PAL20885 EDF 607 SMESH: Measure tools

Improve TUI of measurement operations
Complete GUI/TUI documentation
This commit is contained in:
vsr 2010-11-05 21:35:57 +00:00
parent 610db82e7b
commit a05b2c6fcc
7 changed files with 160 additions and 4 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 114 KiB

View File

@ -12,12 +12,13 @@ previously created or imported by the Geometry component; </li>
<li>\subpage viewing_meshes_overview_page "viewing created meshes" in
the VTK viewer;</li>
<li>\subpage grouping_elements_page "creating groups of mesh elements";</li>
<li>applying to meshes \subpage quality_page "Quality Controls" ,
allowing to highlight important elements:
<li>applying to meshes \subpage quality_page "Quality Controls",
allowing to highlight important elements;
<li>filtering sub-sets of mesh entities (nodes elements) using
\subpage filters_page "Filters" functionality.</li>
\subpage filters_page "Filters" functionality;</li>
<li>\subpage modifying_meshes_page "modifying meshes" with a vast
array of dedicated operations.</li>
array of dedicated operations;</li>
<li>different \subpage measurements_page "measurements" of the mesh objects;
<li>easily setting parameters via the variables predefined in
\subpage using_notebook_mesh_page "Salome notebook".</li>
</ul>

View File

@ -0,0 +1,71 @@
/*!
\page measurements_page Measurements
Mesh module provides possibility to perform different measurements
of the selected mesh data.
All the measurement operations are available via \b Measurements
top-level menu. An access to the measurements operations is
implemented via single dialog box, where each operation is represented
as a separate tab page.
\section min_distance_anchor Minimum Distance
This operation allows measuring a distance between two objects.
Currently only node-to-node and node-to-origin operations are
available, but this operation will be extended in future to support
other mesh objects - elements, meshes, sub-meshes and groups.
To start <b>Minimum Distance</b> operation, select <b>Minimum Distance</b>
item from \b Measurements menu.
\image html min_distance.png
In the dialog box choose the first target and second target mode by
switching the corresponding radio buttons, then select the objects
between which the distance is to be calculated (or enter directly IDs
in case of nodes/elements) and press \em Compute button.
The following types of targets are supported:
- \em Node: single mesh node;
- \em Element: single mesh element (not available in this version);
- \em Object: mesh, sub-mesh or group object (not available in this
version);
- \em Origin: origin of the global co-ordinate system.
The result will
be shown in the bottom area of the dialog box. In addition, the simple
preview will be shown in the 3D viewer.
\image html min_distance_preview.png
\section bounding_box_anchor Bounding Box
This operation allows to calculate the bounding box of the selected
object(s).
To start <b>Bounding Box</b> operation, select <b>Bounding Box</b>
item from \b Measurements menu.
\image html bnd_box.png
In the dialog box choose desired type of the object by switching the
corresponding radio button, select the desired object(s) and press
\em Compute button.
The following types of input are available:
- \em Objects: select one or more mesh, sub-mesh, group objects;
- \em Nodes: select set of mesh nodes;
- \em Elements: select set of mesh elements.
The result of calculation will be shown in the bottom area of the
dialog box. In addition, the simple preview will be shown in the 3D
viewer.
\image html bnd_box_preview.png
<b>See Also</b> a sample TUI Script of a
\ref tui_measurements_page "Measurement operations".
*/

View File

@ -0,0 +1,84 @@
/*!
\page tui_measurements_page Measurements
\section tui_min_distance Minimum Distance
\code
import smesh
from SMESH_mechanic import mesh as mesh1
from SMESH_test1 import mesh as mesh2
mesh1.Compute()
mesh2.Compute()
# compute min distance from mesh1 to the origin (not available yet)
smesh.MinDistance(mesh1)
# compute min distance from node 10 of mesh1 to the origin
smesh.MinDistance(mesh1, id1=10)
# ... or
mesh1.MinDistance(10)
# compute min distance between nodes 10 and 20 of mesh1
smesh.MinDistance(mesh1, id1=10, id2=20)
# ... or
mesh1.MinDistance(10, 20)
# compute min distance from element 100 of mesh1 to the origin (not available yet)
smesh.MinDistance(mesh1, id1=100, isElem1=True)
# ... or
mesh1.MinDistance(100, isElem1=True)
# compute min distance between elements 100 and 200 of mesh1 (not available yet)
smesh.MinDistance(mesh1, id1=100, id2=200, isElem1=True, isElem2=True)
# ... or
mesh1.MinDistance(100, 200, True, True)
# compute min distance from element 100 to node 20 of mesh1 (not available yet)
smesh.MinDistance(mesh1, id1=100, id2=20, isElem1=True)
# ... or
mesh1.MinDistance(100, 20, True)
# compute min distance from mesh1 to mesh2 (not available yet)
smesh.MinDistance(mesh1, mesh2)
# compute min distance from node 10 of mesh1 to node 20 of mesh2
smesh.MinDistance(mesh1, mesh2, 10, 20)
# compute min distance from node 10 of mesh1 to element 200 of mesh2 (not available yet)
smesh.MinDistance(mesh1, mesh2, 10, 200, isElem2=True)
# etc...
\endcode
\section tui_bounding_box Bounding Box
\code
import smesh
from SMESH_mechanic import mesh as mesh1
from SMESH_test1 import mesh as mesh2
mesh1.Compute()
mesh2.Compute()
# compute bounding box for mesh1
mesh1.BoundingBox()
# compute bounding box for list of nodes of mesh1
mesh1.BoundingBox([363, 364, 370, 371, 372, 373, 379, 380, 381])
# compute bounding box for list of elements of mesh1
mesh1.BoundingBox([363, 364, 370, 371, 372, 373, 379, 380, 381], isElem=True)
# compute common bounding box of mesh1 and mesh2
smesh.BoundingBox([mesh1, mesh2])
# etc...
\endcode
*/