mirror of
https://git.salome-platform.org/gitpub/modules/smesh.git
synced 2025-01-19 06:40:37 +05:00
Issue 0020947: EDF 1467 SMESH: Modify the formula to calculate Aspect Ratio on quadrangles
This commit is contained in:
parent
25b69822a1
commit
f0f625f609
BIN
doc/salome/gui/SMESH/images/formula5.png
Normal file
BIN
doc/salome/gui/SMESH/images/formula5.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 5.1 KiB |
@ -13,10 +13,10 @@ nodes is calculated by the formula:
|
||||
|
||||
\image html formula4.png
|
||||
|
||||
- The <b>Aspect Ratio</b> of a \b quadrangle 2D element consisting of
|
||||
4 nodes is the worst (i.e. the greatest) value from all triangles
|
||||
which can be built taking three nodes of the quadrangle. There are
|
||||
four triangles to consider:
|
||||
- The <b>Aspect Ratio</b> of a \b quadrangle 2D element consisting of 4
|
||||
nodes is calculated by the formula:
|
||||
|
||||
\image html formula5.png
|
||||
|
||||
\image html image138.gif
|
||||
|
||||
|
@ -465,46 +465,92 @@ double AspectRatio::GetValue( const TSequenceOfXYZ& P )
|
||||
return alfa * maxLen * half_perimeter / anArea;
|
||||
}
|
||||
else if( nbNodes == 4 ) { // quadrangle
|
||||
// return aspect ratio of the worst triange which can be built
|
||||
// Compute lengths of the sides
|
||||
std::vector< double > aLen (4);
|
||||
aLen[0] = getDistance( P(1), P(2) );
|
||||
aLen[1] = getDistance( P(2), P(3) );
|
||||
aLen[2] = getDistance( P(3), P(4) );
|
||||
aLen[3] = getDistance( P(4), P(1) );
|
||||
// Compute lengths of the diagonals
|
||||
std::vector< double > aDia (2);
|
||||
aDia[0] = getDistance( P(1), P(3) );
|
||||
aDia[1] = getDistance( P(2), P(4) );
|
||||
// Compute areas of all triangles which can be built
|
||||
// taking three nodes of the quadrangle
|
||||
TSequenceOfXYZ triaPnts(3);
|
||||
// triangle on nodes 1 3 2
|
||||
triaPnts(1) = P(1);
|
||||
triaPnts(2) = P(3);
|
||||
triaPnts(3) = P(2);
|
||||
double ar = GetValue( triaPnts );
|
||||
// triangle on nodes 1 3 4
|
||||
triaPnts(3) = P(4);
|
||||
ar = Max ( ar, GetValue( triaPnts ));
|
||||
// triangle on nodes 1 2 4
|
||||
triaPnts(2) = P(2);
|
||||
ar = Max ( ar, GetValue( triaPnts ));
|
||||
// triangle on nodes 3 2 4
|
||||
triaPnts(1) = P(3);
|
||||
ar = Max ( ar, GetValue( triaPnts ));
|
||||
|
||||
return ar;
|
||||
std::vector< double > anArea (4);
|
||||
anArea[0] = getArea( P(1), P(2), P(3) );
|
||||
anArea[1] = getArea( P(1), P(2), P(4) );
|
||||
anArea[2] = getArea( P(1), P(3), P(4) );
|
||||
anArea[3] = getArea( P(2), P(3), P(4) );
|
||||
// Q = alpha * L * C1 / C2, where
|
||||
//
|
||||
// alpha = sqrt( 1/32 )
|
||||
// L = max( L1, L2, L3, L4, D1, D2 )
|
||||
// C1 = sqrt( ( L1^2 + L1^2 + L1^2 + L1^2 ) / 4 )
|
||||
// C2 = min( S1, S2, S3, S4 )
|
||||
// Li - lengths of the edges
|
||||
// Di - lengths of the diagonals
|
||||
// Si - areas of the triangles
|
||||
const double alpha = sqrt( 1 / 32. );
|
||||
double L = Max( aLen[ 0 ],
|
||||
Max( aLen[ 1 ],
|
||||
Max( aLen[ 2 ],
|
||||
Max( aLen[ 3 ],
|
||||
Max( aDia[ 0 ], aDia[ 1 ] ) ) ) ) );
|
||||
double C1 = sqrt( ( aLen[0] * aLen[0] +
|
||||
aLen[1] * aLen[1] +
|
||||
aLen[2] * aLen[2] +
|
||||
aLen[3] * aLen[3] ) / 4. );
|
||||
double C2 = Min( anArea[ 0 ],
|
||||
Min( anArea[ 1 ],
|
||||
Min( anArea[ 2 ], anArea[ 3 ] ) ) );
|
||||
if ( C2 <= Precision::Confusion() )
|
||||
return 0.;
|
||||
return alpha * L * C1 / C2;
|
||||
}
|
||||
else if( nbNodes == 8 ){ // nbNodes==8 - quadratic quadrangle
|
||||
// return aspect ratio of the worst triange which can be built
|
||||
// Compute lengths of the sides
|
||||
std::vector< double > aLen (4);
|
||||
aLen[0] = getDistance( P(1), P(3) );
|
||||
aLen[1] = getDistance( P(3), P(5) );
|
||||
aLen[2] = getDistance( P(5), P(7) );
|
||||
aLen[3] = getDistance( P(7), P(1) );
|
||||
// Compute lengths of the diagonals
|
||||
std::vector< double > aDia (2);
|
||||
aDia[0] = getDistance( P(1), P(5) );
|
||||
aDia[1] = getDistance( P(3), P(7) );
|
||||
// Compute areas of all triangles which can be built
|
||||
// taking three nodes of the quadrangle
|
||||
TSequenceOfXYZ triaPnts(3);
|
||||
// triangle on nodes 1 3 2
|
||||
triaPnts(1) = P(1);
|
||||
triaPnts(2) = P(5);
|
||||
triaPnts(3) = P(3);
|
||||
double ar = GetValue( triaPnts );
|
||||
// triangle on nodes 1 3 4
|
||||
triaPnts(3) = P(7);
|
||||
ar = Max ( ar, GetValue( triaPnts ));
|
||||
// triangle on nodes 1 2 4
|
||||
triaPnts(2) = P(3);
|
||||
ar = Max ( ar, GetValue( triaPnts ));
|
||||
// triangle on nodes 3 2 4
|
||||
triaPnts(1) = P(5);
|
||||
ar = Max ( ar, GetValue( triaPnts ));
|
||||
|
||||
return ar;
|
||||
std::vector< double > anArea (4);
|
||||
anArea[0] = getArea( P(1), P(3), P(5) );
|
||||
anArea[1] = getArea( P(1), P(3), P(7) );
|
||||
anArea[2] = getArea( P(1), P(5), P(7) );
|
||||
anArea[3] = getArea( P(3), P(5), P(7) );
|
||||
// Q = alpha * L * C1 / C2, where
|
||||
//
|
||||
// alpha = sqrt( 1/32 )
|
||||
// L = max( L1, L2, L3, L4, D1, D2 )
|
||||
// C1 = sqrt( ( L1^2 + L1^2 + L1^2 + L1^2 ) / 4 )
|
||||
// C2 = min( S1, S2, S3, S4 )
|
||||
// Li - lengths of the edges
|
||||
// Di - lengths of the diagonals
|
||||
// Si - areas of the triangles
|
||||
const double alpha = sqrt( 1 / 32. );
|
||||
double L = Max( aLen[ 0 ],
|
||||
Max( aLen[ 1 ],
|
||||
Max( aLen[ 2 ],
|
||||
Max( aLen[ 3 ],
|
||||
Max( aDia[ 0 ], aDia[ 1 ] ) ) ) ) );
|
||||
double C1 = sqrt( ( aLen[0] * aLen[0] +
|
||||
aLen[1] * aLen[1] +
|
||||
aLen[2] * aLen[2] +
|
||||
aLen[3] * aLen[3] ) / 4. );
|
||||
double C2 = Min( anArea[ 0 ],
|
||||
Min( anArea[ 1 ],
|
||||
Min( anArea[ 2 ], anArea[ 3 ] ) ) );
|
||||
if ( C2 <= Precision::Confusion() )
|
||||
return 0.;
|
||||
return alpha * L * C1 / C2;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user