0020714: EDF GHS3DPLUGIN: shapeToMesh when creating 3D mesh from 2D mesh

* Add function to find out if the given point is out of closed 2D mesh.

+  virtual TopAbs_State GetPointState(const gp_Pnt& point);
This commit is contained in:
eap 2010-03-04 14:05:05 +00:00
parent 4fadfe037a
commit e1e680f157
5 changed files with 704 additions and 74 deletions

View File

@ -655,6 +655,12 @@ module SMESH
*/
long_array FindElementsByPoint(in double x, in double y, in double z, in ElementType type);
/*!
* Return point state in a closed 2D mesh in terms of TopAbs_State enumeration.
* TopAbs_UNKNOWN state means that either mesh is wrong or the analysis fails.
*/
short GetPointState(in double x, in double y, in double z);
enum Sew_Error {
SEW_OK,
SEW_BORDER1_NOT_FOUND,

View File

@ -38,11 +38,12 @@
#include "SMESHDS_Group.hxx"
#include "SMESHDS_Mesh.hxx"
#include "SMESH_subMesh.hxx"
#include "SMESH_Algo.hxx"
#include "SMESH_ControlsDef.hxx"
#include "SMESH_Group.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_OctreeNode.hxx"
#include "SMESH_Group.hxx"
#include "SMESH_subMesh.hxx"
#include "utilities.h"
@ -51,11 +52,17 @@
#include <BRep_Tool.hxx>
#include <ElCLib.hxx>
#include <Extrema_GenExtPS.hxx>
#include <Extrema_POnCurv.hxx>
#include <Extrema_POnSurf.hxx>
#include <GC_MakeSegment.hxx>
#include <Geom2d_Curve.hxx>
#include <GeomAPI_ExtremaCurveCurve.hxx>
#include <GeomAdaptor_Surface.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Line.hxx>
#include <Geom_Surface.hxx>
#include <IntAna_IntConicQuad.hxx>
#include <IntAna_Quadric.hxx>
#include <Precision.hxx>
#include <TColStd_ListOfInteger.hxx>
#include <TopAbs_State.hxx>
@ -75,6 +82,7 @@
#include <gp_Vec.hxx>
#include <gp_XY.hxx>
#include <gp_XYZ.hxx>
#include <math.h>
#include <map>
@ -1102,6 +1110,7 @@ bool SMESH_MeshEditor::QuadToTri (TIDSortedElemSet & theElems,
//function : BestSplit
//purpose : Find better diagonal for cutting.
//=======================================================================
int SMESH_MeshEditor::BestSplit (const SMDS_MeshElement* theQuad,
SMESH::Controls::NumericalFunctorPtr theCrit)
{
@ -1143,6 +1152,164 @@ int SMESH_MeshEditor::BestSplit (const SMDS_MeshElement* theQuad,
return -1;
}
namespace
{
// Methods of splitting volumes into tetra
const int theHexTo5[5*4] =
{
0, 1, 5, 2,
0, 4, 5, 7,
0, 3, 7, 2,
5, 6, 7, 2,
0, 2, 5, 7
};
const int theHexTo6[6*4] =
{
0, 1, 5, 2,
0, 4, 5, 7,
0, 3, 7, 2,
5, 6, 7, 2,
0, 2, 5, 7
};
const int thePyraTo2[2*4] =
{
0, 1, 2, 4,
0, 2, 3, 4
};
const int thePentaTo8[8*4] =
{
0, 1, 2, 6,
3, 5, 4, 6,
0, 3, 4, 6,
0, 4, 1, 6,
1, 4, 5, 6,
1, 5, 2, 6,
2, 5, 3, 6,
2, 3, 0, 6
};
struct TSplitMethod
{
int _nbTetra;
const int* _connectivity;
bool _addNode; // additional node is to be created
TSplitMethod( int nbTet=0, const int* conn=0, bool addNode=false)
: _nbTetra(nbTet), _connectivity(conn), _addNode(addNode) {}
};
/*!
* \brief return TSplitMethod for the given element
*/
TSplitMethod getSplitMethod( const SMDS_MeshElement* vol, const int theMethodFlags)
{
TSplitMethod method;
if ( vol->GetType() == SMDSAbs_Volume && !vol->IsPoly())
switch ( vol->NbNodes() )
{
case 8:
case 20:
if ( theMethodFlags & SMESH_MeshEditor::HEXA_TO_5 )
method = TSplitMethod( 5, theHexTo5 );
else
method = TSplitMethod( 6, theHexTo6 );
break;
case 5:
case 13:
method = TSplitMethod( 2, thePyraTo2 );
break;
case 6:
case 15:
method = TSplitMethod( 8, thePentaTo8, /*addNode=*/true );
break;
default:;
}
return method;
}
}
//=======================================================================
//function : SplitVolumesIntoTetra
//purpose : Split volumic elements into tetrahedra.
//=======================================================================
// void SMESH_MeshEditor::SplitVolumesIntoTetra (const TIDSortedElemSet & theElems,
// const int theMethodFlags)
// {
// // sdt-like iterator on coordinates of nodes of mesh element
// typedef SMDS_StdIterator< TNodeXYZ, SMDS_ElemIteratorPtr > NXyzIterator;
// NXyzIterator xyzEnd;
// SMESH_MesherHelper helper( *GetMesh());
// TIDSortedElemSet::const_iterator elem = theElems.begin();
// for ( ; elem != theElems.end(); ++elem )
// {
// SMDSAbs_EntityType geomType = (*elem)->GetEntityType();
// if ( geomType <= SMDSEntity_Quad_Tetra )
// continue; // tetra or face or edge
// if ( (*elem)->IsQuadratic() )
// {
// // add quadratic links to the helper
// SMDS_VolumeTool vol( *elem );
// for ( int iF = 0; iF < vol.NbFaces(); ++iF )
// {
// const SMDS_MeshNode** fNodes = vol.GetFaceNodes( iF );
// for ( int iN = 0; iN < vol.NbFaceNodes( iF ); iN += 2)
// helper.AddTLinkNode( fNodes[iF], fNodes[iF+2], fNodes[iF+1] );
// }
// helper.SetIsQuadratic( true );
// }
// else
// {
// helper.SetIsQuadratic( false );
// }
// vector<const SMDS_MeshElement* > tetras; // splits of a volume
// if ( geomType == SMDSEntity_Polyhedra )
// {
// // Each face of a polyhedron is split into triangles and
// // each of triangles and a cell barycenter form a tetrahedron.
// SMDS_VolumeTool vol( *elem );
// // make a node at barycenter
// gp_XYZ gc = std::accumulate( NXyzIterator((*elem)->nodesIterator()), xyzEnd,gp_XYZ(0,0,0));
// gc /= vol.NbNodes();
// SMDS_MeshNode* gcNode = GetMeshDS()->AddNode( gc.X(), gc.Y(), gc.Z() );
// for ( int iF = 0; iF < vol.NbFaces(); ++iF )
// {
// const SMDS_MeshNode** fNodes = vol.GetFaceNodes( iF );
// int nbFNodes = vol.NbFaceNodes( iF );
// int nbTria = nbFNodes - 2;
// bool extFace = vol.IsFaceExternal( iF );
// SMDS_MeshElement* tet;
// for ( int i = 0; i < nbTria; ++i )
// {
// if ( extFace )
// tet = helper.AddVolume( fNodes[0], fNodes[i+1], fNodes[i+2], gcNode );
// else
// tet = helper.AddVolume( fNodes[0], fNodes[i+2], fNodes[i+1], gcNode );
// tetras.push_back( tet );
// }
// }
// }
// else
// {
// TSplitMethod splitMethod = getSplitMethod( *elem, theMethodFlags );
// if ( splitMethod._nbTetra < 1 ) continue;
// vector<const SMDS_MeshNode*> volNodes( (*elem)->begin_nodes(), (*elem)->end_nodes());
// }
// }
// }
//=======================================================================
//function : AddToSameGroups
//purpose : add elemToAdd to the groups the elemInGroups belongs to
@ -5584,6 +5751,7 @@ namespace // Utils used in SMESH_ElementSearcherImpl::FindElementsByPoint()
ElementBndBoxTree(const SMDS_Mesh& mesh, SMDSAbs_ElementType elemType);
void getElementsNearPoint( const gp_Pnt& point, TIDSortedElemSet& foundElems);
void getElementsNearLine ( const gp_Ax1& line, TIDSortedElemSet& foundElems);
~ElementBndBoxTree();
protected:
@ -5709,6 +5877,31 @@ namespace // Utils used in SMESH_ElementSearcherImpl::FindElementsByPoint()
}
}
//================================================================================
/*!
* \brief Return elements which can be intersected by the line
*/
//================================================================================
void ElementBndBoxTree::getElementsNearLine( const gp_Ax1& line,
TIDSortedElemSet& foundElems)
{
if ( level() && getBox().IsOut( line ))
return;
if ( isLeaf() )
{
for ( int i = 0; i < _elements.size(); ++i )
if ( !_elements[i]->IsOut( line ))
foundElems.insert( _elements[i]->_element );
}
else
{
for (int i = 0; i < 8; i++)
((ElementBndBoxTree*) myChildren[i])->getElementsNearLine( line, foundElems );
}
}
//================================================================================
/*!
* \brief Construct the element box
@ -5729,60 +5922,89 @@ namespace // Utils used in SMESH_ElementSearcherImpl::FindElementsByPoint()
//=======================================================================
/*!
* \brief Implementation of search for the elements by point
* \brief Implementation of search for the elements by point and
* of classification of point in 2D mesh
*/
//=======================================================================
struct SMESH_ElementSearcherImpl: public SMESH_ElementSearcher
{
SMESHDS_Mesh* _mesh;
ElementBndBoxTree* _ebbTree;
SMESH_NodeSearcherImpl* _nodeSearcher;
SMDSAbs_ElementType _elementType;
SMESHDS_Mesh* _mesh;
ElementBndBoxTree* _ebbTree;
SMESH_NodeSearcherImpl* _nodeSearcher;
SMDSAbs_ElementType _elementType;
double _tolerance;
bool _outerFacesFound;
set<const SMDS_MeshElement*> _outerFaces; // empty means "no internal faces at all"
SMESH_ElementSearcherImpl( SMESHDS_Mesh& mesh ): _mesh(&mesh),_ebbTree(0),_nodeSearcher(0) {}
SMESH_ElementSearcherImpl( SMESHDS_Mesh& mesh )
: _mesh(&mesh),_ebbTree(0),_nodeSearcher(0), _tolerance(-1), _outerFacesFound(false) {}
~SMESH_ElementSearcherImpl()
{
if ( _ebbTree ) delete _ebbTree; _ebbTree = 0;
if ( _nodeSearcher ) delete _nodeSearcher; _nodeSearcher = 0;
}
virtual int FindElementsByPoint(const gp_Pnt& point,
SMDSAbs_ElementType type,
vector< const SMDS_MeshElement* >& foundElements);
virtual TopAbs_State GetPointState(const gp_Pnt& point);
/*!
* \brief Find elements of given type where the given point is IN or ON.
* Returns nb of found elements and elements them-selves.
*
* 'ALL' type means elements of any type excluding nodes and 0D elements
*/
int FindElementsByPoint(const gp_Pnt& point,
SMDSAbs_ElementType type,
vector< const SMDS_MeshElement* >& foundElements)
double getTolerance();
bool getIntersParamOnLine(const gp_Lin& line, const SMDS_MeshElement* face,
const double tolerance, double & param);
void findOuterBoundary(const SMDS_MeshElement* anyOuterFace);
bool isOuterBoundary(const SMDS_MeshElement* face) const
{
foundElements.clear();
return _outerFaces.empty() || _outerFaces.count(face);
}
struct TInters //!< data of intersection of the line and the mesh face used in GetPointState()
{
const SMDS_MeshElement* _face;
gp_Vec _faceNorm;
bool _coincides; //!< the line lays in face plane
TInters(const SMDS_MeshElement* face, const gp_Vec& faceNorm, bool coinc=false)
: _face(face), _faceNorm( faceNorm ), _coincides( coinc ) {}
};
struct TFaceLink //!< link and faces sharing it (used in findOuterBoundary())
{
SMESH_TLink _link;
TIDSortedElemSet _faces;
TFaceLink( const SMDS_MeshNode* n1, const SMDS_MeshNode* n2, const SMDS_MeshElement* face)
: _link( n1, n2 ), _faces( &face, &face + 1) {}
};
};
//=======================================================================
/*!
* \brief define tolerance for search
*/
//=======================================================================
double SMESH_ElementSearcherImpl::getTolerance()
{
if ( _tolerance < 0 )
{
const SMDS_MeshInfo& meshInfo = _mesh->GetMeshInfo();
// -----------------
// define tolerance
// -----------------
double tolerance = 0;
_tolerance = 0;
if ( _nodeSearcher && meshInfo.NbNodes() > 1 )
{
double boxSize = _nodeSearcher->getTree()->maxSize();
tolerance = 1e-8 * boxSize/* / meshInfo.NbNodes()*/;
_tolerance = 1e-8 * boxSize/* / meshInfo.NbNodes()*/;
}
else if ( _ebbTree && meshInfo.NbElements() > 0 )
{
double boxSize = _ebbTree->maxSize();
tolerance = 1e-8 * boxSize/* / meshInfo.NbElements()*/;
_tolerance = 1e-8 * boxSize/* / meshInfo.NbElements()*/;
}
if ( tolerance == 0 )
if ( _tolerance == 0 )
{
// define tolerance by size of a most complex element
int complexType = SMDSAbs_Volume;
while ( complexType > SMDSAbs_All &&
meshInfo.NbElements( SMDSAbs_ElementType( complexType )) < 1 )
--complexType;
if ( complexType == SMDSAbs_All ) return foundElements.size(); // empty mesh
if ( complexType == SMDSAbs_All ) return 0; // empty mesh
double elemSize;
if ( complexType == int( SMDSAbs_Node ))
@ -5804,50 +6026,418 @@ struct SMESH_ElementSearcherImpl: public SMESH_ElementSearcher
elemSize = max( dist, elemSize );
}
}
tolerance = 1e-6 * elemSize;
_tolerance = 1e-6 * elemSize;
}
// =================================================================================
if ( type == SMDSAbs_Node || type == SMDSAbs_0DElement )
{
if ( !_nodeSearcher )
_nodeSearcher = new SMESH_NodeSearcherImpl( _mesh );
const SMDS_MeshNode* closeNode = _nodeSearcher->FindClosestTo( point );
if ( !closeNode ) return foundElements.size();
if ( point.Distance( SMESH_MeshEditor::TNodeXYZ( closeNode )) > tolerance )
return foundElements.size(); // to far from any node
if ( type == SMDSAbs_Node )
{
foundElements.push_back( closeNode );
}
else
{
SMDS_ElemIteratorPtr elemIt = closeNode->GetInverseElementIterator( SMDSAbs_0DElement );
while ( elemIt->more() )
foundElements.push_back( elemIt->next() );
}
}
// =================================================================================
else // elements more complex than 0D
{
if ( !_ebbTree || _elementType != type )
{
if ( _ebbTree ) delete _ebbTree;
_ebbTree = new ElementBndBoxTree( *_mesh, _elementType = type );
}
TIDSortedElemSet suspectElems;
_ebbTree->getElementsNearPoint( point, suspectElems );
TIDSortedElemSet::iterator elem = suspectElems.begin();
for ( ; elem != suspectElems.end(); ++elem )
if ( !SMESH_MeshEditor::isOut( *elem, point, tolerance ))
foundElements.push_back( *elem );
}
return foundElements.size();
}
}; // struct SMESH_ElementSearcherImpl
return _tolerance;
}
//================================================================================
/*!
* \brief Find intersection of the line and an edge of face and return parameter on line
*/
//================================================================================
bool SMESH_ElementSearcherImpl::getIntersParamOnLine(const gp_Lin& line,
const SMDS_MeshElement* face,
const double tol,
double & param)
{
int nbInts = 0;
param = 0;
GeomAPI_ExtremaCurveCurve anExtCC;
Handle(Geom_Curve) lineCurve = new Geom_Line( line );
int nbNodes = face->IsQuadratic() ? face->NbNodes()/2 : face->NbNodes();
for ( int i = 0; i < nbNodes && nbInts < 2; ++i )
{
GC_MakeSegment edge( SMESH_MeshEditor::TNodeXYZ( face->GetNode( i )),
SMESH_MeshEditor::TNodeXYZ( face->GetNode( (i+1)%nbNodes) ));
anExtCC.Init( lineCurve, edge);
if ( anExtCC.NbExtrema() > 0 && anExtCC.LowerDistance() <= tol)
{
Quantity_Parameter pl, pe;
anExtCC.LowerDistanceParameters( pl, pe );
param += pl;
if ( ++nbInts == 2 )
break;
}
}
if ( nbInts > 0 ) param /= nbInts;
return nbInts > 0;
}
//================================================================================
/*!
* \brief Find all faces belonging to the outer boundary of mesh
*/
//================================================================================
void SMESH_ElementSearcherImpl::findOuterBoundary(const SMDS_MeshElement* outerFace)
{
if ( _outerFacesFound ) return;
// Collect all outer faces passing from one outer face to another via their links
// and BTW find out if there are internal faces at all.
bool hasInternal = false;
// checked links
set< SMESH_TLink > visitedLinks;
// links to treat with already visited faces sharing them
list < TFaceLink > startLinks;
// load startLinks with the first outerFace
startLinks.push_back( TFaceLink( outerFace->GetNode(0), outerFace->GetNode(1), outerFace));
_outerFaces.insert( outerFace );
TIDSortedElemSet emptySet;
while ( !startLinks.empty() )
{
const SMESH_TLink& link = startLinks.front()._link;
TIDSortedElemSet& faces = startLinks.front()._faces;
outerFace = *faces.begin();
// find other faces sharing the link
const SMDS_MeshElement* f;
while (( f = SMESH_MeshEditor::FindFaceInSet(link.node1(), link.node2(), emptySet, faces )))
faces.insert( f );
// select another outer face among the found
const SMDS_MeshElement* outerFace2 = 0;
if ( faces.size() == 2 )
{
outerFace2 = (outerFace == *faces.begin() ? *faces.rbegin() : *faces.begin());
}
else if ( faces.size() > 2 )
{
hasInternal = true;
// link direction within the outerFace
gp_Vec n1n2( SMESH_MeshEditor::TNodeXYZ( link.node1()),
SMESH_MeshEditor::TNodeXYZ( link.node2()));
int i1 = outerFace->GetNodeIndex( link.node1() );
int i2 = outerFace->GetNodeIndex( link.node2() );
bool rev = ( abs(i2-i1) == 1 ? i1 > i2 : i2 > i1 );
if ( rev ) n1n2.Reverse();
// outerFace normal
gp_XYZ ofNorm, fNorm;
if ( SMESH_Algo::FaceNormal( outerFace, ofNorm, /*normalized=*/false ))
{
// direction from the link inside outerFace
gp_Vec dirInOF = gp_Vec( ofNorm ) ^ n1n2;
// sort all other faces by angle with the dirInOF
map< double, const SMDS_MeshElement* > angle2Face;
set< const SMDS_MeshElement* >::const_iterator face = faces.begin();
for ( ; face != faces.end(); ++face )
{
if ( !SMESH_Algo::FaceNormal( *face, fNorm, /*normalized=*/false ))
continue;
gp_Vec dirInF = gp_Vec( fNorm ) ^ n1n2;
double angle = dirInOF.AngleWithRef( dirInF, n1n2 );
if ( angle < 0 ) angle += 2*PI;
angle2Face.insert( make_pair( angle, *face ));
}
if ( !angle2Face.empty() )
outerFace2 = angle2Face.begin()->second;
}
}
// store the found outer face and add its links to continue seaching from
if ( outerFace2 )
{
_outerFaces.insert( outerFace );
int nbNodes = outerFace2->NbNodes()/( outerFace2->IsQuadratic() ? 2 : 1 );
for ( int i = 0; i < nbNodes; ++i )
{
SMESH_TLink link2( outerFace2->GetNode(i), outerFace2->GetNode((i+1)%nbNodes));
if ( visitedLinks.insert( link2 ).second )
startLinks.push_back( TFaceLink( link2.node1(), link2.node2(), outerFace2 ));
}
}
startLinks.pop_front();
}
_outerFacesFound = true;
if ( !hasInternal )
_outerFaces.clear();
}
//=======================================================================
/*!
* \brief Find elements of given type where the given point is IN or ON.
* Returns nb of found elements and elements them-selves.
*
* 'ALL' type means elements of any type excluding nodes and 0D elements
*/
//=======================================================================
int SMESH_ElementSearcherImpl::
FindElementsByPoint(const gp_Pnt& point,
SMDSAbs_ElementType type,
vector< const SMDS_MeshElement* >& foundElements)
{
foundElements.clear();
double tolerance = getTolerance();
// =================================================================================
if ( type == SMDSAbs_Node || type == SMDSAbs_0DElement )
{
if ( !_nodeSearcher )
_nodeSearcher = new SMESH_NodeSearcherImpl( _mesh );
const SMDS_MeshNode* closeNode = _nodeSearcher->FindClosestTo( point );
if ( !closeNode ) return foundElements.size();
if ( point.Distance( SMESH_MeshEditor::TNodeXYZ( closeNode )) > tolerance )
return foundElements.size(); // to far from any node
if ( type == SMDSAbs_Node )
{
foundElements.push_back( closeNode );
}
else
{
SMDS_ElemIteratorPtr elemIt = closeNode->GetInverseElementIterator( SMDSAbs_0DElement );
while ( elemIt->more() )
foundElements.push_back( elemIt->next() );
}
}
// =================================================================================
else // elements more complex than 0D
{
if ( !_ebbTree || _elementType != type )
{
if ( _ebbTree ) delete _ebbTree;
_ebbTree = new ElementBndBoxTree( *_mesh, _elementType = type );
}
TIDSortedElemSet suspectElems;
_ebbTree->getElementsNearPoint( point, suspectElems );
TIDSortedElemSet::iterator elem = suspectElems.begin();
for ( ; elem != suspectElems.end(); ++elem )
if ( !SMESH_MeshEditor::isOut( *elem, point, tolerance ))
foundElements.push_back( *elem );
}
return foundElements.size();
}
//================================================================================
/*!
* \brief Classify the given point in the closed 2D mesh
*/
//================================================================================
TopAbs_State SMESH_ElementSearcherImpl::GetPointState(const gp_Pnt& point)
{
double tolerance = getTolerance();
if ( !_ebbTree || _elementType != SMDSAbs_Face )
{
if ( _ebbTree ) delete _ebbTree;
_ebbTree = new ElementBndBoxTree( *_mesh, _elementType = SMDSAbs_Face );
}
// Algo: analyse transition of a line starting at the point through mesh boundary;
// try three lines parallel to axis of the coordinate system and perform rough
// analysis. If solution is not clear perform thorough analysis.
const int nbAxes = 3;
gp_Dir axisDir[ nbAxes ] = { gp::DX(), gp::DY(), gp::DZ() };
map< double, TInters > paramOnLine2TInters[ nbAxes ];
list< TInters > tangentInters[ nbAxes ]; // of faces whose plane includes the line
multimap< int, int > nbInt2Axis; // to find the simplest case
for ( int axis = 0; axis < nbAxes; ++axis )
{
gp_Ax1 lineAxis( point, axisDir[axis]);
gp_Lin line ( lineAxis );
TIDSortedElemSet suspectFaces; // faces possibly intersecting the line
_ebbTree->getElementsNearLine( lineAxis, suspectFaces );
// Intersect faces with the line
map< double, TInters > & u2inters = paramOnLine2TInters[ axis ];
TIDSortedElemSet::iterator face = suspectFaces.begin();
for ( ; face != suspectFaces.end(); ++face )
{
// get face plane
gp_XYZ fNorm;
if ( !SMESH_Algo::FaceNormal( *face, fNorm, /*normalized=*/false)) continue;
gp_Pln facePlane( SMESH_MeshEditor::TNodeXYZ( (*face)->GetNode(0)), fNorm );
// perform intersection
IntAna_IntConicQuad intersection( line, IntAna_Quadric( facePlane ));
if ( !intersection.IsDone() )
continue;
if ( intersection.IsInQuadric() )
{
tangentInters[ axis ].push_back( TInters( *face, fNorm, true ));
}
else if ( ! intersection.IsParallel() && intersection.NbPoints() > 0 )
{
gp_Pnt intersectionPoint = intersection.Point(1);
if ( !SMESH_MeshEditor::isOut( *face, intersectionPoint, tolerance ))
u2inters.insert(make_pair( intersection.ParamOnConic(1), TInters( *face, fNorm )));
}
}
// Analyse intersections roughly
int nbInter = u2inters.size();
if ( nbInter == 0 )
return TopAbs_OUT;
double f = u2inters.begin()->first, l = u2inters.rbegin()->first;
if ( nbInter == 1 ) // not closed mesh
return fabs( f ) < tolerance ? TopAbs_ON : TopAbs_UNKNOWN;
if ( fabs( f ) < tolerance || fabs( l ) < tolerance )
return TopAbs_ON;
if ( (f<0) == (l<0) )
return TopAbs_OUT;
int nbIntBeforePoint = std::distance( u2inters.begin(), u2inters.lower_bound(0));
int nbIntAfterPoint = nbInter - nbIntBeforePoint;
if ( nbIntBeforePoint == 1 || nbIntAfterPoint == 1 )
return TopAbs_IN;
nbInt2Axis.insert( make_pair( min( nbIntBeforePoint, nbIntAfterPoint ), axis ));
} // three attempts - loop on CS axes
// Analyse intersections thoroughly.
// We make two loops maximum, on the first one we only exclude touching intersections,
// on the second, if situation is still unclear, we gather and use information on
// position of faces (internal or outer). If faces position is already gathered,
// we make the second loop right away.
for ( int hasPositionInfo = _outerFacesFound; hasPositionInfo < 2; ++hasPositionInfo )
{
multimap< int, int >::const_iterator nb_axis = nbInt2Axis.begin();
for ( ; nb_axis != nbInt2Axis.end(); ++nb_axis )
{
int axis = nb_axis->second;
map< double, TInters > & u2inters = paramOnLine2TInters[ axis ];
gp_Ax1 lineAxis( point, axisDir[axis]);
gp_Lin line ( lineAxis );
// add tangent intersections to u2inters
double param;
list< TInters >::const_iterator tgtInt = tangentInters[ axis ].begin();
for ( ; tgtInt != tangentInters[ axis ].end(); ++tgtInt )
if ( getIntersParamOnLine( line, tgtInt->_face, tolerance, param ))
u2inters.insert(make_pair( param, *tgtInt ));
tangentInters[ axis ].clear();
// Count intersections before and after the point excluding touching ones.
// If hasPositionInfo we count intersections of outer boundary only
int nbIntBeforePoint = 0, nbIntAfterPoint = 0;
double f = numeric_limits<double>::max(), l = -numeric_limits<double>::max();
map< double, TInters >::iterator u_int2 = u2inters.begin(), u_int1 = u_int2++;
bool ok = ! u_int1->second._coincides;
while ( ok && u_int1 != u2inters.end() )
{
// skip intersections at the same point (if the line passes through edge or node)
int nbSamePnt = 0;
double u = u_int1->first;
while ( u_int2 != u2inters.end() && fabs( u_int2->first - u ) < tolerance )
{
++nbSamePnt;
++u_int2;
}
// skip tangent intersections
int nbTgt = 0;
const SMDS_MeshElement* prevFace = u_int1->second._face;
while ( ok && u_int2->second._coincides )
{
if ( SMESH_Algo::GetCommonNodes(prevFace , u_int2->second._face).empty() )
ok = false;
else
{
nbTgt++;
u_int2++;
ok = ( u_int2 != u2inters.end() );
}
}
if ( !ok ) break;
// skip intersections at the same point after tangent intersections
if ( nbTgt > 0 )
{
double u = u_int2->first;
++u_int2;
while ( u_int2 != u2inters.end() && fabs( u_int2->first - u ) < tolerance )
{
++nbSamePnt;
++u_int2;
}
}
bool touchingInt = false;
if ( nbSamePnt + nbTgt > 0 )
{
double minDot = numeric_limits<double>::max(), maxDot = -numeric_limits<double>::max();
map< double, TInters >::iterator u_int = u_int1;
for ( ; u_int != u_int2; ++u_int )
{
if ( u_int->second._coincides ) continue;
double dot = u_int->second._faceNorm * line.Direction();
if ( dot > maxDot ) maxDot = dot;
if ( dot < minDot ) minDot = dot;
}
touchingInt = ( minDot*maxDot < 0 );
}
if ( !touchingInt )
{
if ( !hasPositionInfo || isOuterBoundary( u_int1->second._face ))
{
if ( u < 0 )
++nbIntBeforePoint;
else
++nbIntAfterPoint;
}
if ( u < f ) f = u;
if ( u > l ) l = u;
}
u_int1 = u_int2++; // to next intersection
} // loop on intersections with one line
if ( ok )
{
if ( fabs( f ) < tolerance || fabs( l ) < tolerance )
return TopAbs_ON;
if ( nbIntBeforePoint == 0 || nbIntAfterPoint == 0)
return TopAbs_OUT;
if ( nbIntBeforePoint + nbIntAfterPoint == 1 ) // not closed mesh
return fabs( f ) < tolerance ? TopAbs_ON : TopAbs_UNKNOWN;
if ( nbIntBeforePoint == 1 || nbIntAfterPoint == 1 )
return TopAbs_IN;
if ( (f<0) == (l<0) )
return TopAbs_OUT;
if ( hasPositionInfo )
return nbIntBeforePoint % 2 ? TopAbs_IN : TopAbs_OUT;
}
} // loop on intersections of the tree lines - thorough analysis
if ( !hasPositionInfo )
{
// gather info on faces position - is face in the outer boundary or not
map< double, TInters > & u2inters = paramOnLine2TInters[ 0 ];
findOuterBoundary( u2inters.begin()->second._face );
}
} // two attempts - with and w/o faces position info in the mesh
return TopAbs_UNKNOWN;
}
//=======================================================================
/*!
@ -9351,5 +9941,3 @@ bool SMESH_MeshEditor::Make2DMeshFrom3D()
}
return res;
}

View File

@ -78,6 +78,7 @@ struct SMESH_NodeSearcher
/*!
* \brief Find elements of given type where the given point is IN or ON.
* Returns nb of found elements and elements them-selves.
* Another task is to find out if the given point is out of closed 2D mesh.
*
* 'ALL' type means elements of any type excluding nodes and 0D elements
*/
@ -88,6 +89,8 @@ struct SMESH_ElementSearcher
virtual int FindElementsByPoint(const gp_Pnt& point,
SMDSAbs_ElementType type,
std::vector< const SMDS_MeshElement* >& foundElems)=0;
virtual TopAbs_State GetPointState(const gp_Pnt& point) = 0;
};
//=======================================================================
@ -124,7 +127,7 @@ public:
struct TNodeXYZ : public gp_XYZ
{
const SMDS_MeshNode* _node;
TNodeXYZ( const SMDS_MeshElement* e):_node(0) {
TNodeXYZ( const SMDS_MeshElement* e):gp_XYZ(0,0,0),_node(0) {
if (e) {
ASSERT( e->GetType() == SMDSAbs_Node );
_node = static_cast<const SMDS_MeshNode*>(e);
@ -221,6 +224,13 @@ public:
SMESH::Controls::NumericalFunctorPtr theCriterion);
enum SplitVolumToTetraFlags { HEXA_TO_5 = 1, HEXA_TO_6 = 2 };//!<arg of SplitVolumesIntoTetra()
/*!
* \brief Split volumic elements into tetrahedra.
*/
//void SplitVolumesIntoTetra (const TIDSortedElemSet & theElems, const int theMethodFlags);
enum SmoothMethod { LAPLACIAN = 0, CENTROIDAL };
void Smooth (TIDSortedElemSet & theElements,
@ -724,5 +734,3 @@ private:
};
#endif

View File

@ -1159,6 +1159,10 @@ CORBA::Long SMESH_MeshEditor_i::BestSplit (CORBA::Long IDOfQuad,
return -1;
}
void SMESH_MeshEditor_i::SplitVolumesIntoTetra (SMESH::SMESH_IDSource_ptr elems,
CORBA::Short methodFlags)
{
}
//=======================================================================
//function : Smooth
@ -3886,6 +3890,24 @@ SMESH::long_array* SMESH_MeshEditor_i::FindElementsByPoint(CORBA::Double x,
return res._retn();
}
//=======================================================================
//function : GetPointState
//purpose : Return point state in a closed 2D mesh in terms of TopAbs_State enumeration.
// TopAbs_UNKNOWN state means that either mesh is wrong or the analysis fails.
//=======================================================================
CORBA::Short SMESH_MeshEditor_i::GetPointState(CORBA::Double x,
CORBA::Double y,
CORBA::Double z)
{
theSearchersDeleter.Set( myMesh );
if ( !theElementSearcher ) {
::SMESH_MeshEditor anEditor( myMesh );
theElementSearcher = anEditor.GetElementSearcher();
}
return CORBA::Short( theElementSearcher->GetPointState( gp_Pnt( x,y,z )));
}
//=======================================================================
//function : convError
//purpose :

View File

@ -137,6 +137,8 @@ public:
CORBA::Boolean Diag13);
CORBA::Long BestSplit (CORBA::Long IDOfQuad,
SMESH::NumericalFunctor_ptr Criterion);
void SplitVolumesIntoTetra (SMESH::SMESH_IDSource_ptr elems,
CORBA::Short methodFlags);
CORBA::Boolean Smooth(const SMESH::long_array & IDsOfElements,
const SMESH::long_array & IDsOfFixedNodes,
@ -463,7 +465,6 @@ public:
CORBA::Double z);
/*!
* Return elements of given type where the given point is IN or ON.
*
* 'ALL' type means elements of any type excluding nodes
*/
SMESH::long_array* FindElementsByPoint(CORBA::Double x,
@ -471,6 +472,11 @@ public:
CORBA::Double z,
SMESH::ElementType type);
/*!
* Return point state in a closed 2D mesh in terms of TopAbs_State enumeration.
* TopAbs_UNKNOWN state means that either mesh is wrong or the analysis fails.
*/
CORBA::Short GetPointState(CORBA::Double x, CORBA::Double y, CORBA::Double z);
SMESH::SMESH_MeshEditor::Sew_Error
SewFreeBorders(CORBA::Long FirstNodeID1,