roll back

This commit is contained in:
eap 2010-03-03 09:07:23 +00:00
parent f01d6dacd5
commit f4222ec705
2 changed files with 61 additions and 553 deletions

View File

@ -38,12 +38,11 @@
#include "SMESHDS_Group.hxx"
#include "SMESHDS_Mesh.hxx"
#include "SMESH_Algo.hxx"
#include "SMESH_subMesh.hxx"
#include "SMESH_ControlsDef.hxx"
#include "SMESH_Group.hxx"
#include "SMESH_MesherHelper.hxx"
#include "SMESH_OctreeNode.hxx"
#include "SMESH_subMesh.hxx"
#include "SMESH_Group.hxx"
#include "utilities.h"
@ -52,17 +51,11 @@
#include <BRep_Tool.hxx>
#include <ElCLib.hxx>
#include <Extrema_GenExtPS.hxx>
#include <Extrema_POnCurv.hxx>
#include <Extrema_POnSurf.hxx>
#include <GC_MakeSegment.hxx>
#include <Geom2d_Curve.hxx>
#include <GeomAPI_ExtremaCurveCurve.hxx>
#include <GeomAdaptor_Surface.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Line.hxx>
#include <Geom_Surface.hxx>
#include <IntAna_IntConicQuad.hxx>
#include <IntAna_Quadric.hxx>
#include <Precision.hxx>
#include <TColStd_ListOfInteger.hxx>
#include <TopAbs_State.hxx>
@ -82,7 +75,6 @@
#include <gp_Vec.hxx>
#include <gp_XY.hxx>
#include <gp_XYZ.hxx>
#include <math.h>
#include <map>
@ -1110,7 +1102,6 @@ bool SMESH_MeshEditor::QuadToTri (TIDSortedElemSet & theElems,
//function : BestSplit
//purpose : Find better diagonal for cutting.
//=======================================================================
int SMESH_MeshEditor::BestSplit (const SMDS_MeshElement* theQuad,
SMESH::Controls::NumericalFunctorPtr theCrit)
{
@ -1152,164 +1143,6 @@ int SMESH_MeshEditor::BestSplit (const SMDS_MeshElement* theQuad,
return -1;
}
namespace
{
// Methods of splitting volumes into tetra
const int theHexTo5[5*4] =
{
0, 1, 5, 2,
0, 4, 5, 7,
0, 3, 7, 2,
5, 6, 7, 2,
0, 2, 5, 7
};
const int theHexTo6[6*4] =
{
0, 1, 5, 2,
0, 4, 5, 7,
0, 3, 7, 2,
5, 6, 7, 2,
0, 2, 5, 7
};
const int thePyraTo2[2*4] =
{
0, 1, 2, 4,
0, 2, 3, 4
};
const int thePentaTo8[8*4] =
{
0, 1, 2, 6,
3, 5, 4, 6,
0, 3, 4, 6,
0, 4, 1, 6,
1, 4, 5, 6,
1, 5, 2, 6,
2, 5, 3, 6,
2, 3, 0, 6
};
struct TSplitMethod
{
int _nbTetra;
const int* _connectivity;
bool _addNode; // additional node is to be created
TSplitMethod( int nbTet=0, const int* conn=0, bool addNode=false)
: _nbTetra(nbTet), _connectivity(conn), _addNode(addNode) {}
};
/*!
* \brief return TSplitMethod for the given element
*/
TSplitMethod getSplitMethod( const SMDS_MeshElement* vol, const int theMethodFlags)
{
TSplitMethod method;
if ( vol->GetType() == SMDSAbs_Volume && !vol->IsPoly())
switch ( vol->NbNodes() )
{
case 8:
case 20:
if ( theMethodFlags & SMESH_MeshEditor::HEXA_TO_5 )
method = TSplitMethod( 5, theHexTo5 );
else
method = TSplitMethod( 6, theHexTo6 );
break;
case 5:
case 13:
method = TSplitMethod( 2, thePyraTo2 );
break;
case 6:
case 15:
method = TSplitMethod( 8, thePentaTo8, /*addNode=*/true );
break;
default:;
}
return method;
}
}
//=======================================================================
//function : SplitVolumesIntoTetra
//purpose : Split volumic elements into tetrahedra.
//=======================================================================
void SMESH_MeshEditor::SplitVolumesIntoTetra (const TIDSortedElemSet & theElems,
const int theMethodFlags)
{
// sdt-like iterator on coordinates of nodes of mesh element
typedef SMDS_StdIterator< TNodeXYZ, SMDS_ElemIteratorPtr > NXyzIterator;
NXyzIterator xyzEnd;
SMESH_MesherHelper helper( *GetMesh());
TIDSortedElemSet::const_iterator elem = theElems.begin();
for ( ; elem != theElems.end(); ++elem )
{
SMDSAbs_EntityType geomType = (*elem)->GetEntityType();
if ( geomType <= SMDSEntity_Quad_Tetra )
continue; // tetra or face or edge
if ( (*elem)->IsQuadratic() )
{
// add quadratic links to the helper
SMDS_VolumeTool vol( *elem );
for ( int iF = 0; iF < vol.NbFaces(); ++iF )
{
const SMDS_MeshNode** fNodes = vol.GetFaceNodes( iF );
for ( int iN = 0; iN < vol.NbFaceNodes( iF ); iN += 2)
helper.AddTLinkNode( fNodes[iF], fNodes[iF+2], fNodes[iF+1] );
}
helper.SetIsQuadratic( true );
}
else
{
helper.SetIsQuadratic( false );
}
vector<const SMDS_MeshElement* > tetras; // splits of a volume
if ( geomType == SMDSEntity_Polyhedra )
{
// Each face of a polyhedron is split into triangles and
// each of triangles and a cell barycenter form a tetrahedron.
SMDS_VolumeTool vol( *elem );
// make a node at barycenter
gp_XYZ gc = std::accumulate( NXyzIterator((*elem)->nodesIterator()), xyzEnd,gp_XYZ(0,0,0));
gc /= vol.NbNodes();
SMDS_MeshNode* gcNode = GetMeshDS()->AddNode( gc.X(), gc.Y(), gc.Z() );
for ( int iF = 0; iF < vol.NbFaces(); ++iF )
{
const SMDS_MeshNode** fNodes = vol.GetFaceNodes( iF );
int nbFNodes = vol.NbFaceNodes( iF );
int nbTria = nbFNodes - 2;
bool extFace = vol.IsFaceExternal( iF );
SMDS_MeshElement* tet;
for ( int i = 0; i < nbTria; ++i )
{
if ( extFace )
tet = helper.AddVolume( fNodes[0], fNodes[i+1], fNodes[i+2], gcNode );
else
tet = helper.AddVolume( fNodes[0], fNodes[i+2], fNodes[i+1], gcNode );
tetras.push_back( tet );
}
}
}
else
{
TSplitMethod splitMethod = getSplitMethod( *elem, theMethodFlags );
if ( splitMethod._nbTetra < 1 ) continue;
vector<const SMDS_MeshNode*> volNodes( (*elem)->begin_nodes(), (*elem)->end_nodes());
}
}
}
//=======================================================================
//function : AddToSameGroups
//purpose : add elemToAdd to the groups the elemInGroups belongs to
@ -5751,7 +5584,6 @@ namespace // Utils used in SMESH_ElementSearcherImpl::FindElementsByPoint()
ElementBndBoxTree(const SMDS_Mesh& mesh, SMDSAbs_ElementType elemType);
void getElementsNearPoint( const gp_Pnt& point, TIDSortedElemSet& foundElems);
void getElementsNearLine ( const gp_Ax1& line, TIDSortedElemSet& foundElems);
~ElementBndBoxTree();
protected:
@ -5877,31 +5709,6 @@ namespace // Utils used in SMESH_ElementSearcherImpl::FindElementsByPoint()
}
}
//================================================================================
/*!
* \brief Return elements which can be intersected by the line
*/
//================================================================================
void ElementBndBoxTree::getElementsNearLine( const gp_Ax1& line,
TIDSortedElemSet& foundElems)
{
if ( level() && getBox().IsOut( line ))
return;
if ( isLeaf() )
{
for ( int i = 0; i < _elements.size(); ++i )
if ( !_elements[i]->IsOut( line ))
foundElems.insert( _elements[i]->_element );
}
else
{
for (int i = 0; i < 8; i++)
((ElementBndBoxTree*) myChildren[i])->getElementsNearLine( line, foundElems );
}
}
//================================================================================
/*!
* \brief Construct the element box
@ -5922,78 +5729,60 @@ namespace // Utils used in SMESH_ElementSearcherImpl::FindElementsByPoint()
//=======================================================================
/*!
* \brief Implementation of search for the elements by point and
* of classification of point in 2D mesh
* \brief Implementation of search for the elements by point
*/
//=======================================================================
struct SMESH_ElementSearcherImpl: public SMESH_ElementSearcher
{
SMESHDS_Mesh* _mesh;
ElementBndBoxTree* _ebbTree;
SMESH_NodeSearcherImpl* _nodeSearcher;
SMDSAbs_ElementType _elementType;
double _tolerance;
set<const SMDS_MeshElement*> _internalFaces;
SMESHDS_Mesh* _mesh;
ElementBndBoxTree* _ebbTree;
SMESH_NodeSearcherImpl* _nodeSearcher;
SMDSAbs_ElementType _elementType;
SMESH_ElementSearcherImpl( SMESHDS_Mesh& mesh )
: _mesh(&mesh),_ebbTree(0),_nodeSearcher(0), _tolerance(-1) {}
SMESH_ElementSearcherImpl( SMESHDS_Mesh& mesh ): _mesh(&mesh),_ebbTree(0),_nodeSearcher(0) {}
~SMESH_ElementSearcherImpl()
{
if ( _ebbTree ) delete _ebbTree; _ebbTree = 0;
if ( _nodeSearcher ) delete _nodeSearcher; _nodeSearcher = 0;
}
virtual int FindElementsByPoint(const gp_Pnt& point,
SMDSAbs_ElementType type,
vector< const SMDS_MeshElement* >& foundElements);
virtual TopAbs_State GetPointState(const gp_Pnt& point);
struct TInters //!< data of intersection of the line and the mesh face
/*!
* \brief Find elements of given type where the given point is IN or ON.
* Returns nb of found elements and elements them-selves.
*
* 'ALL' type means elements of any type excluding nodes and 0D elements
*/
int FindElementsByPoint(const gp_Pnt& point,
SMDSAbs_ElementType type,
vector< const SMDS_MeshElement* >& foundElements)
{
const SMDS_MeshElement* _face;
gp_Vec _faceNorm;
bool _coincides; //!< the line lays in face plane
TInters(const SMDS_MeshElement* face, const gp_Vec& faceNorm, bool coinc=false)
: _face(face), _faceNorm( faceNorm ), _coincides( coinc ) {}
};
double getTolerance();
bool getIntersParamOnLine(const gp_Lin& line, const SMDS_MeshElement* face,
const double tolerance, double & param);
void findOuterBoundary();
bool isOuterBoundary(const SMDS_MeshElement* face) const { return !_internalFaces.count(face);}
};
foundElements.clear();
//=======================================================================
/*!
* \brief define tolerance for search
*/
//=======================================================================
double SMESH_ElementSearcherImpl::getTolerance()
{
if ( _tolerance < 0 )
{
const SMDS_MeshInfo& meshInfo = _mesh->GetMeshInfo();
_tolerance = 0;
// -----------------
// define tolerance
// -----------------
double tolerance = 0;
if ( _nodeSearcher && meshInfo.NbNodes() > 1 )
{
double boxSize = _nodeSearcher->getTree()->maxSize();
_tolerance = 1e-8 * boxSize/* / meshInfo.NbNodes()*/;
tolerance = 1e-8 * boxSize/* / meshInfo.NbNodes()*/;
}
else if ( _ebbTree && meshInfo.NbElements() > 0 )
{
double boxSize = _ebbTree->maxSize();
_tolerance = 1e-8 * boxSize/* / meshInfo.NbElements()*/;
tolerance = 1e-8 * boxSize/* / meshInfo.NbElements()*/;
}
if ( _tolerance == 0 )
if ( tolerance == 0 )
{
// define tolerance by size of a most complex element
int complexType = SMDSAbs_Volume;
while ( complexType > SMDSAbs_All &&
meshInfo.NbElements( SMDSAbs_ElementType( complexType )) < 1 )
--complexType;
if ( complexType == SMDSAbs_All ) return 0; // empty mesh
if ( complexType == SMDSAbs_All ) return foundElements.size(); // empty mesh
double elemSize;
if ( complexType == int( SMDSAbs_Node ))
@ -6015,325 +5804,50 @@ double SMESH_ElementSearcherImpl::getTolerance()
elemSize = max( dist, elemSize );
}
}
_tolerance = 1e-6 * elemSize;
tolerance = 1e-6 * elemSize;
}
}
return _tolerance;
}
//================================================================================
/*!
* \brief Find intersection of the line and an edge of face and return parameter on line
*/
//================================================================================
bool SMESH_ElementSearcherImpl::getIntersParamOnLine(const gp_Lin& line,
const SMDS_MeshElement* face,
const double tol,
double & param)
{
int nbInts = 0;
param = 0;
GeomAPI_ExtremaCurveCurve anExtCC;
Handle(Geom_Curve) lineCurve = new Geom_Line( line );
int nbNodes = face->IsQuadratic() ? face->NbNodes()/2 : face->NbNodes();
for ( int i = 0; i < nbNodes && nbInts < 2; ++i )
{
GC_MakeSegment edge( SMESH_MeshEditor::TNodeXYZ( face->GetNode( i )),
SMESH_MeshEditor::TNodeXYZ( face->GetNode( (i+1)%nbNodes) ));
anExtCC.Init( lineCurve, edge);
if ( anExtCC.NbExtrema() > 0 && anExtCC.LowerDistance() <= tol)
// =================================================================================
if ( type == SMDSAbs_Node || type == SMDSAbs_0DElement )
{
Quantity_Parameter pl, pe;
anExtCC.LowerDistanceParameters( pl, pe );
param += pl;
if ( ++nbInts == 2 )
break;
}
}
if ( nbInts > 0 ) param /= nbInts;
return nbInts > 0;
}
//================================================================================
/*!
* \brief Find all faces belonging to the outer boundary of mesh
*/
//================================================================================
if ( !_nodeSearcher )
_nodeSearcher = new SMESH_NodeSearcherImpl( _mesh );
void SMESH_ElementSearcherImpl::findOuterBoundary()
{
}
const SMDS_MeshNode* closeNode = _nodeSearcher->FindClosestTo( point );
if ( !closeNode ) return foundElements.size();
//=======================================================================
/*!
* \brief Find elements of given type where the given point is IN or ON.
* Returns nb of found elements and elements them-selves.
*
* 'ALL' type means elements of any type excluding nodes and 0D elements
*/
//=======================================================================
if ( point.Distance( SMESH_MeshEditor::TNodeXYZ( closeNode )) > tolerance )
return foundElements.size(); // to far from any node
int SMESH_ElementSearcherImpl::
FindElementsByPoint(const gp_Pnt& point,
SMDSAbs_ElementType type,
vector< const SMDS_MeshElement* >& foundElements)
{
foundElements.clear();
double tolerance = getTolerance();
// =================================================================================
if ( type == SMDSAbs_Node || type == SMDSAbs_0DElement )
{
if ( !_nodeSearcher )
_nodeSearcher = new SMESH_NodeSearcherImpl( _mesh );
const SMDS_MeshNode* closeNode = _nodeSearcher->FindClosestTo( point );
if ( !closeNode ) return foundElements.size();
if ( point.Distance( SMESH_MeshEditor::TNodeXYZ( closeNode )) > tolerance )
return foundElements.size(); // to far from any node
if ( type == SMDSAbs_Node )
{
foundElements.push_back( closeNode );
}
else
{
SMDS_ElemIteratorPtr elemIt = closeNode->GetInverseElementIterator( SMDSAbs_0DElement );
while ( elemIt->more() )
foundElements.push_back( elemIt->next() );
}
}
// =================================================================================
else // elements more complex than 0D
{
if ( !_ebbTree || _elementType != type )
{
if ( _ebbTree ) delete _ebbTree;
_ebbTree = new ElementBndBoxTree( *_mesh, _elementType = type );
}
TIDSortedElemSet suspectElems;
_ebbTree->getElementsNearPoint( point, suspectElems );
TIDSortedElemSet::iterator elem = suspectElems.begin();
for ( ; elem != suspectElems.end(); ++elem )
if ( !SMESH_MeshEditor::isOut( *elem, point, tolerance ))
foundElements.push_back( *elem );
}
return foundElements.size();
}
//================================================================================
/*!
* \brief Classify the given point in the closed 2D mesh
*/
//================================================================================
TopAbs_State SMESH_ElementSearcherImpl::GetPointState(const gp_Pnt& point)
{
double tolerance = getTolerance();
if ( !_ebbTree || _elementType != SMDSAbs_Face )
{
if ( _ebbTree ) delete _ebbTree;
_ebbTree = new ElementBndBoxTree( *_mesh, _elementType = SMDSAbs_Face );
}
// algo: analyse transition of a line starting at the point through mesh boundary;
// try several lines, if none of attemps gives a clear answer, we give up as the
// task can be too complex including internal boundaries, concave surfaces etc.
const int nbAxes = 3;
gp_Dir axisDir[ nbAxes ] = { gp::DX(), gp::DY(), gp::DZ() };
map< double, TInters > paramOnLine2TInters[ nbAxes ];
list< TInters > tangentInters[ nbAxes ]; // of faces whose plane includes the line
multimap< int, int > nbInt2Axis; // to find the simplest case
for ( int axis = 0; axis < nbAxes; ++axis )
{
gp_Ax1 lineAxis( point, axisDir[axis]);
gp_Lin line ( lineAxis );
TIDSortedElemSet suspectFaces; // faces possibly intersecting the line
_ebbTree->getElementsNearLine( lineAxis, suspectFaces );
// Intersect faces with the line
map< double, TInters > & u2inters = paramOnLine2TInters[ axis ];
TIDSortedElemSet::iterator face = suspectFaces.begin();
for ( ; face != suspectFaces.end(); ++face )
{
// get face plane
gp_XYZ fNorm;
if ( !SMESH_Algo::FaceNormal( *face, fNorm, /*normalized=*/false)) continue;
gp_Pln facePlane( SMESH_MeshEditor::TNodeXYZ( (*face)->GetNode(0)), fNorm );
// intersection
IntAna_IntConicQuad intersection( line, IntAna_Quadric( facePlane ));
if ( !intersection.IsDone() )
continue;
if ( intersection.IsInQuadric() )
if ( type == SMDSAbs_Node )
{
tangentInters[ axis ].push_back( TInters( *face, fNorm, true ));
foundElements.push_back( closeNode );
}
else if ( ! intersection.IsParallel() && intersection.NbPoints() > 0 )
else
{
gp_Pnt intersectionPoint = intersection.Point(1);
if ( !SMESH_MeshEditor::isOut( *face, intersectionPoint, tolerance ))
u2inters.insert(make_pair( intersection.ParamOnConic(1), TInters( *face, fNorm )));
SMDS_ElemIteratorPtr elemIt = closeNode->GetInverseElementIterator( SMDSAbs_0DElement );
while ( elemIt->more() )
foundElements.push_back( elemIt->next() );
}
}
// Analyse intersections roughly
int nbInter = u2inters.size();
if ( nbInter == 0 )
return TopAbs_OUT;
double f = u2inters.begin()->first, l = u2inters.rbegin()->first;
if ( nbInter == 1 )
return fabs( f ) < tolerance ? TopAbs_ON : TopAbs_UNKNOWN;
if ( fabs( f ) < tolerance || fabs( l ) < tolerance )
return TopAbs_ON;
if ( (f<0) == (l<0) )
return TopAbs_OUT;
int nbIntBeforePoint = std::distance( u2inters.begin(), u2inters.lower_bound(0));
int nbIntAfterPoint = nbInter - nbIntBeforePoint;
if ( nbIntBeforePoint == 1 || nbIntAfterPoint == 1 )
return TopAbs_IN;
nbInt2Axis.insert( make_pair( min( nbIntBeforePoint, nbIntAfterPoint ), axis ));
} // three attempts - loop on CS axes
// Analyse intersections thoroughly
// We make two loops, on the first one we correctly exclude touching intersections,
// on the second, we additionally just throw away intersections with small angles
for ( int angleCheck = 0; angleCheck < 2; ++angleCheck )
{
multimap< int, int >::const_iterator nb_axis = nbInt2Axis.begin();
for ( ; nb_axis != nbInt2Axis.end(); ++nb_axis )
// =================================================================================
else // elements more complex than 0D
{
int axis = nb_axis->second;
map< double, TInters > & u2inters = paramOnLine2TInters[ axis ];
gp_Ax1 lineAxis( point, axisDir[axis]);
gp_Lin line ( lineAxis );
// add tangent intersections to u2inters
double param;
list< TInters >::const_iterator tgtInt = tangentInters[ axis ].begin();
for ( ; tgtInt != tangentInters[ axis ].end(); ++tgtInt )
if ( getIntersParamOnLine( line, tgtInt->_face, tolerance, param ))
u2inters.insert(make_pair( param, *tgtInt ));
tangentInters[ axis ].clear();
// Count intersections before and after the point excluding touching ones.
int nbIntBeforePoint = 0, nbIntAfterPoint = 0;
double f = numeric_limits<double>::max(), l = -numeric_limits<double>::max();
map< double, TInters >::iterator u_int2 = u2inters.begin(), u_int1 = u_int2++;
bool ok = ! u_int1->second._coincides;
while ( ok && u_int1 != u2inters.end() )
if ( !_ebbTree || _elementType != type )
{
// skip intersections at the same point (if line pass through edge or node)
int nbSamePnt = 0;
double u = u_int1->first;
while ( u_int2 != u2inters.end() && fabs( u_int2->first - u ) < tolerance )
{
++nbSamePnt;
++u_int2;
}
// skip tangent intersections
int nbTgt = 0;
const SMDS_MeshElement* prevFace = u_int1->second._face;
while ( ok && u_int2->second._coincides )
{
if ( SMESH_Algo::GetCommonNodes(prevFace , u_int2->second._face).empty() )
ok = false;
else
{
nbTgt++;
u_int2++;
ok = ( u_int2 != u2inters.end() );
}
}
if ( !ok ) break;
// skip intersections at the same point after tangent intersections
if ( nbTgt > 0 )
{
double u = u_int2->first;
++u_int2;
while ( u_int2 != u2inters.end() && fabs( u_int2->first - u ) < tolerance )
{
++nbSamePnt;
++u_int2;
}
}
bool touchingInt = false;
if ( nbSamePnt + nbTgt > 0 )
{
double minDot = numeric_limits<double>::max(), maxDot = -numeric_limits<double>::max();
map< double, TInters >::iterator u_int = u_int1;
for ( ; u_int != u_int2; ++u_int )
{
if ( u_int->second._coincides ) continue;
double dot = u_int->second._faceNorm * line.Direction();
if ( dot > maxDot ) maxDot = dot;
if ( dot < minDot ) minDot = dot;
}
touchingInt = ( minDot*maxDot < 0 );
}
// throw away intersection with lower angles
if ( !touchingInt && angleCheck )
{
const double angTol = 2 * Standard_PI180, normAng = Standard_PI / 2;
double angle = u_int1->second._faceNorm.Angle( line.Direction() );
touchingInt = ( fabs( angle - normAng ) < angTol );
}
if ( !touchingInt )
{
if ( u < 0 )
++nbIntBeforePoint;
else
++nbIntAfterPoint;
if ( u < f ) f = u;
if ( u > l ) l = u;
}
u_int1 = u_int2++; // to next intersection
} // loop on intersections with one line
if ( ok )
{
if ( nbIntBeforePoint == 0 || nbIntAfterPoint == 0)
return TopAbs_OUT;
if ( nbIntBeforePoint + nbIntAfterPoint == 1 )
return fabs( f ) < tolerance ? TopAbs_ON : TopAbs_UNKNOWN;
if ( nbIntBeforePoint == 1 || nbIntAfterPoint == 1 )
return fabs( f ) < tolerance ? TopAbs_ON : TopAbs_UNKNOWN;
if ( fabs( f ) < tolerance || fabs( l ) < tolerance )
return TopAbs_ON;
if ( (f<0) == (l<0) )
return TopAbs_OUT;
if ( _ebbTree ) delete _ebbTree;
_ebbTree = new ElementBndBoxTree( *_mesh, _elementType = type );
}
} // loop on intersections of the tree lines - thorough analysis
} // two attempts - with and w/o angleCheck
return TopAbs_UNKNOWN;
}
TIDSortedElemSet suspectElems;
_ebbTree->getElementsNearPoint( point, suspectElems );
TIDSortedElemSet::iterator elem = suspectElems.begin();
for ( ; elem != suspectElems.end(); ++elem )
if ( !SMESH_MeshEditor::isOut( *elem, point, tolerance ))
foundElements.push_back( *elem );
}
return foundElements.size();
}
}; // struct SMESH_ElementSearcherImpl
//=======================================================================
/*!
@ -9837,3 +9351,5 @@ bool SMESH_MeshEditor::Make2DMeshFrom3D()
}
return res;
}

View File

@ -78,7 +78,6 @@ struct SMESH_NodeSearcher
/*!
* \brief Find elements of given type where the given point is IN or ON.
* Returns nb of found elements and elements them-selves.
* Another task is to find out if the given point is out of closed 2D mesh.
*
* 'ALL' type means elements of any type excluding nodes and 0D elements
*/
@ -89,8 +88,6 @@ struct SMESH_ElementSearcher
virtual int FindElementsByPoint(const gp_Pnt& point,
SMDSAbs_ElementType type,
std::vector< const SMDS_MeshElement* >& foundElems)=0;
virtual TopAbs_State GetPointState(const gp_Pnt& point) = 0;
};
//=======================================================================
@ -127,7 +124,7 @@ public:
struct TNodeXYZ : public gp_XYZ
{
const SMDS_MeshNode* _node;
TNodeXYZ( const SMDS_MeshElement* e):gp_XYZ(0,0,0),_node(0) {
TNodeXYZ( const SMDS_MeshElement* e):_node(0) {
if (e) {
ASSERT( e->GetType() == SMDSAbs_Node );
_node = static_cast<const SMDS_MeshNode*>(e);
@ -224,13 +221,6 @@ public:
SMESH::Controls::NumericalFunctorPtr theCriterion);
enum SplitVolumToTetraFlags { HEXA_TO_5 = 1, HEXA_TO_6 = 2 };//!<arg of SplitVolumesIntoTetra()
/*!
* \brief Split volumic elements into tetrahedra.
*/
void SplitVolumesIntoTetra (const TIDSortedElemSet & theElems, const int theMethodFlags);
enum SmoothMethod { LAPLACIAN = 0, CENTROIDAL };
void Smooth (TIDSortedElemSet & theElements,
@ -734,3 +724,5 @@ private:
};
#endif