back( name2gr->second );
for ( ++name2gr; name2gr != groupMap->end(); ++name2gr )
{
if ( name2gr->second->getName() == groupName )
groups.push_back( name2gr->second );
else
break;
}
// get projectors
int nbFound = 0;
for ( size_t i = 0; i < groups.size(); ++i )
{
// IDs in XAO correspond to indices of allProjectors
std::set<int>::iterator id = groups[i]->begin(), end = groups[i]->end();
for ( ; id != end; ++id, ++nbFound )
if ( *id < (int) allProjectors.size() )
groupProjectors.push_back ( & allProjectors[ *id ]);
}
return nbFound;
}

View File

@ -0,0 +1,72 @@
// Copyright (C) 2017-2020 CEA/DEN, EDF R&D
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : FrontTrack_Utils.hxx
// Created : Tue Apr 25 17:23:33 2017
// Author : Edward AGAPOV (eap)
#ifndef __FrontTrack_Utils_HXX__
#define __FrontTrack_Utils_HXX__
#include "FrontTrack_Projector.hxx"
#include <vector>
#include <string>
#include <map>
namespace XAO {
class Xao;
class Group;
}
namespace FT_Utils
{
// Check if a file exists
bool fileExists( const std::string& path );
// Check if a file can be created/overwritten
bool canWrite( const std::string& path );
// Transform anything printable to a string
template< typename T> std::string toStr( const T& t )
{
std::ostringstream s;
s << t;
return s.str();
}
//--------------------------------------------------------------------------------------------
/*!
* \brief Return projectors by group name
*/
struct XaoGroups
{
XaoGroups( const XAO::Xao* xao );
int getProjectors( const std::string& groupName,
const int dim,
const std::vector< FT_Projector > & allProjectors,
std::vector< const FT_Projector* > & groupProjectors ) const;
private:
typedef std::multimap< std::string, XAO::Group* > TGroupByNameMap;
TGroupByNameMap _xaoGroups[ 2 ]; // by dim
};
}
#endif

View File

@ -0,0 +1,83 @@
# Copyright (C) 2017-2020 CEA/DEN, EDF R&D
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
#
INCLUDE(${SWIG_USE_FILE})
# --- options ---
# additional include directories
INCLUDE_DIRECTORIES(
${PYTHON_INCLUDE_DIRS}
${PTHREAD_INCLUDE_DIR} # pthread dependancy due to python2.7 library
${CMAKE_CURRENT_SOURCE_DIR}
${PROJECT_SOURCE_DIR}/src/ADAPTFrontTrack
)
# additional preprocessor / compiler flags
ADD_DEFINITIONS(
${PYTHON_DEFINITIONS}
)
# libraries to link to
SET(_link_LIBRARIES
${PYTHON_LIBRARIES}
${PLATFORM_LIBS}
ADAPTFrontTrack
)
# --- headers ---
# header files / to be processed by moc
SET(ADAPTFrontTrack_Swig_HEADERS
FrontTrack_Swig.i
)
# --- sources ---
# sources / static
SET(ADAPTFrontTrack_Swig_SOURCES
${ADAPTFrontTrack_Swig_HEADERS}
)
# swig flags
SET_SOURCE_FILES_PROPERTIES(FrontTrack_Swig.i PROPERTIES CPLUSPLUS ON)
SET_SOURCE_FILES_PROPERTIES(FrontTrack_Swig.i PROPERTIES SWIG_DEFINITIONS "-shadow")
# --- scripts ---
# scripts / swig wrappings
SET(_swig_SCRIPTS
${CMAKE_CURRENT_BINARY_DIR}/FrontTrack.py
)
# --- rules ---
IF(${CMAKE_VERSION} VERSION_LESS "3.8.0")
SWIG_ADD_MODULE(FrontTrack_Swig python ${ADAPTFrontTrack_Swig_SOURCES})
ELSE()
SWIG_ADD_LIBRARY(FrontTrack_Swig LANGUAGE python SOURCES ${ADAPTFrontTrack_Swig_SOURCES})
ENDIF()
SWIG_LINK_LIBRARIES(FrontTrack_Swig ${_link_LIBRARIES})
SWIG_CHECK_GENERATION(FrontTrack_Swig)
IF(WIN32)
SET_TARGET_PROPERTIES(_FrontTrack_Swig PROPERTIES DEBUG_OUTPUT_NAME _FrontTrack_Swig_d)
ENDIF(WIN32)
INSTALL(TARGETS ${SWIG_MODULE_FrontTrack_Swig_REAL_NAME} DESTINATION ${SALOME_INSTALL_PYTHON})
SALOME_INSTALL_SCRIPTS("${_swig_SCRIPTS}" ${SALOME_INSTALL_PYTHON} EXTRA_DPYS "${SWIG_MODULE_FrontTrack_Swig_REAL_NAME}")

View File

@ -0,0 +1,67 @@
// Copyright (C) 2017-2020 CEA/DEN, EDF R&D
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : FrontTrack.i
// Created : Fri Apr 28 17:36:20 2017
// Author : Edward AGAPOV (eap)
%module FrontTrack
%{
#include "FrontTrack.hxx"
#include <Standard_Failure.hxx>
#include <Standard_ErrorHandler.hxx>
#include <stdexcept>
static PyObject* setOCCException(Standard_Failure& ex)
{
std::string msg(ex.DynamicType()->Name());
if ( ex.GetMessageString() && strlen( ex.GetMessageString() )) {
msg += ": ";
msg += ex.GetMessageString();
}
PyErr_SetString(PyExc_Exception, msg.c_str() );
return NULL;
}
%}
%exception
{
try {
OCC_CATCH_SIGNALS;
$action }
catch (Standard_Failure& ex) {
return setOCCException(ex);
}
catch (std::exception& ex) {
PyErr_SetString(PyExc_Exception, ex.what() );
return NULL;
}
}
%include <std_string.i>
%include <std_vector.i>
%template(svec) std::vector<std::string>;
//%feature("autodoc", "1");
//%feature("docstring");
%include "FrontTrack.hxx"