Merge remote-tracking branch 'origin/master' into gni/adaptation

This commit is contained in:
GERALD NICOLAS 2020-11-23 16:40:24 +01:00
commit b53cb60aee
21 changed files with 498 additions and 117 deletions

View File

@ -27,7 +27,7 @@ INCLUDE(CMakeDependentOption)
STRING(TOUPPER ${PROJECT_NAME} PROJECT_NAME_UC)
SET(${PROJECT_NAME_UC}_MAJOR_VERSION 9)
SET(${PROJECT_NAME_UC}_MINOR_VERSION 5)
SET(${PROJECT_NAME_UC}_MINOR_VERSION 6)
SET(${PROJECT_NAME_UC}_PATCH_VERSION 0)
SET(${PROJECT_NAME_UC}_VERSION
${${PROJECT_NAME_UC}_MAJOR_VERSION}.${${PROJECT_NAME_UC}_MINOR_VERSION}.${${PROJECT_NAME_UC}_PATCH_VERSION})

View File

@ -15,7 +15,9 @@ meshes and to create 2D mesh by your python code. For this, you
#. run your python code, which creates a 2D mesh,
#. invoke **Compute** command, which computes a 3D mesh.
.. warning:: **Use Edges to be Created Manually** and **Use Faces to be Created Manually** algorithms should be assigned *before* mesh generation by the Python code.
.. warning::
* **Use Edges to be Created Manually** and **Use Faces to be Created Manually** algorithms should be assigned *before* mesh generation by the Python code.
* Nodes and elements created in your script must be assigned to geometry entities by calling *SetMeshElementOnShape*, *SetNodeOnVertex*, *SetNodeOnEdge* etc. in order to be used by an algorithm of upper dimension.
Consider trying a sample script demonstrating the usage of :ref:`Use Faces to be Created Manually <tui_use_existing_faces>` algorithm for construction of a 2D mesh using Python commands.

View File

@ -950,10 +950,9 @@ void SMESH_Algo::InitComputeError()
{
_error = COMPERR_OK;
_comment.clear();
list<const SMDS_MeshElement*>::iterator elem = _badInputElements.begin();
for ( ; elem != _badInputElements.end(); ++elem )
if ( (*elem)->GetID() < 1 )
delete *elem;
for ( const SMDS_MeshElement* & elem : _badInputElements )
if ( !elem->IsNull() && elem->GetID() < 1 )
delete elem;
_badInputElements.clear();
_mesh = 0;
@ -1015,6 +1014,7 @@ void SMESH_Algo::addBadInputElements(const SMESHDS_SubMesh* sm,
SMDS_ElemIteratorPtr eIt = sm->GetElements();
while ( eIt->more() ) addBadInputElement( eIt->next() );
}
_mesh = sm->GetParent();
}
}

View File

@ -63,6 +63,43 @@ using namespace std;
#define env_sep ':'
#endif
namespace
{
// a structure used to nullify SMESH_Gen field of SMESH_Hypothesis,
// which is needed for SMESH_Hypothesis not deleted before ~SMESH_Gen()
struct _Hyp : public SMESH_Hypothesis
{
void NullifyGen()
{
_gen = 0;
}
};
//================================================================================
/*!
* \brief Fill a map of shapes with all sub-shape of a sub-mesh
*/
//================================================================================
TopTools_IndexedMapOfShape * fillAllowed( SMESH_subMesh* sm,
const bool toFill,
TopTools_IndexedMapOfShape * allowedSub )
{
if ( !toFill || !allowedSub )
{
return nullptr;
}
if ( allowedSub->IsEmpty() )
{
allowedSub->ReSize( sm->DependsOn().size() + 1 );
allowedSub->Add( sm->GetSubShape() );
for ( const auto & key_sm : sm->DependsOn() )
allowedSub->Add( key_sm.second->GetSubShape() );
}
return allowedSub;
}
}
//=============================================================================
/*!
* Constructor
@ -79,19 +116,6 @@ SMESH_Gen::SMESH_Gen()
_compute_canceled = false;
}
namespace
{
// a structure used to nullify SMESH_Gen field of SMESH_Hypothesis,
// which is needed for SMESH_Hypothesis not deleted before ~SMESH_Gen()
struct _Hyp : public SMESH_Hypothesis
{
void NullifyGen()
{
_gen = 0;
}
};
}
//=============================================================================
/*!
* Destructor
@ -138,11 +162,12 @@ SMESH_Mesh* SMESH_Gen::CreateMesh(bool theIsEmbeddedMode)
*/
//=============================================================================
bool SMESH_Gen::Compute(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const int aFlags /*= COMPACT_MESH*/,
const ::MeshDimension aDim /*=::MeshDim_3D*/,
TSetOfInt* aShapesId /*=0*/)
bool SMESH_Gen::Compute(SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const int aFlags /*= COMPACT_MESH*/,
const ::MeshDimension aDim /*=::MeshDim_3D*/,
TSetOfInt* aShapesId /*=0*/,
TopTools_IndexedMapOfShape* anAllowedSubShapes/*=0*/)
{
MEMOSTAT;
@ -152,7 +177,7 @@ bool SMESH_Gen::Compute(SMESH_Mesh & aMesh,
bool ret = true;
SMESH_subMesh *sm = aMesh.GetSubMesh(aShape);
SMESH_subMesh *sm, *shapeSM = aMesh.GetSubMesh(aShape);
const bool includeSelf = true;
const bool complexShapeFirst = true;
@ -168,13 +193,17 @@ bool SMESH_Gen::Compute(SMESH_Mesh & aMesh,
if ( !aMesh.HasShapeToMesh() )
computeEvent = SMESH_subMesh::COMPUTE_NOGEOM; // if several algos and no geometry
TopTools_IndexedMapOfShape *allowedSubShapes = anAllowedSubShapes, allowedSub;
if ( aShapeOnly && !allowedSubShapes )
allowedSubShapes = &allowedSub;
if ( anUpward ) // is called from the below code in this method
{
// ===============================================
// Mesh all the sub-shapes starting from vertices
// ===============================================
smIt = sm->getDependsOnIterator(includeSelf, !complexShapeFirst);
smIt = shapeSM->getDependsOnIterator(includeSelf, !complexShapeFirst);
while ( smIt->more() )
{
SMESH_subMesh* smToCompute = smIt->next();
@ -198,9 +227,11 @@ bool SMESH_Gen::Compute(SMESH_Mesh & aMesh,
{
if (_compute_canceled)
return false;
smToCompute->SetAllowedSubShapes( fillAllowed( shapeSM, aShapeOnly, allowedSubShapes ));
setCurrentSubMesh( smToCompute );
smToCompute->ComputeStateEngine( computeEvent );
setCurrentSubMesh( NULL );
setCurrentSubMesh( nullptr );
smToCompute->SetAllowedSubShapes( nullptr );
}
// we check all the sub-meshes here and detect if any of them failed to compute
@ -233,7 +264,7 @@ bool SMESH_Gen::Compute(SMESH_Mesh & aMesh,
TopoDS_Shape algoShape;
int prevShapeDim = -1, aShapeDim;
smIt = sm->getDependsOnIterator(includeSelf, complexShapeFirst);
smIt = shapeSM->getDependsOnIterator(includeSelf, complexShapeFirst);
while ( smIt->more() )
{
SMESH_subMesh* smToCompute = smIt->next();
@ -285,9 +316,11 @@ bool SMESH_Gen::Compute(SMESH_Mesh & aMesh,
{
if (_compute_canceled)
return false;
smToCompute->SetAllowedSubShapes( fillAllowed( shapeSM, aShapeOnly, allowedSubShapes ));
setCurrentSubMesh( smToCompute );
smToCompute->ComputeStateEngine( computeEvent );
setCurrentSubMesh( NULL );
setCurrentSubMesh( nullptr );
smToCompute->SetAllowedSubShapes( nullptr );
if ( aShapesId )
aShapesId->insert( smToCompute->GetId() );
}
@ -335,7 +368,6 @@ bool SMESH_Gen::Compute(SMESH_Mesh & aMesh,
const TopoDS_Shape& aSubShape = smToCompute->GetSubShape();
const int aShapeDim = GetShapeDim( aSubShape );
//if ( aSubShape.ShapeType() == TopAbs_VERTEX ) continue;
if ( aShapeDim < 1 ) continue;
// check for preview dimension limitations
@ -350,11 +382,14 @@ bool SMESH_Gen::Compute(SMESH_Mesh & aMesh,
if ( SMESH_Algo* subAlgo = (SMESH_Algo*) aMesh.GetHypothesis( smToCompute, filter, true))
{
if ( ! subAlgo->NeedDiscreteBoundary() ) continue;
TopTools_IndexedMapOfShape* localAllowed = allowedSubShapes;
if ( localAllowed && localAllowed->IsEmpty() )
localAllowed = 0; // prevent fillAllowed() with aSubShape
SMESH_Hypothesis::Hypothesis_Status status;
if ( subAlgo->CheckHypothesis( aMesh, aSubShape, status ))
// mesh a lower smToCompute starting from vertices
Compute( aMesh, aSubShape, aFlags | SHAPE_ONLY_UPWARD, aDim, aShapesId );
// Compute( aMesh, aSubShape, aShapeOnly, /*anUpward=*/true, aDim, aShapesId );
Compute( aMesh, aSubShape, aFlags | SHAPE_ONLY_UPWARD, aDim, aShapesId, localAllowed );
}
}
}
@ -373,9 +408,11 @@ bool SMESH_Gen::Compute(SMESH_Mesh & aMesh,
if (_compute_canceled)
return false;
sm->SetAllowedSubShapes( fillAllowed( shapeSM, aShapeOnly, allowedSubShapes ));
setCurrentSubMesh( sm );
sm->ComputeStateEngine( computeEvent );
setCurrentSubMesh( NULL );
sm->SetAllowedSubShapes( nullptr );
if ( aShapesId )
aShapesId->insert( sm->GetId() );
}
@ -385,7 +422,7 @@ bool SMESH_Gen::Compute(SMESH_Mesh & aMesh,
// -----------------------------------------------
// mesh the rest sub-shapes starting from vertices
// -----------------------------------------------
ret = Compute( aMesh, aShape, aFlags | UPWARD, aDim, aShapesId );
ret = Compute( aMesh, aShape, aFlags | UPWARD, aDim, aShapesId, allowedSubShapes );
}
MEMOSTAT;
@ -399,7 +436,7 @@ bool SMESH_Gen::Compute(SMESH_Mesh & aMesh,
SMESH_MesherHelper aHelper( aMesh );
if ( aHelper.IsQuadraticMesh() != SMESH_MesherHelper::LINEAR )
{
aHelper.FixQuadraticElements( sm->GetComputeError() );
aHelper.FixQuadraticElements( shapeSM->GetComputeError() );
}
}

View File

@ -42,6 +42,7 @@
#include <string>
#include <TopoDS_Shape.hxx>
#include <TopTools_IndexedMapOfShape.hxx>
class SMESHDS_Document;
class SMESH_Algo;
@ -83,13 +84,15 @@ public:
* \param aFlags - ComputeFlags. By default compute the whole mesh and compact at the end.
* \param aDim - upper level dimension of the mesh computation (for preview)
* \param aShapesId - list of shapes with computed mesh entities (elements or nodes)
* \param anAllowedSubShapes - shapes to mesh only. Mesh all if empty or nullptr
* \retval bool - true if none sub-mesh failed to compute
*/
bool Compute(::SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const int aFlags = COMPACT_MESH,
const ::MeshDimension aDim=::MeshDim_3D,
TSetOfInt* aShapesId=0);
bool Compute(::SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape,
const int aFlags = COMPACT_MESH,
const ::MeshDimension aDim=::MeshDim_3D,
TSetOfInt* aShapesId=0,
TopTools_IndexedMapOfShape* anAllowedSubShapes=0);
void PrepareCompute(::SMESH_Mesh & aMesh,
const TopoDS_Shape & aShape);

View File

@ -156,7 +156,7 @@ void SMESH_HypoFilter::IsMoreLocalThanPredicate::findPreferable()
//=======================================================================
//function : IsMoreLocalThanPredicate::IsOk
//purpose :
//purpose : Check if aShape is more local than this->_shape
//=======================================================================
bool SMESH_HypoFilter::IsMoreLocalThanPredicate::IsOk(const SMESH_Hypothesis* aHyp,
@ -169,16 +169,23 @@ bool SMESH_HypoFilter::IsMoreLocalThanPredicate::IsOk(const SMESH_Hypothesis* aH
if ( SMESH_MesherHelper::IsSubShape( aShape, /*mainShape=*/_shape ))
return true;
if ( aShape.ShapeType() == TopAbs_COMPOUND &&
if ( aShape.ShapeType() == TopAbs_COMPOUND &&
!SMESH_MesherHelper::IsSubShape( _shape, /*mainShape=*/aShape)) // issue 0020963
{
for ( int type = TopAbs_SOLID; type < TopAbs_SHAPE; ++type )
if ( aHyp->GetDim() == SMESH_Gen::GetShapeDim( TopAbs_ShapeEnum( type )))
for ( TopExp_Explorer exp( aShape, TopAbs_ShapeEnum( type )); exp.More(); exp.Next())
if ( SMESH_MesherHelper::IsSubShape( exp.Current(), /*mainShape=*/_shape ))
return true;
// [bos#22320] compound of FACEs is MORE local than compound of SOLIDs
TopAbs_ShapeEnum givenType = SMESH_MesherHelper::GetGroupType( _shape );
TopAbs_ShapeEnum hypType = SMESH_MesherHelper::GetGroupType( aShape );
if ( SMESH_Gen::GetShapeDim( givenType ) > SMESH_Gen::GetShapeDim( hypType ))
{
for ( int type = TopAbs_SOLID; type < TopAbs_SHAPE; ++type )
if ( aHyp->GetDim() == SMESH_Gen::GetShapeDim( TopAbs_ShapeEnum( type )))
for ( TopExp_Explorer exp( aShape, TopAbs_ShapeEnum( type )); exp.More(); exp.Next())
if ( SMESH_MesherHelper::IsSubShape( exp.Current(), /*mainShape=*/_shape ))
return true;
}
}
// take forced sub-mesh priority into account
if ( _preferableShapes.Contains( aShape ))
return true; // issue 21559, Mesh_6
@ -187,7 +194,7 @@ bool SMESH_HypoFilter::IsMoreLocalThanPredicate::IsOk(const SMESH_Hypothesis* aH
//=======================================================================
//function : SMESH_HypoFilter
//purpose :
//purpose :
//=======================================================================
SMESH_HypoFilter::SMESH_HypoFilter()

View File

@ -1504,9 +1504,12 @@ void SMESH_MeshEditor::QuadTo4Tri (TIDSortedElemSet & theElems)
SMESH_MesherHelper helper( *GetMesh() );
helper.SetElementsOnShape( true );
SMDS_ElemIteratorPtr faceIt;
if ( theElems.empty() ) faceIt = GetMeshDS()->elementsIterator(SMDSAbs_Face);
else faceIt = SMESHUtils::elemSetIterator( theElems );
// get standalone groups of faces
vector< SMDS_MeshGroup* > allFaceGroups, faceGroups;
for ( SMESHDS_GroupBase* grBase : GetMeshDS()->GetGroups() )
if ( SMESHDS_Group* group = dynamic_cast<SMESHDS_Group*>( grBase ))
if ( group->GetType() == SMDSAbs_Face && !group->IsEmpty() )
allFaceGroups.push_back( & group->SMDSGroup() );
bool checkUV;
gp_XY uv [9]; uv[8] = gp_XY(0,0);
@ -1517,6 +1520,10 @@ void SMESH_MeshEditor::QuadTo4Tri (TIDSortedElemSet & theElems)
Handle(Geom_Surface) surface;
TopLoc_Location loc;
SMDS_ElemIteratorPtr faceIt;
if ( theElems.empty() ) faceIt = GetMeshDS()->elementsIterator(SMDSAbs_Face);
else faceIt = SMESHUtils::elemSetIterator( theElems );
while ( faceIt->more() )
{
const SMDS_MeshElement* quad = faceIt->next();
@ -1593,13 +1600,19 @@ void SMESH_MeshEditor::QuadTo4Tri (TIDSortedElemSet & theElems)
myLastCreatedNodes.push_back( nCentral );
}
// create 4 triangles
helper.SetIsQuadratic ( nodes.size() > 4 );
helper.SetIsBiQuadratic( nodes.size() == 9 );
if ( helper.GetIsQuadratic() )
helper.AddTLinks( static_cast< const SMDS_MeshFace*>( quad ));
// select groups to update
faceGroups.clear();
for ( SMDS_MeshGroup* group : allFaceGroups )
if ( group->Remove( quad ))
faceGroups.push_back( group );
// create 4 triangles
GetMeshDS()->RemoveFreeElement( quad, subMeshDS, /*fromGroups=*/false );
for ( int i = 0; i < 4; ++i )
@ -1607,8 +1620,9 @@ void SMESH_MeshEditor::QuadTo4Tri (TIDSortedElemSet & theElems)
SMDS_MeshElement* tria = helper.AddFace( nodes[ i ],
nodes[(i+1)%4],
nCentral );
ReplaceElemInGroups( tria, quad, GetMeshDS() );
myLastCreatedElems.push_back( tria );
for ( SMDS_MeshGroup* group : faceGroups )
group->Add( tria );
}
}
}

View File

@ -110,6 +110,7 @@ SMESH_subMesh::SMESH_subMesh(int Id,
}
_computeCost = 0; // how costly is to compute this sub-mesh
_realComputeCost = 0;
_allowedSubShapes = nullptr;
}
//=============================================================================
@ -271,6 +272,42 @@ bool SMESH_subMesh::IsMeshComputed() const
return false;
}
//================================================================================
/*!
* \brief Check if any upper level sub-shape is not computed.
* Used to update a sub-mesh icon
*/
//================================================================================
bool SMESH_subMesh::IsComputedPartially() const
{
SMESH_subMeshIteratorPtr smIt = getDependsOnIterator(/*includeSelf=*/true,
/*SolidFirst=*/true);
bool allComputed = true;
TopAbs_ShapeEnum readyType = TopAbs_VERTEX; // max value
while ( smIt->more() && allComputed )
{
SMESH_subMesh* sm = smIt->next();
if ( sm->GetSubShape().ShapeType() > readyType )
break; // lower dimension -> stop
if ( sm->GetComputeState() != SMESH_subMesh::NOT_READY )
readyType = sm->GetSubShape().ShapeType();
switch ( sm->GetComputeState() )
{
case SMESH_subMesh::READY_TO_COMPUTE:
case SMESH_subMesh::FAILED_TO_COMPUTE:
allComputed = false;// sm->IsMeshComputed();
break;
case SMESH_subMesh::NOT_READY:
case SMESH_subMesh::COMPUTE_OK:
continue;
}
}
return !allComputed;
}
//=============================================================================
/*!
* Return true if all sub-meshes have been meshed
@ -1478,11 +1515,14 @@ bool SMESH_subMesh::ComputeStateEngine(compute_event event)
if (_father->HasShapeToMesh() ) {
bool subComputed = false, subFailed = false;
if (!algo->OnlyUnaryInput()) {
if ( event == COMPUTE /*&&
( algo->NeedDiscreteBoundary() || algo->SupportSubmeshes() )*/)
shape = getCollection( gen, algo, subComputed, subFailed, algo->SubMeshesToCompute());
else
subComputed = SubMeshesComputed( & subFailed );
// --- commented for bos#22320 to compute all sub-shapes at once if possible;
// --- in case COMPUTE_SUBMESH, set of sub-shapes is limited
// --- by calling SetAllowedSubShapes()
// if ( event == COMPUTE )
// shape = getCollection( gen, algo, subComputed, subFailed, algo->SubMeshesToComput;
// else
// subComputed = SubMeshesComputed( & subFailed );
shape = getCollection( gen, algo, subComputed, subFailed, algo->SubMeshesToCompute());
}
else {
subComputed = SubMeshesComputed();
@ -1610,8 +1650,9 @@ bool SMESH_subMesh::ComputeStateEngine(compute_event event)
((SMESHDS_Hypothesis*)hyps.front())->SaveTo( hypStr.Stream() );
hypStr << " ";
}
cout << _algo->GetName()
<< " " << _father->GetSubMesh( subS.Current() )->GetId()
cout << _father->GetSubMesh( subS.Current() )->GetId()
<< " " << ( ret ? "OK" : "FAIL" )
<< " " << _algo->GetName()
<< " " << hypStr << endl;
}
#endif
@ -1747,6 +1788,8 @@ bool SMESH_subMesh::ComputeStateEngine(compute_event event)
break;
case COMPUTE: // nothing to do
break;
case COMPUTE_SUBMESH: // nothing to do
break;
case COMPUTE_CANCELED: // nothing to do
break;
case CLEAN:
@ -2140,6 +2183,8 @@ TopoDS_Shape SMESH_subMesh::getCollection(SMESH_Gen * theGen,
const TopoDS_Shape& S = subMesh->_subShape;
if ( S.ShapeType() != this->_subShape.ShapeType() )
continue;
if ( _allowedSubShapes && !_allowedSubShapes->IsEmpty() && !_allowedSubShapes->Contains( S ))
continue;
if ( subMesh == this )
{
aBuilder.Add( aCompound, S );

View File

@ -36,6 +36,7 @@
#include "Utils_SALOME_Exception.hxx"
#include <TopoDS_Shape.hxx>
#include <TopTools_IndexedMapOfShape.hxx>
#include <list>
#include <map>
@ -256,6 +257,15 @@ public:
bool IsMeshComputed() const;
// check if _subMeshDS contains mesh elements unless _alwaysComputed==true
bool IsComputedPartially() const;
// check if any upper level sub-shape is not computed
/*!
* \brief Set sub-shapes that are allowed to compute at once by a multidimensional algo
*/
void SetAllowedSubShapes( const TopTools_IndexedMapOfShape* subShapes )
{ _allowedSubShapes = subShapes; }
/*!
* \brief Allow algo->Compute() if a subshape of lower dim is meshed but
* none mesh entity is bound to it
@ -344,6 +354,8 @@ protected:
// mesh several edges as a whole and leave some of them without mesh entities
bool _alwaysComputed;
const TopTools_IndexedMapOfShape* _allowedSubShapes; // allowed to be returned by getCollection()
};
#endif

View File

@ -46,7 +46,8 @@
SMESHGUI_Displayer::SMESHGUI_Displayer( SalomeApp_Application* app )
: LightApp_Displayer(),
myApp( app )
myApp( app ),
isNeedFitAll(false)
{
}
@ -71,6 +72,7 @@ SALOME_Prs* SMESHGUI_Displayer::buildPresentation( const QString& entry, SALOME_
anActor = SMESH::CreateActor( entry.toUtf8().data(), true );
if( anActor )
{
isNeedFitAll = SMESH::NoSmeshActors();
SMESH::DisplayActor( wnd, anActor );
prs = LightApp_Displayer::buildPresentation( entry.toUtf8().data(), aViewFrame );
}
@ -113,3 +115,13 @@ bool SMESHGUI_Displayer::canBeDisplayed( const QString& entry, const QString& vi
}
return res;
}
void SMESHGUI_Displayer::Display( const QStringList& theList, const bool anUpdateViewer, SALOME_View* theView )
{
LightApp_Displayer::Display( theList, anUpdateViewer, theView );
if (isNeedFitAll) {
SMESH::FitAll();
isNeedFitAll = false;
}
}

View File

@ -42,14 +42,16 @@ public:
SMESHGUI_Displayer( SalomeApp_Application* );
~SMESHGUI_Displayer();
virtual SALOME_Prs* buildPresentation( const QString&, SALOME_View* = 0 );
virtual bool canBeDisplayed( const QString&, const QString& ) const;
virtual SALOME_Prs* buildPresentation( const QString&, SALOME_View* = 0 ) override;
virtual bool canBeDisplayed( const QString&, const QString& ) const override;
virtual void Display( const QStringList&, const bool = true, SALOME_View* = 0) override;
protected:
SalomeApp_Study* study() const;
private:
SalomeApp_Application* myApp;
bool isNeedFitAll;
};
#endif // SMESHGUI_DISPLAYER_H

View File

@ -53,7 +53,7 @@ SMESHGUI_MeshOrderOp::SMESHGUI_MeshOrderOp()
{
myDlg = new SMESHGUI_MeshOrderDlg( desktop() );
myHelpFileName = "constructing_meshes.html#mesh-order-anchor";
myHelpFileName = "constructing_meshes.html#submesh-order-anchor";
}
//================================================================================

View File

@ -726,9 +726,10 @@ namespace SMESH
*/
//================================================================================
bool noSmeshActors(SUIT_ViewWindow *theWnd)
bool NoSmeshActors(SUIT_ViewWindow *theWnd)
{
if(SVTK_ViewWindow* aViewWindow = GetVtkViewWindow(theWnd)) {
SUIT_ViewWindow* aWnd = ( theWnd == nullptr ) ? GetActiveWindow() : theWnd;
if(SVTK_ViewWindow* aViewWindow = GetVtkViewWindow(aWnd)) {
vtkRenderer *aRenderer = aViewWindow->getRenderer();
VTK::ActorCollectionCopy aCopy(aRenderer->GetActors());
vtkActorCollection *aCollection = aCopy.GetActors();
@ -826,7 +827,7 @@ namespace SMESH
if ( (aVisualObj = GetVisualObj(theEntry)) && aVisualObj->IsValid())
{
if ((anActor = CreateActor(theEntry,true))) {
bool needFitAll = noSmeshActors(theWnd); // fit for the first object only
bool needFitAll = NoSmeshActors(theWnd); // fit for the first object only
DisplayActor(theWnd,anActor);
anActor->SetVisibility(true);
aStudy->setVisibilityState(theEntry, Qtx::ShownState);

View File

@ -222,6 +222,10 @@ SMESHGUI_EXPORT
SMESHGUI_EXPORT
void UpdateActorsAfterUpdateStudy();
SMESHGUI_EXPORT
bool NoSmeshActors(SUIT_ViewWindow *theWnd=nullptr);
};
#endif // SMESHGUI_VTKUTILS_H

View File

@ -1009,8 +1009,23 @@ void SMESH_Gen_i::UpdateIcons( SMESH::SMESH_Mesh_ptr theMesh )
{
SMESH::array_of_ElementType_var elemTypes = idSrc->GetTypes();
isEmpty = ( elemTypes->length() == 0 );
if ( !isEmpty )
{
// check if all sub-shapes of sub-mesh on group are computed
// (pb: "Compute sub-mesh" menu is missing if a sub-mesh is partially computed)
SMESH::SMESH_subMesh_var subMesh = SMESH::SMESH_subMesh::_narrow( obj );
if ( !subMesh->_is_nil() )
if ( SMESH_subMesh* sm = mesh_i->GetImpl().GetSubMeshContaining( subMesh->GetId() ))
if ( sm->IsComputedPartially() )
{
SetPixMap( so, "ICON_SMESH_TREE_MESH_PARTIAL" );
continue;
}
}
}
}
if ( isEmpty )
SetPixMap( so, "ICON_SMESH_TREE_MESH_WARN");
else if ( !isGroup )
@ -1019,8 +1034,9 @@ void SMESH_Gen_i::UpdateIcons( SMESH::SMESH_Mesh_ptr theMesh )
SetPixMap( so, "ICON_SMESH_TREE_GROUP_ON_FILTER" );
else
SetPixMap( so, "ICON_SMESH_TREE_GROUP" );
}
}
} // loop on sub-meshes or groups
} // loop on roots
}
//=======================================================================

View File

@ -1966,6 +1966,8 @@ void SMESH_MeshEditor_i::QuadTo4Tri (SMESH::SMESH_IDSource_ptr theObject)
getEditor().QuadTo4Tri( faces );
TPythonDump() << this << ".QuadTo4Tri( " << theObject << " )";
declareMeshModified( /*isReComputeSafe=*/false );
SMESH_CATCH( SMESH::throwCorbaException );
}

View File

@ -649,11 +649,12 @@ SMESH_Mesh_i::AddHypothesis(GEOM::GEOM_Object_ptr aSubShape,
throw(SALOME::SALOME_Exception)
{
Unexpect aCatch(SALOME_SalomeException);
const int prevNbMeshEnt = NbNodes() + NbElements();
if ( _preMeshInfo )
_preMeshInfo->ForgetOrLoad();
const int prevNbMeshEnt = _impl->NbNodes() + _impl->GetMeshDS()->NbElements();
std::string error;
SMESH_Hypothesis::Hypothesis_Status status = addHypothesis( aSubShape, anHyp, &error );
anErrorText = error.c_str();

View File

@ -4450,7 +4450,7 @@ class Mesh(metaclass = MeshMeta):
Returns:
A list of edge groups and a list of corresponding node groups,
where the group is a list of IDs of edges or elements, like follows
where the group is a list of IDs of edges or nodes, like follows
[[[branch_edges_1],[branch_edges_2]], [[branch_nodes_1],[branch_nodes_2]]].
If a group is closed, the first and last nodes of the group are same.
"""

View File

@ -200,22 +200,37 @@ namespace // INTERNAL STUFF
if ( getBox()->IsOut( point ))
return false;
bool ok = false;
double dist2, param;
distance2 = Precision::Infinite();
if ( isLeaf() )
{
for ( size_t i = 0; i < _segments.size(); ++i )
if ( !_segments[i].IsOut( point ) &&
_segments[i].IsOn( point, distance2, u ))
return true;
_segments[i].IsOn( point, dist2, param ) &&
dist2 < distance2 )
{
distance2 = dist2;
u = param;
ok = true;
}
return ok;
}
else
{
for (int i = 0; i < 8; i++)
if (((CurveProjector*) myChildren[i])->IsOnCurve( point, distance2, u ))
return true;
if (((CurveProjector*) myChildren[i])->IsOnCurve( point, dist2, param ) &&
dist2 < distance2 )
{
distance2 = dist2;
u = param;
ok = true;
}
}
return false;
return ok;
}
//================================================================================
/*!
* \brief Initialize
@ -233,13 +248,13 @@ namespace // INTERNAL STUFF
_pLast = pl;
_curve = curve;
_length2 = pf.SquareDistance( pl );
_line.SetLocation( pf );
_line.SetDirection( gp_Vec( pf, pl ));
_chord2 = Max( _line. SquareDistance( curve->Value( uf + 0.25 * ( ul - uf ))),
Max( _line.SquareDistance( curve->Value( uf + 0.5 * ( ul - uf ))),
_line.SquareDistance( curve->Value( uf + 0.75 * ( ul - uf )))));
_chord2 = Max( tol, _chord2 );
_chord = Sqrt( _chord2 );
_line.SetLocation( pf );
_line.SetDirection( gp_Vec( pf, pl ));
Bnd_Box bb;
BndLib_Add3dCurve::Add( GeomAdaptor_Curve( curve, uf, ul ), tol, bb );
@ -268,12 +283,12 @@ namespace // INTERNAL STUFF
gp_Vec edge( _pFirst, _pLast );
gp_Vec n1p ( _pFirst, point );
u = ( edge * n1p ) / _length2; // param [0,1] on the edge
if ( u < 0 )
if ( u < 0. )
{
if ( _pFirst.SquareDistance( point ) > _chord2 )
return false;
}
else if ( u > _chord )
else if ( u > 1. )
{
if ( _pLast.SquareDistance( point ) > _chord2 )
return false;

View File

@ -89,20 +89,48 @@ enum { ID_BOT_FACE = SMESH_Block::ID_Fxy0,
BOTTOM_EDGE = 0, TOP_EDGE, V0_EDGE, V1_EDGE, // edge IDs in face
NB_WALL_FACES = 4 }; //
namespace {
namespace
{
//=======================================================================
/*!
* \brief Auxiliary mesh
*/
struct TmpMesh: public SMESH_Mesh
{
TmpMesh() {
_isShapeToMesh = (_id = 0);
_myMeshDS = new SMESHDS_Mesh( _id, true );
}
};
//=======================================================================
/*!
* \brief Quadrangle algorithm
*/
struct TQuadrangleAlgo : public StdMeshers_Quadrangle_2D
class TQuadrangleAlgo : public StdMeshers_Quadrangle_2D
{
typedef NCollection_DataMap< TopoDS_Face, FaceQuadStruct::Ptr > TFace2QuadMap;
TFace2QuadMap myFace2QuadMap;
TQuadrangleAlgo(SMESH_Gen* gen)
: StdMeshers_Quadrangle_2D( gen->GetANewId(), gen)
{
}
static StdMeshers_Quadrangle_2D* instance( SMESH_Algo* fatherAlgo,
SMESH_MesherHelper* helper=0)
public:
//================================================================================
// Clear data of TQuadrangleAlgo at destruction
struct Cleaner
{
TQuadrangleAlgo* myAlgo;
Cleaner(TQuadrangleAlgo* algo): myAlgo( algo ){}
~Cleaner() { myAlgo->reset(); }
};
//================================================================================
// Return TQuadrangleAlgo singleton
static TQuadrangleAlgo* instance( SMESH_Algo* fatherAlgo,
SMESH_MesherHelper* helper=0)
{
static TQuadrangleAlgo* algo = new TQuadrangleAlgo( fatherAlgo->GetGen() );
if ( helper &&
@ -118,7 +146,124 @@ namespace {
return algo;
}
//================================================================================
// Clear collected data
void reset()
{
StdMeshers_Quadrangle_2D::myQuadList.clear();
StdMeshers_Quadrangle_2D::myHelper = nullptr;
StdMeshers_Quadrangle_2D::myProxyMesh.reset();
myFace2QuadMap.Clear();
}
//================================================================================
/*!
* \brief Return FaceQuadStruct if a given FACE can be meshed by StdMeshers_Quadrangle_2D
*/
FaceQuadStruct::Ptr CheckNbEdges(SMESH_Mesh& theMesh,
const TopoDS_Shape& theShape )
{
const TopoDS_Face& face = TopoDS::Face( theShape );
if ( myFace2QuadMap.IsBound( face ))
return myFace2QuadMap.Find( face );
FaceQuadStruct::Ptr & resultQuad = * myFace2QuadMap.Bound( face, FaceQuadStruct::Ptr() );
FaceQuadStruct::Ptr quad =
StdMeshers_Quadrangle_2D::CheckNbEdges( theMesh, face, /*considerMesh=*/false, myHelper );
if ( quad )
{
// check if the quadrangle mesh would be valid
// check existing 1D mesh
// int nbSegments[4], i = 0;
// for ( FaceQuadStruct::Side & side : quad->side )
// nbSegments[ i++ ] = side.grid->NbSegments();
// if ( nbSegments[0] > 0 && nbSegments[2] > 0 && nbSegments[0] != nbSegments[2] ||
// nbSegments[1] > 0 && nbSegments[3] > 0 && nbSegments[1] != nbSegments[3] )
// return resultQuad;
int nbEdges = 0;
for ( FaceQuadStruct::Side & side : quad->side )
nbEdges += side.grid->NbEdges();
if ( nbEdges == 4 )
return resultQuad = quad;
TmpMesh mesh;
mesh.ShapeToMesh( face );
SMESHDS_Mesh* meshDS = mesh.GetMeshDS();
SMESH_MesherHelper helper( mesh );
helper.SetSubShape( face );
helper.SetElementsOnShape( true );
// create nodes on all VERTEX'es
for ( TopExp_Explorer vert( face, TopAbs_VERTEX ); vert.More(); vert.Next() )
mesh.GetSubMesh( vert.Current() )->ComputeStateEngine( SMESH_subMesh::COMPUTE );
FaceQuadStruct::Ptr tmpQuad( new FaceQuadStruct() );
tmpQuad->side.resize( 4 );
// divide quad sides into halves at least
const SMDS_MeshNode* node;
for ( int iDir = 0; iDir < 2; ++iDir )
{
StdMeshers_FaceSidePtr sides[2] = { quad->side[iDir], quad->side[iDir+2] };
std::map< double, const SMDS_MeshNode* > nodes[2];
for ( int iS : { 0, 1 } )
{
node = SMESH_Algo::VertexNode( sides[iS]->FirstVertex(), meshDS );
nodes[iS].insert( std::make_pair( 0, node ));
double curLen = 0;
for ( int iE = 1; iE < sides[iS]->NbEdges(); ++iE )
{
curLen += sides[iS]->EdgeLength( iE - 1 );
double u = curLen / sides[iS]->Length();
node = SMESH_Algo::VertexNode( sides[iS]->FirstVertex( iE ), meshDS );
nodes[iS ].insert( std::make_pair( u, node ));
nodes[1-iS].insert( std::make_pair( u, nullptr ));
}
nodes[iS].insert( std::make_pair( 0.5, nullptr ));
node = SMESH_Algo::VertexNode( sides[iS]->LastVertex(), meshDS );
nodes[iS].insert( std::make_pair( 1, node ));
}
for ( int iS : { 0, 1 } )
{
UVPtStructVec sideNodes;
sideNodes.reserve( nodes[ iS ].size() );
for ( auto & u_node : nodes[ iS ])
{
if ( !u_node.second )
{
gp_Pnt p = sides[iS]->Value3d( u_node.first );
u_node.second = meshDS->AddNode( p.X(), p.Y(), p.Z() );
TopoDS_Edge edge;
double param = sides[iS]->Parameter( u_node.first, edge );
meshDS->SetNodeOnEdge( u_node.second, edge, param );
}
sideNodes.push_back( u_node.second );
sideNodes.back().SetUV( helper.GetNodeUV( face, u_node.second ));
}
tmpQuad->side[ iS ? iDir+2 : iDir ] = StdMeshers_FaceSide::New( sideNodes, face );
}
}
StdMeshers_Quadrangle_2D::myCheckOri = true;
StdMeshers_Quadrangle_2D::myQuadList.clear();
StdMeshers_Quadrangle_2D::myQuadList.push_back( tmpQuad );
StdMeshers_Quadrangle_2D::myHelper = &helper;
if ( StdMeshers_Quadrangle_2D::computeQuadDominant( mesh, face, tmpQuad ) &&
StdMeshers_Quadrangle_2D::check())
{
resultQuad = quad;
}
StdMeshers_Quadrangle_2D::myQuadList.clear();
StdMeshers_Quadrangle_2D::myHelper = nullptr;
}
return resultQuad;
}
};
//=======================================================================
/*!
* \brief Algorithm projecting 1D mesh
@ -400,7 +545,7 @@ namespace {
int removeQuasiQuads(list< SMESH_subMesh* >& notQuadSubMesh,
SMESH_MesherHelper* helper,
StdMeshers_Quadrangle_2D* quadAlgo)
TQuadrangleAlgo* quadAlgo)
{
int nbRemoved = 0;
//SMESHDS_Mesh* mesh = notQuadSubMesh.front()->GetFather()->GetMeshDS();
@ -528,6 +673,22 @@ namespace {
return nbSides;
}
//================================================================================
/*!
* \brief Count EDGEs ignoring degenerated ones
*/
//================================================================================
int CountEdges( const TopoDS_Face& face )
{
int nbE = 0;
for ( TopExp_Explorer edgeExp( face, TopAbs_EDGE ); edgeExp.More(); edgeExp.Next() )
if ( !SMESH_Algo::isDegenerated( TopoDS::Edge( edgeExp.Current() )))
++nbE;
return nbE;
}
//================================================================================
/*!
* \brief Set/get wire index to FaceQuadStruct
@ -559,6 +720,7 @@ namespace {
}
#endif
}
} // namespace
//=======================================================================
@ -617,6 +779,7 @@ bool StdMeshers_Prism_3D::Compute(SMESH_Mesh& theMesh, const TopoDS_Shape& theSh
SMESH_MesherHelper helper( theMesh );
myHelper = &helper;
myPrevBottomSM = 0;
TQuadrangleAlgo::Cleaner quadCleaner( TQuadrangleAlgo::instance( this ));
int nbSolids = helper.Count( theShape, TopAbs_SOLID, /*skipSame=*/false );
if ( nbSolids < 1 )
@ -628,7 +791,6 @@ bool StdMeshers_Prism_3D::Compute(SMESH_Mesh& theMesh, const TopoDS_Shape& theSh
// look for meshed FACEs ("source" FACEs) that must be prism bottoms
list< TopoDS_Face > meshedFaces, notQuadMeshedFaces, notQuadFaces;
const bool meshHasQuads = ( theMesh.NbQuadrangles() > 0 );
//StdMeshers_Quadrangle_2D* quadAlgo = TQuadrangleAlgo::instance( this );
for ( int iF = 1; iF <= faceToSolids.Extent(); ++iF )
{
const TopoDS_Face& face = TopoDS::Face( faceToSolids.FindKey( iF ));
@ -687,6 +849,7 @@ bool StdMeshers_Prism_3D::Compute(SMESH_Mesh& theMesh, const TopoDS_Shape& theSh
}
TopTools_MapOfShape meshedSolids;
NCollection_DataMap< TopoDS_Shape, SMESH_subMesh* > meshedFace2AlgoSM;
list< Prism_3D::TPrismTopo > meshedPrism;
list< TopoDS_Face > suspectSourceFaces;
TopTools_ListIteratorOfListOfShape solidIt;
@ -710,14 +873,22 @@ bool StdMeshers_Prism_3D::Compute(SMESH_Mesh& theMesh, const TopoDS_Shape& theSh
{
prism.Clear();
prism.myBottom = face;
if ( meshedFace2AlgoSM.IsBound( face ))
prism.myAlgoSM = meshedFace2AlgoSM.Find( face );
if ( !initPrism( prism, solid, selectBottom ) ||
!compute( prism ))
return false;
SMESHDS_SubMesh* smDS = theMesh.GetMeshDS()->MeshElements( prism.myTop );
if ( !myHelper->IsSameElemGeometry( smDS, SMDSGeom_QUADRANGLE ))
if ( !myHelper->IsSameElemGeometry( smDS, SMDSGeom_QUADRANGLE ) ||
!myHelper->IsStructured( theMesh.GetSubMesh( prism.myTop )))
{
meshedFaces.push_front( prism.myTop );
if ( prism.myAlgoSM && prism.myAlgoSM->GetAlgo() )
{
meshedFace2AlgoSM.Bind( prism.myTop, prism.myAlgoSM );
meshedFace2AlgoSM.Bind( prism.myBottom, prism.myAlgoSM );
}
}
else
{
@ -752,9 +923,18 @@ bool StdMeshers_Prism_3D::Compute(SMESH_Mesh& theMesh, const TopoDS_Shape& theSh
solidList.Remove( solidIt );
continue; // already computed prism
}
if ( myHelper->IsBlock( solid )) {
solidIt.Next();
continue; // too trivial
if ( myHelper->IsBlock( solid ))
{
bool isStructBase = true;
if ( prismIt->myAlgoSM )
isStructBase = ( myHelper->IsSameElemGeometry( prismIt->myAlgoSM->GetSubMeshDS(),
SMDSGeom_QUADRANGLE ) &&
myHelper->IsStructured(prismIt->myAlgoSM ));
if ( isStructBase )
{
solidIt.Next();
continue; // too trivial
}
}
// find a source FACE of the SOLID: it's a FACE sharing a bottom EDGE with wFace
const TopoDS_Edge& wEdge = (*wQuad)->side[ QUAD_TOP_SIDE ].grid->Edge(0);
@ -773,27 +953,41 @@ bool StdMeshers_Prism_3D::Compute(SMESH_Mesh& theMesh, const TopoDS_Shape& theSh
}
prism.Clear();
prism.myBottom = candidateF;
prism.myAlgoSM = prismIt->myAlgoSM;
mySetErrorToSM = false;
if ( !myHelper->IsSubShape( candidateF, prismIt->myShape3D ) &&
myHelper ->IsSubShape( candidateF, solid ) &&
!myHelper->GetMesh()->GetSubMesh( candidateF )->IsMeshComputed() &&
initPrism( prism, solid, /*selectBottom=*/false ) &&
!myHelper->GetMesh()->GetSubMesh( prism.myTop )->IsMeshComputed() &&
!myHelper->GetMesh()->GetSubMesh( prism.myBottom )->IsMeshComputed() &&
project2dMesh( sourceF, prism.myBottom ))
!myHelper->GetMesh()->GetSubMesh( prism.myBottom )->IsMeshComputed() )
{
mySetErrorToSM = true;
if ( !compute( prism ))
return false;
SMESHDS_SubMesh* smDS = theMesh.GetMeshDS()->MeshElements( prism.myTop );
if ( !myHelper->IsSameElemGeometry( smDS, SMDSGeom_QUADRANGLE ))
if ( project2dMesh( sourceF, prism.myBottom ))
{
meshedFaces.push_front( prism.myTop );
meshedFaces.push_front( prism.myBottom );
selectBottom = false;
mySetErrorToSM = true;
if ( !compute( prism ))
return false;
SMESHDS_SubMesh* smDS = theMesh.GetMeshDS()->MeshElements( prism.myTop );
if ( !myHelper->IsSameElemGeometry( smDS, SMDSGeom_QUADRANGLE ))
{
meshedFaces.push_front( prism.myTop );
meshedFaces.push_front( prism.myBottom );
selectBottom = false;
if ( prism.myAlgoSM && prism.myAlgoSM->GetAlgo() )
{
meshedFace2AlgoSM.Bind( prism.myTop, prism.myAlgoSM );
meshedFace2AlgoSM.Bind( prism.myBottom, prism.myAlgoSM );
}
}
meshedPrism.push_back( prism );
meshedSolids.Add( solid );
}
else
{
meshedFaces.push_back( prism.myBottom );
if ( prism.myAlgoSM && prism.myAlgoSM->GetAlgo() )
meshedFace2AlgoSM.Bind( prism.myBottom, prism.myAlgoSM );
}
meshedPrism.push_back( prism );
meshedSolids.Add( solid );
}
InitComputeError();
}
@ -846,7 +1040,7 @@ bool StdMeshers_Prism_3D::Compute(SMESH_Mesh& theMesh, const TopoDS_Shape& theSh
allSubMeComputed = smIt->next()->IsMeshComputed();
if ( allSubMeComputed )
{
faceSM->ComputeStateEngine( SMESH_subMesh::COMPUTE );
faceSM->ComputeStateEngine( SMESH_subMesh::COMPUTE_SUBMESH );
if ( !faceSM->IsEmpty() ) {
meshedFaces.push_front( face ); // higher priority
selectBottom = true;
@ -919,7 +1113,7 @@ bool StdMeshers_Prism_3D::getWallFaces( Prism_3D::TPrismTopo & thePrism,
SMESH_Mesh* mesh = myHelper->GetMesh();
StdMeshers_Quadrangle_2D* quadAlgo = TQuadrangleAlgo::instance( this, myHelper );
TQuadrangleAlgo* quadAlgo = TQuadrangleAlgo::instance( this, myHelper );
TopTools_MapOfShape faceMap;
TopTools_IndexedDataMapOfShapeListOfShape edgeToFaces;
@ -1400,8 +1594,9 @@ bool StdMeshers_Prism_3D::computeBase(const Prism_3D::TPrismTopo& thePrism)
{
// find any applicable algorithm assigned to any FACE of the main shape
std::vector< TopoDS_Shape > faces;
if ( myPrevBottomSM &&
myPrevBottomSM->GetAlgo()->IsApplicableToShape( thePrism.myBottom, /*all=*/false ))
if ( thePrism.myAlgoSM && thePrism.myAlgoSM->GetAlgo() )
faces.push_back( thePrism.myAlgoSM->GetSubShape() );
if ( myPrevBottomSM && myPrevBottomSM->GetAlgo() )
faces.push_back( myPrevBottomSM->GetSubShape() );
TopExp_Explorer faceIt( mesh->GetShapeToMesh(), TopAbs_FACE );
@ -1426,7 +1621,7 @@ bool StdMeshers_Prism_3D::computeBase(const Prism_3D::TPrismTopo& thePrism)
while ( smIt->more() && subOK )
{
SMESH_subMesh* sub = smIt->next();
sub->ComputeStateEngine( SMESH_subMesh::COMPUTE );
sub->ComputeStateEngine( SMESH_subMesh::COMPUTE_SUBMESH );
subOK = sub->IsMeshComputed();
}
if ( !subOK )
@ -1434,23 +1629,31 @@ bool StdMeshers_Prism_3D::computeBase(const Prism_3D::TPrismTopo& thePrism)
}
try {
OCC_CATCH_SIGNALS;
Hypothesis_Status status;
algo->CheckHypothesis( *mesh, faces[i], status );
algo->InitComputeError();
algo->Compute( *mesh, botSM->GetSubShape() );
if ( algo->Compute( *mesh, botSM->GetSubShape() ))
{
myPrevBottomSM = thePrism.myAlgoSM = mesh->GetSubMesh( faces[i] );
break;
}
}
catch (...) {
}
}
}
}
else
{
myPrevBottomSM = thePrism.myAlgoSM = botSM;
}
if ( botSM->IsEmpty() )
return error( COMPERR_BAD_INPUT_MESH,
TCom( "No mesher defined to compute the base face #")
<< shapeID( thePrism.myBottom ));
if ( botSM->GetAlgo() )
myPrevBottomSM = botSM;
return true;
}
@ -1465,8 +1668,8 @@ bool StdMeshers_Prism_3D::computeWalls(const Prism_3D::TPrismTopo& thePrism)
SMESHDS_Mesh* meshDS = myHelper->GetMeshDS();
DBGOUT( endl << "COMPUTE Prism " << meshDS->ShapeToIndex( thePrism.myShape3D ));
TProjction1dAlgo* projector1D = TProjction1dAlgo::instance( this );
StdMeshers_Quadrangle_2D* quadAlgo = TQuadrangleAlgo::instance( this, myHelper );
TProjction1dAlgo* projector1D = TProjction1dAlgo::instance( this );
TQuadrangleAlgo* quadAlgo = TQuadrangleAlgo::instance( this, myHelper );
// SMESH_HypoFilter hyp1dFilter( SMESH_HypoFilter::IsAlgo(),/*not=*/true);
// hyp1dFilter.And( SMESH_HypoFilter::HasDim( 1 ));
@ -2674,6 +2877,9 @@ bool StdMeshers_Prism_3D::allVerticalEdgesStraight( const Prism_3D::TPrismTopo&
bool StdMeshers_Prism_3D::project2dMesh(const TopoDS_Face& theSrcFace,
const TopoDS_Face& theTgtFace)
{
if ( CountEdges( theSrcFace ) != CountEdges( theTgtFace ))
return false;
TProjction2dAlgo* projector2D = TProjction2dAlgo::instance( this );
projector2D->myHyp.SetSourceFace( theSrcFace );
bool ok = projector2D->Compute( *myHelper->GetMesh(), theTgtFace );
@ -3339,6 +3545,7 @@ namespace Prism_3D
myBottomEdges.clear();
myNbEdgesInWires.clear();
myWallQuads.clear();
myAlgoSM = nullptr;
}
//================================================================================
@ -4641,7 +4848,7 @@ TopoDS_Edge StdMeshers_PrismAsBlock::TSideFace::GetEdge(const int iEdge) const
column = & ( myParamToColumnMap->rbegin()->second );
else
column = & ( myParamToColumnMap->begin()->second );
if ( column->size() > 0 )
if ( column->size() > 1 )
edge = myHelper.GetSubShapeByNode( (*column)[ 1 ], meshDS );
if ( edge.IsNull() || edge.ShapeType() == TopAbs_VERTEX )
node = column->front();

View File

@ -106,6 +106,7 @@ namespace Prism_3D
std::list< int > myNbEdgesInWires;
bool myNotQuadOnTop;
mutable SMESH_subMesh* myAlgoSM; // sub-mesh with algo which computed myBottom
size_t NbWires() const { return myNbEdgesInWires.size(); }