#16648 [CEA] RadialQuadrangle algorithm hypothesis change requires a Clear Mesh Data beforehand

+
1) Optimize FreeEdges::IsFreeEdge()
2) Fix SMESH_MeshEditor::FindFreeBorder() for the case of multi-continuation
3) Improve Mesh.GetLength() to accept groups and list of IDs
This commit is contained in:
eap 2019-03-05 19:35:52 +03:00
parent 385d4cede5
commit d2248790d7
6 changed files with 121 additions and 74 deletions

View File

@ -2565,18 +2565,14 @@ void FreeEdges::SetMesh( const SMDS_Mesh* theMesh )
bool FreeEdges::IsFreeEdge( const SMDS_MeshNode** theNodes, const int theFaceId )
{
TColStd_MapOfInteger aMap;
for ( int i = 0; i < 2; i++ )
SMDS_ElemIteratorPtr anElemIter = theNodes[ 0 ]->GetInverseElementIterator(SMDSAbs_Face);
while( anElemIter->more() )
{
SMDS_ElemIteratorPtr anElemIter = theNodes[ i ]->GetInverseElementIterator(SMDSAbs_Face);
while( anElemIter->more() )
if ( const SMDS_MeshElement* anElem = anElemIter->next())
{
if ( const SMDS_MeshElement* anElem = anElemIter->next())
{
const int anId = anElem->GetID();
if ( anId != theFaceId && !aMap.Add( anId ))
return false;
}
const int anId = anElem->GetID();
if ( anId != theFaceId && anElem->GetNodeIndex( theNodes[1] ) >= 0 )
return false;
}
}
return true;

View File

@ -7681,9 +7681,9 @@ bool SMESH_MeshEditor::FindFreeBorder (const SMDS_MeshNode* theFirst
// push_back the best free border
cNL = & contNodes[ contNodes[0].empty() ? 1 : 0 ];
cFL = & contFaces[ contFaces[0].empty() ? 1 : 0 ];
theNodes.pop_back(); // remove nIgnore
//theNodes.pop_back(); // remove nIgnore
theNodes.pop_back(); // remove nStart
theFaces.pop_back(); // remove curElem
//theFaces.pop_back(); // remove curElem
theNodes.splice( theNodes.end(), *cNL );
theFaces.splice( theFaces.end(), *cFL );
return true;

View File

@ -494,28 +494,37 @@ namespace
<< " in a PolySegment " << iSeg );
if ( path.myDot1 == 0. &&
path.myDot2 == 0. &&
paths.size() - nbPaths >= 2 ) // use a face non-parallel to the plane
path.myDot2 == 0. )
{
const SMDS_MeshElement* goodFace = 0;
for ( size_t j = nbPaths; j < paths.size(); ++j )
if ( paths.size() - nbPaths >= 2 ) // use a face non-parallel to the plane
{
path = paths[j];
if ( path.Extend( plnNorm, plnOrig ))
goodFace = paths[j].myFace;
else
paths[j].myFace = 0;
}
if ( !goodFace )
throw SALOME_Exception ( SMESH_Comment("Cant move from point ") << iP+1
<< " of a PolySegment " << iSeg );
for ( size_t j = nbPaths; j < paths.size(); ++j )
if ( !paths[j].myFace )
const SMDS_MeshElement* goodFace = 0;
for ( size_t j = nbPaths; j < paths.size(); ++j )
{
paths[j].myFace = goodFace;
paths[j].myNodeInd1 = goodFace->GetNodeIndex( paths[j].myNode1.Node() );
paths[j].myNodeInd2 = goodFace->GetNodeIndex( paths[j].myNode2.Node() );
path = paths[j];
if ( path.Extend( plnNorm, plnOrig ))
goodFace = paths[j].myFace;
else
paths[j].myFace = 0;
}
if ( !goodFace )
throw SALOME_Exception ( SMESH_Comment("Cant move from point ") << iP+1
<< " of a PolySegment " << iSeg );
for ( size_t j = nbPaths; j < paths.size(); ++j )
if ( !paths[j].myFace )
{
paths[j].myFace = goodFace;
paths[j].myNodeInd1 = goodFace->GetNodeIndex( paths[j].myNode1.Node() );
paths[j].myNodeInd2 = goodFace->GetNodeIndex( paths[j].myNode2.Node() );
}
}
else // use the sole found face
{
path = paths.back();
std::swap( path.myNode1, path.myNode2 );
std::swap( path.myNodeInd1, path.myNodeInd2 );
paths.push_back( path );
}
}
}

View File

@ -456,7 +456,7 @@ bool SMESH_PreMeshInfo::readPreInfoFromHDF()
mapOfNames );
}
}
infoHdfGroup->CloseOnDisk();
infoHdfGroup->CloseOnDisk();
}
aFile->CloseOnDisk();
@ -841,8 +841,9 @@ void SMESH_PreMeshInfo::FullLoadFromFile() const
meshDS->Modified();
// load dependent meshes referring/referred via hypotheses
mesh.GetSubMesh( mesh.GetShapeToMesh() )->
ComputeStateEngine (SMESH_subMesh::SUBMESH_LOADED);
SMESH_subMesh* mainSub = mesh.GetSubMesh( mesh.GetShapeToMesh() );
mainSub->ComputeStateEngine (SMESH_subMesh::SUBMESH_RESTORED); // #16648
mainSub->ComputeStateEngine (SMESH_subMesh::SUBMESH_LOADED);
MYDEBUGOUT( "END FullLoadFromFile()" );
}

View File

@ -1235,8 +1235,6 @@ class smeshBuilder( SMESH._objref_SMESH_Gen, object ):
def GetMeshInfo(self, obj):
"""
Get the mesh statistic.
Use :meth:`smeshBuilder.EnumToLong` to get an integer from
an item of :class:`SMESH.EntityType`.
Returns:
dictionary { :class:`SMESH.EntityType` - "count of elements" }
@ -3091,8 +3089,6 @@ class Mesh(metaclass = MeshMeta):
def GetMeshInfo(self, obj = None):
"""
Get the mesh statistic.
Use :meth:`smeshBuilder.EnumToLong` to get an integer from
an item of :class:`SMESH.EntityType`.
Returns:
dictionary { :class:`SMESH.EntityType` - "count of elements" }
@ -6951,52 +6947,90 @@ class Mesh(metaclass = MeshMeta):
def GetLength(self, elemId=None):
"""
Get length of 1D element or sum of lengths of all 1D mesh elements
Get length of all given 1D elements or sum length of all 1D mesh elements
Parameters:
elemId: mesh element ID (if not defined - sum of length of all 1D elements will be calculated)
elemId: either a mesh element ID or a list of IDs or :class:`sub-mesh, group or filter <SMESH.SMESH_IDSource>`. By default sum length of all 1D elements will be calculated.
Returns:
element's length value if *elemId* is specified or sum of all 1D mesh elements' lengths otherwise
Sum of lengths of given elements
"""
length = 0
if elemId == None:
length = self.smeshpyD.GetLength(self)
elif isinstance(elemId, SMESH._objref_SMESH_IDSource):
length = self.smeshpyD.GetLength(elemId)
elif elemId == []:
length = 0
elif isinstance(elemId, list) and isinstance(elemId[0], SMESH._objref_SMESH_IDSource):
for obj in elemId:
length += self.smeshpyD.GetLength(obj)
elif isinstance(elemId, list) and isinstance(elemId[0], int):
unRegister = genObjUnRegister()
obj = self.GetIDSource( elemId )
unRegister.set( obj )
length = self.smeshpyD.GetLength( obj )
else:
length = self.FunctorValue(SMESH.FT_Length, elemId)
return length
def GetArea(self, elemId=None):
"""
Get area of 2D element or sum of areas of all 2D mesh elements
elemId mesh element ID (if not defined - sum of areas of all 2D elements will be calculated)
Get area of given 2D elements or sum area of all 2D mesh elements
Parameters:
elemId: either a mesh element ID or a list of IDs or :class:`sub-mesh, group or filter <SMESH.SMESH_IDSource>`. By default sum area of all 2D elements will be calculated.
Returns:
element's area value if *elemId* is specified or sum of all 2D mesh elements' areas otherwise
Area of given element's if *elemId* is specified or sum of all 2D mesh elements' areas otherwise
"""
area = 0
if elemId == None:
area = self.smeshpyD.GetArea(self)
elif isinstance(elemId, SMESH._objref_SMESH_IDSource):
area = self.smeshpyD.GetArea(elemId)
elif elemId == []:
area = 0
elif isinstance(elemId, list) and isinstance(elemId[0], SMESH._objref_SMESH_IDSource):
for obj in elemId:
area += self.smeshpyD.GetArea(obj)
elif isinstance(elemId, list) and isinstance(elemId[0], int):
unRegister = genObjUnRegister()
obj = self.GetIDSource( elemId )
unRegister.set( obj )
area = self.smeshpyD.GetArea( obj )
else:
area = self.FunctorValue(SMESH.FT_Area, elemId)
return area
def GetVolume(self, elemId=None):
"""
Get volume of 3D element or sum of volumes of all 3D mesh elements
Get volume of a 3D element or sum of volumes of all 3D mesh elements
Parameters:
elemId: mesh element ID (if not defined - sum of volumes of all 3D elements will be calculated)
elemId: either a mesh element ID or a list of IDs or :class:`sub-mesh, group or filter <SMESH.SMESH_IDSource>`. By default sum volume of all 3D elements will be calculated.
Returns:
element's volume value if *elemId* is specified or sum of all 3D mesh elements' volumes otherwise
Sum element's volume value if *elemId* is specified or sum of all 3D mesh elements' volumes otherwise
"""
volume = 0
if elemId == None:
volume = self.smeshpyD.GetVolume(self)
volume= self.smeshpyD.GetVolume(self)
elif isinstance(elemId, SMESH._objref_SMESH_IDSource):
volume= self.smeshpyD.GetVolume(elemId)
elif elemId == []:
volume = 0
elif isinstance(elemId, list) and isinstance(elemId[0], SMESH._objref_SMESH_IDSource):
for obj in elemId:
volume+= self.smeshpyD.GetVolume(obj)
elif isinstance(elemId, list) and isinstance(elemId[0], int):
unRegister = genObjUnRegister()
obj = self.GetIDSource( elemId )
unRegister.set( obj )
volume= self.smeshpyD.GetVolume( obj )
else:
volume = self.FunctorValue(SMESH.FT_Volume3D, elemId)
return volume

View File

@ -163,39 +163,46 @@ namespace
static TEdgeMarker theEdgeMarker;
return &theEdgeMarker;
}
//! Clear face sumbesh if something happens on edges
//! Clear edge sumbesh if something happens on face
void ProcessEvent(const int event,
const int eventType,
SMESH_subMesh* edgeSubMesh,
EventListenerData* data,
SMESH_subMesh* faceSubMesh,
EventListenerData* edgesHolder,
const SMESH_Hypothesis* /*hyp*/)
{
if ( data && !data->mySubMeshes.empty() && eventType == SMESH_subMesh::ALGO_EVENT)
if ( edgesHolder && eventType == SMESH_subMesh::ALGO_EVENT)
{
ASSERT( data->mySubMeshes.front() != edgeSubMesh );
SMESH_subMesh* faceSubMesh = data->mySubMeshes.front();
faceSubMesh->ComputeStateEngine( SMESH_subMesh::CLEAN );
std::list<SMESH_subMesh*>::iterator smIt = edgesHolder->mySubMeshes.begin();
for ( ; smIt != edgesHolder->mySubMeshes.end(); ++smIt )
{
SMESH_subMesh* edgeSM = *smIt;
edgeSM->ComputeStateEngine( SMESH_subMesh::CLEAN );
}
}
}
//! Store edge SMESH_subMesh'es computed by the algo
static void markEdge( const TopoDS_Edge& edge, SMESH_subMesh* faceSM )
{
if ( SMESH_subMesh* edgeSM = faceSM->GetFather()->GetSubMeshContaining( edge ))
{
EventListenerData* edgesHolder = faceSM->GetEventListenerData( getListener() );
if ( edgesHolder )
{
std::list<SMESH_subMesh*>::iterator smIt = std::find( edgesHolder->mySubMeshes.begin(),
edgesHolder->mySubMeshes.end(),
edgeSM );
if ( smIt == edgesHolder->mySubMeshes.end() )
edgesHolder->mySubMeshes.push_back( edgeSM );
}
else
{
edgesHolder = SMESH_subMeshEventListenerData::MakeData( edgeSM );
faceSM->SetEventListener( TEdgeMarker::getListener(), edgesHolder, faceSM );
}
}
}
};
//================================================================================
/*!
* \brief Mark an edge as computed by StdMeshers_RadialQuadrangle_1D2D
*/
//================================================================================
void markEdgeAsComputedByMe(const TopoDS_Edge& edge, SMESH_subMesh* faceSubMesh)
{
if ( SMESH_subMesh* edgeSM = faceSubMesh->GetFather()->GetSubMeshContaining( edge ))
{
if ( !edgeSM->GetEventListenerData( TEdgeMarker::getListener() ))
faceSubMesh->SetEventListener( TEdgeMarker::getListener(),
SMESH_subMeshEventListenerData::MakeData(faceSubMesh),
edgeSM);
}
}
//================================================================================
/*!
* \brief Return sides of the face connected in the order: aCircEdge, aLinEdge1, aLinEdge2
@ -744,7 +751,7 @@ protected:
* \brief Allow algo to do something after persistent restoration
* \param subMesh - restored submesh
*
* call markEdgeAsComputedByMe()
* call TEdgeMarker::markEdge()
*/
//=======================================================================
@ -754,7 +761,7 @@ void StdMeshers_RadialQuadrangle_1D2D::SubmeshRestored(SMESH_subMesh* faceSubMes
{
for ( TopExp_Explorer e( faceSubMesh->GetSubShape(), TopAbs_EDGE ); e.More(); e.Next() )
{
markEdgeAsComputedByMe( TopoDS::Edge( e.Current() ), faceSubMesh );
TEdgeMarker::markEdge( TopoDS::Edge( e.Current() ), faceSubMesh );
}
}
}
@ -963,7 +970,7 @@ bool StdMeshers_RadialQuadrangle_1D2D::Compute(SMESH_Mesh& aMesh,
list< TopoDS_Edge >::iterator ee = emptyEdges.begin();
for ( ; ee != emptyEdges.end(); ++ee )
markEdgeAsComputedByMe( *ee, aMesh.GetSubMesh( F ));
TEdgeMarker::markEdge( *ee, aMesh.GetSubMesh( F ));
circSide->GetUVPtStruct(); // let sides take into account just computed nodes
linSide1->GetUVPtStruct();