PAL7722. Take into account edge orientation when Compute() uses a propagated hypothesis

This commit is contained in:
eap 2005-01-21 14:15:45 +00:00
parent dcab7b2d24
commit d8e7d0d7d9
2 changed files with 95 additions and 74 deletions

View File

@ -178,13 +178,55 @@ bool StdMeshers_Regular_1D::CheckHypothesis
return ( _hypType != NONE );
}
//=======================================================================
//function : compensateError
//purpose : adjust theParams so that the last segment length == an
//=======================================================================
static void compensateError(double a1, double an,
double U1, double Un,
double length,
GeomAdaptor_Curve& C3d,
list<double> & theParams)
{
int i, nPar = theParams.size();
if ( a1 + an < length && nPar > 1 )
{
list<double>::reverse_iterator itU = theParams.rbegin();
double Ul = *itU++;
// dist from the last point to the edge end <Un>, it should be equal <an>
double Ln = GCPnts_AbscissaPoint::Length( C3d, Ul, Un );
double dLn = an - Ln; // error of <an>
if ( Abs( dLn ) <= Precision::Confusion() )
return;
double dU = Ul - *itU; // parametric length of the last but one segment
double dUn = dLn * ( Un - U1 ) / length; // modificator of the last parameter
if ( dUn < 0.5 * dU ) { // last segment is a bit shorter than dU
dUn = -dUn; // move the last parameter to the edge beginning
}
else { // last segment is much shorter than dU -> remove the last param and
theParams.pop_back(); // move the rest points toward the edge end
Ln = GCPnts_AbscissaPoint::Length( C3d, theParams.back(), Un );
dUn = ( an - Ln ) * ( Un - U1 ) / length;
if ( dUn < 0.5 * dU )
dUn = -dUn;
}
double q = dUn / ( nPar - 1 );
for ( itU = theParams.rbegin(), i = 1; i < nPar; itU++, i++ ) {
(*itU) += dUn;
dUn -= q;
}
}
}
//=============================================================================
/*!
*
*/
//=============================================================================
bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge,
list<double> & theParams) const
list<double> & theParams,
const bool theReverse) const
{
theParams.clear();
@ -193,7 +235,6 @@ bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge
GeomAdaptor_Curve C3d(Curve);
double length = EdgeLength(theEdge);
//SCRUTE(length);
switch( _hypType )
{
@ -213,10 +254,11 @@ bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge
double epsilon = 0.001;
if (fabs(_value[ SCALE_FACTOR_IND ] - 1.0) > epsilon)
{
double alpha =
pow( _value[ SCALE_FACTOR_IND ], 1.0 / (_value[ NB_SEGMENTS_IND ] - 1));
double factor =
length / (1 - pow( alpha,_value[ NB_SEGMENTS_IND ]));
double scale = _value[ SCALE_FACTOR_IND ];
if ( theReverse )
scale = 1. / scale;
double alpha = pow( scale , 1.0 / (_value[ NB_SEGMENTS_IND ] - 1));
double factor = (l - f) / (1 - pow( alpha,_value[ NB_SEGMENTS_IND ]));
int i, NbPoints = 1 + (int) _value[ NB_SEGMENTS_IND ];
for ( i = 2; i < NbPoints; i++ )
@ -249,8 +291,8 @@ bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge
// geometric progression: SUM(n) = ( a1 - an * q ) / ( 1 - q ) = length
double a1 = _value[ BEG_LENGTH_IND ];
double an = _value[ END_LENGTH_IND ];
double a1 = theReverse ? _value[ END_LENGTH_IND ] : _value[ BEG_LENGTH_IND ];
double an = theReverse ? _value[ BEG_LENGTH_IND ] : _value[ END_LENGTH_IND ];
double q = ( length - a1 ) / ( length - an );
double U1 = Min ( f, l );
@ -269,30 +311,38 @@ bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge
break;
eltSize *= q;
}
if ( a1 + an < length ) {
// compensate error
double Ln = GCPnts_AbscissaPoint::Length( C3d, theParams.back(), Un );
double dLn = an - Ln;
if ( dLn < 0.5 * an )
dLn = -dLn;
else {
theParams.pop_back();
Ln = GCPnts_AbscissaPoint::Length( C3d, theParams.back(), Un );
dLn = an - Ln;
if ( dLn < 0.5 * an )
dLn = -dLn;
}
double dUn = dLn * ( Un - U1 ) / length;
// SCRUTE( Ln );
// SCRUTE( dLn );
// SCRUTE( dUn );
list<double>::reverse_iterator itU = theParams.rbegin();
int i, n = theParams.size();
for ( i = 1 ; i < n; itU++, i++ ) {
(*itU) += dUn;
dUn /= q;
compensateError( a1, an, U1, Un, length, C3d, theParams );
return true;
}
case ARITHMETIC_1D: {
// arithmetic progression: SUM(n) = ( an - a1 + q ) * ( a1 + an ) / ( 2 * q ) = length
double a1 = theReverse ? _value[ END_LENGTH_IND ] : _value[ BEG_LENGTH_IND ];
double an = theReverse ? _value[ BEG_LENGTH_IND ] : _value[ END_LENGTH_IND ];
double q = ( an - a1 ) / ( 2 *length/( a1 + an ) - 1 );
int n = int( 1 + ( an - a1 ) / q );
double U1 = Min ( f, l );
double Un = Max ( f, l );
double param = U1;
double eltSize = a1;
while ( eltSize > 0. && n-- > 0) {
// computes a point on a curve <C3d> at the distance <eltSize>
// from the point of parameter <param>.
GCPnts_AbscissaPoint Discret( C3d, eltSize, param );
if ( !Discret.IsDone() ) break;
param = Discret.Parameter();
if ( param < Un )
theParams.push_back( param );
else
break;
eltSize += q; // eltSize may become negative here
}
compensateError( a1, an, U1, Un, length, C3d, theParams );
return true;
}
@ -313,42 +363,6 @@ bool StdMeshers_Regular_1D::computeInternalParameters(const TopoDS_Edge& theEdge
}
case ARITHMETIC_1D: {
// arithmetic progression: SUM(n) = ( an - a1 + q ) * ( a1 + an ) / ( 2 * q ) = length
double a1 = _value[ BEG_LENGTH_IND ];
double an = _value[ END_LENGTH_IND ];
double nd = (2 * length) / (an + a1) - 1;
int n = int(nd);
if(n != nd)
n++;
double q = ((2 * length) / (n + 1) - 2 * a1) / n;
double U1 = Min ( f, l );
double Un = Max ( f, l );
double param = U1;
double eltSize = a1;
double L=0;
while ( 1 ) {
L+=eltSize;
// computes a point on a curve <C3d> at the distance <eltSize>
// from the point of parameter <param>.
GCPnts_AbscissaPoint Discret( C3d, eltSize, param );
if ( !Discret.IsDone() ) break;
param = Discret.Parameter();
if ( fabs(param - Un) > Precision::Confusion() && param < Un) {
theParams.push_back( param );
}
else
break;
eltSize += q;
}
return true;
}
default:;
}
@ -401,8 +415,11 @@ bool StdMeshers_Regular_1D::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aSh
if (!Curve.IsNull())
{
list< double > params;
bool reversed = false;
if ( !_mainEdge.IsNull() )
reversed = aMesh.IsReversedInChain( EE, _mainEdge );
try {
if ( ! computeInternalParameters( E, params ))
if ( ! computeInternalParameters( E, params, reversed ))
return false;
}
catch ( Standard_Failure ) {
@ -480,15 +497,15 @@ const list <const SMESHDS_Hypothesis *> & StdMeshers_Regular_1D::GetUsedHypothes
_usedHypList.clear();
_usedHypList = GetAppliedHypothesis(aMesh, aShape); // copy
int nbHyp = _usedHypList.size();
_mainEdge.Nullify();
if (nbHyp == 0)
{
// Check, if propagated from some other edge
TopoDS_Shape aMainEdge;
if (aShape.ShapeType() == TopAbs_EDGE &&
aMesh.IsPropagatedHypothesis(aShape, aMainEdge))
aMesh.IsPropagatedHypothesis(aShape, _mainEdge))
{
// Propagation of 1D hypothesis from <aMainEdge> on this edge
_usedHypList = GetAppliedHypothesis(aMesh, aMainEdge); // copy
_usedHypList = GetAppliedHypothesis(aMesh, _mainEdge); // copy
nbHyp = _usedHypList.size();
}
}

View File

@ -59,7 +59,8 @@ public:
protected:
bool computeInternalParameters (const TopoDS_Edge& theEdge,
std::list< double > & theParameters ) const;
std::list< double > & theParameters,
const bool theReverse) const;
enum HypothesisType { LOCAL_LENGTH, NB_SEGMENTS, BEG_END_LENGTH, DEFLECTION, ARITHMETIC_1D, NONE };
@ -75,6 +76,9 @@ protected:
double _value[2];
// a source of propagated hypothesis, is set by CheckHypothesis()
// always called before Compute()
TopoDS_Shape _mainEdge;
};
#endif