diff --git a/src/SMESH_SWIG/smesh.py b/src/SMESH_SWIG/smesh.py index 6b95891c7..3b01790ef 100644 --- a/src/SMESH_SWIG/smesh.py +++ b/src/SMESH_SWIG/smesh.py @@ -31,8 +31,6 @@ import geompy import StdMeshers import SMESH -# Public variables -# ---------------- REGULAR = 1 PYTHON = 2 @@ -43,8 +41,6 @@ GHS3D = 4 smesh = salome.lcc.FindOrLoadComponent("FactoryServer", "SMESH") smesh.SetCurrentStudy(salome.myStudy) -# Private functions -# ----------------- NO_NAME = "NoName" @@ -64,39 +60,31 @@ def SetName(obj, name): attr = sobj.FindAttribute("AttributeName")[1] attr.SetValue(name) -# Algorithms and hypothesis -# ========================= - -# Private class: Mesh_Algorithm -# ----------------------------- - +## Mother class to define algorithm, recommended to don't use directly. +# +# More details. class Mesh_Algorithm: - """ - Mother class to define algorithm, recommended to don't use directly - """ + # @class Mesh_Algorithm + # @brief Class Mesh_Algorithm mesh = 0 geom = 0 subm = 0 algo = 0 + ## If the algorithm is global, return 0 + # \fn else return the submesh associated to this algorithm. + # + # More details. def GetSubMesh(self): - """ - If the algorithm is global, return 0 - else return the submesh associated to this algorithm - """ return self.subm + ## Return the wrapped mesher. def GetAlgorithm(self): - """ - Return the wrapped mesher - """ return self.algo + ## Private method. Print error message if a hypothesis was not assigned. def TreatHypoStatus(self, status, hypName, geomName, isAlgo): - """ - Private method. Print error message if a hypothesis was not assigned - """ if isAlgo: hypType = "algorithm" else: @@ -125,10 +113,8 @@ class Mesh_Algorithm: print hypName, "was not assigned to",geomName,":", reason pass + ## Private method. def Create(self, mesh, geom, hypo, so="libStdMeshersEngine.so"): - """ - Private method - """ if geom is None: raise RuntimeError, "Attemp to create " + hypo + " algoritm on None shape" self.mesh = mesh @@ -149,10 +135,8 @@ class Mesh_Algorithm: status = mesh.mesh.AddHypothesis(self.geom, self.algo) self.TreatHypoStatus( status, hypo, name, 1 ) + ## Private method def Hypothesis(self, hyp, args=[], so="libStdMeshersEngine.so"): - """ - Private method - """ hypo = smesh.CreateHypothesis(hyp, so) a = "" s = "=" @@ -171,32 +155,26 @@ class Mesh_Algorithm: # Public class: Mesh_Segment # -------------------------- +## Class to define a segment 1D algorithm for discretization +# +# More details. class Mesh_Segment(Mesh_Algorithm): - """ - Class to define a segment 1D algorithm for discretization - """ + ## Private constructor. def __init__(self, mesh, geom=0): - """ - Private constructor - """ self.Create(mesh, geom, "Regular_1D") + ## Define "LocalLength" hypothesis to cut an edge in several segments with the same length + # @param l for the length of segments that cut an edge def LocalLength(self, l): - """ - Define "LocalLength" hypothesis to cut an edge in several segments with the same length - \param l for the length of segments that cut an edge - """ hyp = self.Hypothesis("LocalLength", [l]) hyp.SetLength(l) return hyp + ## Define "NumberOfSegments" hypothesis to cut an edge in several fixed number of segments + # @param n for the number of segments that cut an edge + # @param s for the scale factor (optional) def NumberOfSegments(self, n, s=[]): - """ - Define "NumberOfSegments" hypothesis to cut an edge in several fixed number of segments - \param n for the number of segments that cut an edge - \param s for the scale factor (optional) - """ if s == []: hyp = self.Hypothesis("NumberOfSegments", [n]) else: @@ -206,86 +184,70 @@ class Mesh_Segment(Mesh_Algorithm): hyp.SetNumberOfSegments(n) return hyp + ## Define "Arithmetic1D" hypothesis to cut an edge in several segments with arithmetic length increasing + # @param start for the length of the first segment + # @param end for the length of the last segment def Arithmetic1D(self, start, end): - """ - Define "Arithmetic1D" hypothesis to cut an edge in several segments with arithmetic length increasing - \param start for the length of the first segment - \param end for the length of the last segment - """ hyp = self.Hypothesis("Arithmetic1D", [start, end]) hyp.SetLength(start, 1) hyp.SetLength(end , 0) return hyp + ## Define "StartEndLength" hypothesis to cut an edge in several segments with geometric length increasing + # @param start for the length of the first segment + # @param end for the length of the last segment def StartEndLength(self, start, end): - """ - Define "StartEndLength" hypothesis to cut an edge in several segments with geometric length increasing - \param start for the length of the first segment - \param end for the length of the last segment - """ hyp = self.Hypothesis("StartEndLength", [start, end]) hyp.SetLength(start, 1) hyp.SetLength(end , 0) return hyp + ## Define "Deflection1D" hypothesis + # @param d for the deflection def Deflection1D(self, d): - """ - Define "Deflection1D" hypothesis - \param d for the deflection - """ hyp = self.Hypothesis("Deflection1D", [d]) hyp.SetDeflection(d) return hyp + ## Define "Propagation" hypothesis that propagate all other hypothesis on all others edges that are in + # the opposite side in the case of quadrangular faces def Propagation(self): - """ - Define "Propagation" hypothesis that propagate all other hypothesis on all others edges that are in - the opposite side in the case of quadrangular faces - """ return self.Hypothesis("Propagation") + ## Define "AutomaticLength" hypothesis + # @param fineness for the fineness [0-1] def AutomaticLength(self, fineness=0): - """ - Define "AutomaticLength" hypothesis - \param fineness for the fineness [0-1] - """ hyp = self.Hypothesis("AutomaticLength") hyp.SetFineness( fineness ) return hyp + ## Define "QuadraticMesh" hypothesis, forcing construction of quadratic edges. + # If the 2D mesher sees that all boundary edges are quadratic ones, + # it generates quadratic faces, else it generates linear faces using + # medium nodes as if they were vertex ones. + # The 3D mesher generates quadratic volumes only if all boundary faces + # are quadratic ones, else it fails. def QuadraticMesh(self): - """ - Define "QuadraticMesh" hypothesis, forcing construction of quadratic edges. - If the 2D mesher sees that all boundary edges are quadratic ones, - it generates quadratic faces, else it generates linear faces using - medium nodes as if they were vertex ones. - The 3D mesher generates quadratic volumes only if all boundary faces - are quadratic ones, else it fails. - """ hyp = self.Hypothesis("QuadraticMesh") return hyp # Public class: Mesh_Segment_Python # --------------------------------- +## Class to define a segment 1D algorithm for discretization with python function +# +# More details. class Mesh_Segment_Python(Mesh_Segment): - """ - Class to define a segment 1D algorithm for discretization with python function - """ + ## Private constructor. def __init__(self, mesh, geom=0): - """ - Private constructor - """ import Python1dPlugin self.Create(mesh, geom, "Python_1D", "libPython1dEngine.so") + ## Define "PythonSplit1D" hypothesis based on the Erwan Adam patch, awaiting equivalent SALOME functionality + # @param n for the number of segments that cut an edge + # @param func for the python function that calculate the length of all segments def PythonSplit1D(self, n, func): - """ - Define "PythonSplit1D" hypothesis based on the Erwan Adam patch, awaiting equivalent SALOME functionality - \param n for the number of segments that cut an edge - \param func for the python function that calculate the length of all segments - """ hyp = self.Hypothesis("PythonSplit1D", [n], "libPython1dEngine.so") hyp.SetNumberOfSegments(n) hyp.SetPythonLog10RatioFunction(func) @@ -294,78 +256,64 @@ class Mesh_Segment_Python(Mesh_Segment): # Public class: Mesh_Triangle # --------------------------- +## Class to define a triangle 2D algorithm +# +# More details. class Mesh_Triangle(Mesh_Algorithm): - """ - Class to define a triangle 2D algorithm - """ + ## Private constructor. def __init__(self, mesh, geom=0): - """ - Private constructor - """ self.Create(mesh, geom, "MEFISTO_2D") + ## Define "MaxElementArea" hypothesis to give the maximun area of each triangles + # @param area for the maximum area of each triangles def MaxElementArea(self, area): - """ - Define "MaxElementArea" hypothesis to give the maximun area of each triangles - \param area for the maximum area of each triangles - """ hyp = self.Hypothesis("MaxElementArea", [area]) hyp.SetMaxElementArea(area) return hyp + ## Define "LengthFromEdges" hypothesis to build triangles based on the length of the edges taken from the wire def LengthFromEdges(self): - """ - Define "LengthFromEdges" hypothesis to build triangles based on the length of the edges taken from the wire - """ return self.Hypothesis("LengthFromEdges") # Public class: Mesh_Quadrangle # ----------------------------- +## Class to define a quadrangle 2D algorithm +# +# More details. class Mesh_Quadrangle(Mesh_Algorithm): - """ - Class to define a quadrangle 2D algorithm - """ + ## Private constructor. def __init__(self, mesh, geom=0): - """ - Private constructor - """ self.Create(mesh, geom, "Quadrangle_2D") + ## Define "QuadranglePreference" hypothesis, forcing construction + # of quadrangles if the number of nodes on opposite edges is not the same + # in the case where the global number of nodes on edges is even def QuadranglePreference(self): - """ - Define "QuadranglePreference" hypothesis, forcing construction - of quadrangles if the number of nodes on opposite edges is not the same - in the case where the global number of nodes on edges is even - """ hyp = self.Hypothesis("QuadranglePreference") return hyp # Public class: Mesh_Tetrahedron # ------------------------------ +## Class to define a tetrahedron 3D algorithm +# +# More details. class Mesh_Tetrahedron(Mesh_Algorithm): - """ - Class to define a tetrahedron 3D algorithm - """ + ## Private constructor. def __init__(self, mesh, algo, geom=0): - """ - Private constructor - """ if algo == NETGEN: self.Create(mesh, geom, "NETGEN_3D", "libNETGENEngine.so") elif algo == GHS3D: import GHS3DPlugin self.Create(mesh, geom, "GHS3D_3D" , "libGHS3DEngine.so") + ## Define "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedral + # @param vol for the maximum volume of each tetrahedral def MaxElementVolume(self, vol): - """ - Define "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedral - \param vol for the maximum volume of each tetrahedral - """ hyp = self.Hypothesis("MaxElementVolume", [vol]) hyp.SetMaxElementVolume(vol) return hyp @@ -373,42 +321,36 @@ class Mesh_Tetrahedron(Mesh_Algorithm): # Public class: Mesh_Hexahedron # ------------------------------ +## Class to define a hexahedron 3D algorithm +# +# More details. class Mesh_Hexahedron(Mesh_Algorithm): - """ - Class to define a hexahedron 3D algorithm - """ + ## Private constructor. def __init__(self, mesh, geom=0): - """ - Private constructor - """ self.Create(mesh, geom, "Hexa_3D") # Public class: Mesh_Netgen # ------------------------------ +## Class to define a NETGEN-based 2D or 3D algorithm +# that need no discrete boundary (i.e. independent) +# +# More details. class Mesh_Netgen(Mesh_Algorithm): - """ - Class to define a NETGEN-based 2D or 3D algorithm - that need no discrete boundary (i.e. independent) - """ is3D = 0 + ## Private constructor. def __init__(self, mesh, is3D, geom=0): - """ - Private constructor - """ self.is3D = is3D if is3D: self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so") else: self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so") + ## Define hypothesis containing parameters of the algorithm def Parameters(self): - """ - Define hypothesis containing parameters of the algorithm - """ if self.is3D: hyp = self.Hypothesis("NETGEN_Parameters", [], "libNETGENEngine.so") else: @@ -418,23 +360,21 @@ class Mesh_Netgen(Mesh_Algorithm): # Public class: Mesh # ================== +## Class to define a mesh +# +# More details. class Mesh: - """ - Class to define a mesh - """ geom = 0 mesh = 0 + ## Constructor + # + # Creates mesh on the shape \a geom, + # sets GUI name of this mesh to \a name. + # @param geom Shape to be meshed + # @param name Study name of the mesh def __init__(self, geom, name=0): - """ - Constructor - - Creates mesh on the shape \a geom, - sets GUI name of this mesh to \a name. - \param geom Shape to be meshed - \param name Study name of the mesh - """ self.geom = geom self.mesh = smesh.CreateMesh(geom) if name == 0: @@ -442,22 +382,16 @@ class Mesh: else: SetName(self.mesh, name) + ## Method that returns the mesh def GetMesh(self): - """ - Method that returns the mesh - """ return self.mesh + ## Method that returns the shape associated to the mesh def GetShape(self): - """ - Method that returns the shape associated to the mesh - """ return self.geom + ## Returns mesh dimension depending on shape one def MeshDimension(self): - """ - Returns mesh dimension depending on shape one - """ shells = geompy.SubShapeAllIDs( self.geom, geompy.ShapeType["SHELL"] ) if len( shells ) > 0 : return 3 @@ -469,15 +403,13 @@ class Mesh: return 0; pass + ## Creates a segment discretization 1D algorithm. + # If the optional \a algo parameter is not sets, this algorithm is REGULAR. + # If the optional \a geom parameter is not sets, this algorithm is global. + # Otherwise, this algorithm define a submesh based on \a geom subshape. + # @param algo values are smesh.REGULAR or smesh.PYTHON for discretization via python function + # @param geom If defined, subshape to be meshed def Segment(self, algo=REGULAR, geom=0): - """ - Creates a segment discretization 1D algorithm. - If the optional \a algo parameter is not sets, this algorithm is REGULAR. - If the optional \a geom parameter is not sets, this algorithm is global. - Otherwise, this algorithm define a submesh based on \a geom subshape. - \param algo values are smesh.REGULAR or smesh.PYTHON for discretization via python function - \param geom If defined, subshape to be meshed - """ ## if Segment(geom) is called by mistake if ( isinstance( algo, geompy.GEOM._objref_GEOM_Object)): algo, geom = geom, algo @@ -489,63 +421,51 @@ class Mesh: else: return Mesh_Segment(self, geom) + ## Creates a triangle 2D algorithm for faces. + # If the optional \a geom parameter is not sets, this algorithm is global. + # Otherwise, this algorithm define a submesh based on \a geom subshape. + # @param geom If defined, subshape to be meshed def Triangle(self, geom=0): - """ - Creates a triangle 2D algorithm for faces. - If the optional \a geom parameter is not sets, this algorithm is global. - Otherwise, this algorithm define a submesh based on \a geom subshape. - \param geom If defined, subshape to be meshed - """ return Mesh_Triangle(self, geom) + ## Creates a quadrangle 2D algorithm for faces. + # If the optional \a geom parameter is not sets, this algorithm is global. + # Otherwise, this algorithm define a submesh based on \a geom subshape. + # @param geom If defined, subshape to be meshed def Quadrangle(self, geom=0): - """ - Creates a quadrangle 2D algorithm for faces. - If the optional \a geom parameter is not sets, this algorithm is global. - Otherwise, this algorithm define a submesh based on \a geom subshape. - \param geom If defined, subshape to be meshed - """ return Mesh_Quadrangle(self, geom) + ## Creates a tetrahedron 3D algorithm for solids. + # The parameter \a algo permits to choice the algorithm: NETGEN or GHS3D + # If the optional \a geom parameter is not sets, this algorithm is global. + # Otherwise, this algorithm define a submesh based on \a geom subshape. + # @param algo values are: smesh.NETGEN, smesh.GHS3D + # @param geom If defined, subshape to be meshed def Tetrahedron(self, algo, geom=0): - """ - Creates a tetrahedron 3D algorithm for solids. - The parameter \a algo permits to choice the algorithm: NETGEN or GHS3D - If the optional \a geom parameter is not sets, this algorithm is global. - Otherwise, this algorithm define a submesh based on \a geom subshape. - \param algo values are: smesh.NETGEN, smesh.GHS3D - \param geom If defined, subshape to be meshed - """ ## if Tetrahedron(geom) is called by mistake if ( isinstance( algo, geompy.GEOM._objref_GEOM_Object)): algo, geom = geom, algo pass return Mesh_Tetrahedron(self, algo, geom) + ## Creates a hexahedron 3D algorithm for solids. + # If the optional \a geom parameter is not sets, this algorithm is global. + # Otherwise, this algorithm define a submesh based on \a geom subshape. + # @param geom If defined, subshape to be meshed def Hexahedron(self, geom=0): - """ - Creates a hexahedron 3D algorithm for solids. - If the optional \a geom parameter is not sets, this algorithm is global. - Otherwise, this algorithm define a submesh based on \a geom subshape. - \param geom If defined, subshape to be meshed - """ return Mesh_Hexahedron(self, geom) + ## Creates a NETGEN-based 2D or 3D independent algorithm (i.e. needs no + # discrete boundary). + # If the optional \a geom parameter is not sets, this algorithm is global. + # Otherwise, this algorithm defines a submesh based on \a geom subshape. + # @param is3D If 0 then algorithm is 2D, otherwise 3D + # @param geom If defined, subshape to be meshed def Netgen(self, is3D, geom=0): - """ - Creates a NETGEN-based 2D or 3D independent algorithm (i.e. needs no - discrete boundary). - If the optional \a geom parameter is not sets, this algorithm is global. - Otherwise, this algorithm defines a submesh based on \a geom subshape. - \param is3D If 0 then algorithm is 2D, otherwise 3D - \param geom If defined, subshape to be meshed - """ return Mesh_Netgen(self, is3D, geom) + ## Compute the mesh and return the status of the computation def Compute(self): - """ - Compute the mesh and return the status of the computation - """ ok = smesh.Compute(self.mesh, self.geom) if not ok: errors = smesh.GetAlgoState( self.mesh, self.geom ) @@ -583,11 +503,9 @@ class Mesh: pass return ok + ## Compute tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN + # The parameter \a fineness [0.-1.] defines mesh fineness def AutomaticTetrahedralization(self, fineness=0): - """ - Compute tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN - The parameter \a fineness [0.-1.] defines mesh fineness - """ dim = self.MeshDimension() # assign hypotheses self.RemoveGlobalHypotheses() @@ -600,11 +518,9 @@ class Mesh: pass return self.Compute() + ## Compute hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron + # The parameter \a fineness [0.-1.] defines mesh fineness def AutomaticHexahedralization(self, fineness=0): - """ - Compute hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron - The parameter \a fineness [0.-1.] defines mesh fineness - """ dim = self.MeshDimension() # assign hypotheses self.RemoveGlobalHypotheses() @@ -617,24 +533,20 @@ class Mesh: pass return self.Compute() + ## Removes all global hypotheses def RemoveGlobalHypotheses(self): - """ - Removes all global hypotheses - """ current_hyps = self.mesh.GetHypothesisList( self.geom ) for hyp in current_hyps: self.mesh.RemoveHypothesis( self.geom, hyp ) pass pass + ## Create a mesh group based on geometric object \a grp + # and give a \a name, if this parameter is not defined + # the name is the same as the geometric group name + # @param grp is a geometric group, a vertex, an edge, a face or a solid + # @param name is the name of the mesh group def Group(self, grp, name=""): - """ - Create a mesh group based on geometric object \a grp - and give a \a name, if this parameter is not defined - the name is the same as the geometric group name - \param grp is a geometric group, a vertex, an edge, a face or a solid - \param name is the name of the mesh group - """ if name == "": name = grp.GetName() @@ -670,39 +582,29 @@ class Mesh: else: return self.mesh.CreateGroupFromGEOM(type, name, grp) + ## Export the mesh in a file with the MED format and choice the \a version of MED format + # @param f is the file name + # @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2 def ExportToMED(self, f, version, opt=0): - """ - Export the mesh in a file with the MED format and choice the \a version of MED format - \param f is the file name - \param version values are SMESH.MED_V2_1, SMESH.MED_V2_2 - """ self.mesh.ExportToMED(f, opt, version) + ## Export the mesh in a file with the MED format + # @param f is the file name def ExportMED(self, f, opt=0): - """ - Export the mesh in a file with the MED format - \param f is the file name - """ self.mesh.ExportMED(f, opt) + ## Export the mesh in a file with the DAT format + # @param f is the file name def ExportDAT(self, f): - """ - Export the mesh in a file with the DAT format - \param f is the file name - """ self.mesh.ExportDAT(f) + ## Export the mesh in a file with the UNV format + # @param f is the file name def ExportUNV(self, f): - """ - Export the mesh in a file with the UNV format - \param f is the file name - """ self.mesh.ExportUNV(f) + ## Export the mesh in a file with the STL format + # @param f is the file name + # @param ascii defined the kind of file contents def ExportSTL(self, f, ascii=1): - """ - Export the mesh in a file with the STL format - \param f is the file name - \param ascii defined the kind of file contents - """ self.mesh.ExportSTL(f, ascii)