Compare commits

...

9 Commits

Author SHA1 Message Date
DUC ANH HOANG
4e3a6d188b Revert "Revert "[EDF31321]: Add bootsrap in smesh's dependence""
This reverts commit 156112ef20db9552d7b91e0a92d295446d13287a.
2025-01-06 14:14:56 +01:00
asozinov
6e3eeaa6b3 Regression with free nodes after 42002 refactoring
Commented again line with if condition for removing free nodes
2024-12-20 15:56:44 +00:00
DUC ANH HOANG
156112ef20 Revert "[EDF31321]: Add bootsrap in smesh's dependence"
This reverts commit f55dbc13fbec4fec0e89940f7c102c7ab54ae90d.
2024-12-20 10:36:34 +01:00
asozinov
d3b58de064 EDF 30254 - quadratic to biquadratic : several problems
For biquadratic hexa was fixed next problems:
* Volume and AspectRatio was equal 0
* Create boundary elements don't creating faces on this volume type
* Fixed problem with free nodes after convert quadratic <-> bi-quadratic
* Fixed problem when for volume with type BiQuadratic Pentahedron boundary elements for triangle side is quadratic and not bi-quadratic
* Added missed fix for negative volume
2024-12-19 15:39:00 +00:00
DUC ANH HOANG
de95b32809 Merge branch 'duc/odys_suit_integration' 2024-12-19 14:42:12 +01:00
Konstantin Leontev
9dd9f7684c [bos #43370] Swich Composite Side to Wire Discretization. Fixed when a propagation chain weren't rebuilt after changing an algorithm on father mesh. Added tests. Added a note about calling base class clear() for a child of SMDS_ElementHolder. Removed redundant output. 2024-12-16 15:05:19 +00:00
mbs
63567f57a1 [bos #43494] fixed Arithmetic1D discretization and added new error compensation function 2024-12-16 13:51:17 +00:00
Esukhareva
d67308f4f8 bos #43483 [CEA 42969] Viscous Layers generation issue 2024-12-16 11:19:15 +00:00
DUC ANH HOANG
f55dbc13fb [EDF31321]: Add bootsrap in smesh's dependence 2024-12-16 12:04:03 +01:00
17 changed files with 522 additions and 62 deletions

View File

@ -41,6 +41,18 @@ ENDIF()
SALOME_SETUP_VERSION(9.13.0)
MESSAGE(STATUS "Building ${PROJECT_NAME_UC} ${${PROJECT_NAME_UC}_VERSION} from \"${${PROJECT_NAME_UC}_GIT_SHA1}\"")
# Find SalomeBootstrap
# ===========
SET(SALOMEBOOTSTRAP_ROOT_DIR $ENV{SALOMEBOOTSTRAP_ROOT_DIR} CACHE PATH "Path to the Salome Bootstrap")
IF(EXISTS ${SALOMEBOOTSTRAP_ROOT_DIR})
FIND_PACKAGE(SalomeBootstrap REQUIRED)
ADD_DEFINITIONS(${SALOMEBOOTSTRAP_DEFINITIONS})
INCLUDE_DIRECTORIES(${SALOMEBOOTSTRAP_INCLUDE_DIRS})
ELSE(EXISTS ${SALOMEBOOTSTRAP_ROOT_DIR})
MESSAGE(FATAL_ERROR "We absolutely need a Salome Bootstrap, please define SALOMEBOOTSTRAP_ROOT_DIR")
ENDIF(EXISTS ${SALOMEBOOTSTRAP_ROOT_DIR})
# Find KERNEL
# ===========
SET(KERNEL_ROOT_DIR $ENV{KERNEL_ROOT_DIR} CACHE PATH "Path to the Salome KERNEL")

View File

@ -1,4 +1,5 @@
.. _a1d_meshing_hypo_page:
.. |larr| unicode:: U+02190 .. LEFTWARDS ARROW
*********************
1D Meshing Hypotheses
@ -57,7 +58,7 @@ Adaptive hypothesis
Arithmetic Progression hypothesis
#################################
**Arithmetic Progression** hypothesis allows to split edges into segments with a length that changes in arithmetic progression (Lk = Lk-1 + d) beginning from a given starting length and up to a given end length.
**Arithmetic Progression** hypothesis allows to split edges into segments with a length that changes in arithmetic progression (L\ :sub:`k`\ |larr| L\ :sub:`k-1`\ + d) beginning from a given starting length and up to a given end length.
The splitting direction is defined by the orientation of the underlying geometrical edge. **Reverse Edges** list box allows specifying the edges, for which the splitting should be made in the direction opposite to their orientation. This list box is usable only if a geometry object is selected for meshing. In this case it is possible to select edges to be reversed either directly picking them in the 3D viewer or by selecting the edges or groups of edges in the Object Browser. Use
**Add** button to add the selected edges to the list.
@ -82,7 +83,7 @@ The splitting direction is defined by the orientation of the underlying geometri
Geometric Progression hypothesis
################################
**Geometric Progression** hypothesis allows splitting edges into segments with a length that changes in geometric progression (Lk = Lk-1 * d) starting from a given **Start Length** and with a given **Common Ratio**.
**Geometric Progression** hypothesis allows splitting edges into segments with a length that changes in geometric progression (L\ :sub:`k`\ |larr| L\ :sub:`k-1`\ * d) starting from a given **Start Length** and with a given **Common Ratio**.
The splitting direction is defined by the orientation of the underlying geometrical edge.
**Reverse Edges** list box allows specifying the edges, for which the splitting should be made in the direction opposite to their orientation. This list box is usable only if a geometry object is selected for meshing. In this case it is possible to select edges to be reversed either directly picking them in the 3D viewer or by selecting the edges or groups of edges in the Object Browser. Use **Add** button to add the selected edges to the list.
@ -177,7 +178,7 @@ You can set the type of node distribution for this hypothesis in the **Hypothesi
**Scale Distribution** - length of segments gradually changes depending on the **Scale Factor**, which is a ratio of the first segment length to the last segment length.
Length of segments changes in geometric progression with the common ratio (A) depending on the **Scale Factor** (S) and **Number of Segments** (N) as follows: A = S**(1/(N-1)). For an edge of length L, length of the first segment is L * (1 - A)/(1 - A**N)
Length of segments changes in geometric progression with the common ratio (A) depending on the **Scale Factor** (S) and **Number of Segments** (N) as follows: A = S\ :sup:`(1/(N-1))`\ . For an edge of length L, length of the first segment is L * (1 - A)/(1 - A\ :sup:`N`\ )
.. image:: ../images/a-nbsegments2.png
:align: center

View File

@ -1131,6 +1131,7 @@ double AspectRatio3D::GetValue( const TSequenceOfXYZ& P )
if (nbNodes==10) nbNodes=4; // quadratic tetrahedron
else if(nbNodes==13) nbNodes=5; // quadratic pyramid
else if(nbNodes==15) nbNodes=6; // quadratic pentahedron
else if(nbNodes==18) nbNodes=6; // bi-quadratic pentahedron
else if(nbNodes==20) nbNodes=8; // quadratic hexahedron
else if(nbNodes==27) nbNodes=8; // tri-quadratic hexahedron
else return aQuality;

View File

@ -266,25 +266,25 @@ static int QuadPyram_RE [5][9] = { // REVERSED -> FORWARD (EXTERNAL)
static int QuadPyram_nbN [] = { 8, 6, 6, 6, 6 };
/*
// + N4
// /|\
// 9/ | \10
// / | \
// / | \
// N3 +----+----+ N5
// | |11 |
// | | |
// | +13 | QUADRATIC
// | | | PENTAHEDRON
// 12+ | +14
// | | |
// | | |
// | + N1 |
// | / \ |
// | 6/ \7 |
// | / \ |
// |/ \|
// N0 +---------+ N2
// + N4 +
// /|\ /|\
// 9/ | \10 + | +
// / | \ / | \
// / | \ / | \
// N3 +----+----+ N5 +----+----+
// | |11 | | | |
// | | | | | | Central nodes
// | +13 | QUADRATIC | 16 + | of bi-quadratic
// | | | PENTAHEDRON | + | + | PENTAHEDRON
// 12+ | +14 + | 17 +
// | | | | 18| |
// | | | | | |
// | + N1 | | + |
// | / \ | | / \ |
// | 6/ \7 | | + + |
// | / \ | | / \ |
// |/ \| |/ \|
// N0 +---------+ N2 +---------+
// 8
*/
static int QuadPenta_F [5][9] = { // FORWARD
@ -301,6 +301,20 @@ static int QuadPenta_RE [5][9] = { // REVERSED -> EXTERNAL
{ 0, 12,3, 11,5, 14,2, 8, 0 }};
static int QuadPenta_nbN [] = { 6, 6, 8, 8, 8 };
static int BiQuadPenta_F[5][9] = { // FORWARD
{ 0, 6, 1, 7, 2, 8, 0, 0, 0 },
{ 3, 11,5, 10,4, 9, 3, 3, 3 },
{ 0, 12,3, 9, 4, 13,1, 6, 16}, //!
{ 1, 13,4, 10,5, 14,2, 7, 17}, //!
{ 0, 8, 2, 14,5, 11,3, 12,18} }; //!
static int BiQuadPenta_RE[5][9] = { // REVERSED -> EXTERNAL
{ 0, 8, 2, 7, 1, 6, 0, 0, 0 },
{ 3, 9, 4, 10,5, 11,3, 3, 3 },
{ 0, 6, 1, 13,4, 9, 3, 12,17}, //!
{ 1, 7, 2, 14,5, 10,4, 13,16}, //!
{ 0, 12,3, 11,5, 14,2, 8, 18} }; //!
static int BiQuadPenta_nbN[] = { 6, 6, 9, 9, 9 };
/*
// 13
// N5+-----+-----+N6 +-----+-----+
@ -634,6 +648,14 @@ void SMDS_VolumeTool::Inverse ()
SWAP_NODES( myVolumeNodes, 9, 11 );
SWAP_NODES( myVolumeNodes, 13, 14 );
break;
case 18:
SWAP_NODES(myVolumeNodes, 1, 2);
SWAP_NODES(myVolumeNodes, 4, 5);
SWAP_NODES(myVolumeNodes, 6, 8);
SWAP_NODES(myVolumeNodes, 9, 11);
SWAP_NODES(myVolumeNodes, 13, 14);
SWAP_NODES(myVolumeNodes, 16, 17);
break;
case 20:
SWAP_NODES( myVolumeNodes, 1, 3 );
SWAP_NODES( myVolumeNodes, 5, 7 );
@ -677,6 +699,7 @@ SMDS_VolumeTool::VolumeType SMDS_VolumeTool::GetVolumeType() const
case 10: return QUAD_TETRA;
case 13: return QUAD_PYRAM;
case 15: return QUAD_PENTA;
case 18: return QUAD_PENTA;
case 20: return QUAD_HEXA;
case 27: return QUAD_HEXA;
default: break;
@ -862,6 +885,8 @@ double SMDS_VolumeTool::GetSize() const
myVolumeNodes[ vtab[i][2] ],
myVolumeNodes[ vtab[i][3] ]);
}
if (!myVolForward && V < 0)
V *= -1;
}
return V;
}
@ -1705,6 +1730,16 @@ int SMDS_VolumeTool::GetCenterNodeIndex( int faceIndex ) const
return faceIndex + 19;
}
}
else if (myAllFacesNbNodes && myVolumeNodes.size() == 18) // element with 18 nodes
{
switch (faceIndex) {
case 2: return 15;
case 3: return 16;
case 4: return 17;
default:
return -2;
}
}
return -1;
}
@ -1727,6 +1762,7 @@ int SMDS_VolumeTool::GetOppFaceIndex( int faceIndex ) const
switch ( myVolumeNodes.size() ) {
case 6:
case 15:
case 18:
if ( faceIndex == 0 || faceIndex == 1 )
ind = 1 - faceIndex;
break;
@ -2469,6 +2505,7 @@ bool SMDS_VolumeTool::setFace( int faceIndex ) const
myMaxFaceNbNodes = sizeof(QuadPyram_F[0])/sizeof(QuadPyram_F[0][0]);
break;
case 15:
case 18:
myAllFacesNodeIndices_F = &QuadPenta_F [0][0];
//myAllFacesNodeIndices_FE = &QuadPenta_FE[0][0];
myAllFacesNodeIndices_RE = &QuadPenta_RE[0][0];
@ -2535,7 +2572,8 @@ SMDS_VolumeTool::VolumeType SMDS_VolumeTool::GetType(int nbNodes)
case 8: return HEXA;
case 10: return QUAD_TETRA;
case 13: return QUAD_PYRAM;
case 15: return QUAD_PENTA;
case 15:
case 18: return QUAD_PENTA;
case 20:
case 27: return QUAD_HEXA;
case 12: return HEX_PRISM;

View File

@ -86,6 +86,8 @@
namespace fs=boost::filesystem;
#endif
#include <unordered_set>
// maximum stored group name length in MED file
#define MAX_MED_GROUP_NAME_LENGTH 80
@ -713,6 +715,8 @@ SMESH_Mesh::AddHypothesis(const TopoDS_Shape & aSubShape,
}
}
}
ret = CheckHypothesesOnSubMeshes(subMesh, anHyp, event);
}
HasModificationsToDiscard(); // to reset _isModified flag if a mesh becomes empty
GetMeshDS()->Modified();
@ -1002,6 +1006,78 @@ SMESH_Hypothesis * SMESH_Mesh::GetHypothesis(const int anHypId) const
return anHyp;
}
//================================================================================
/*!
* \brief Iterates hypotesis for all sub-meshes of the given sub-mesh and checks
algo state with the given event. The goal is to address hypothesis those are
not directly affected by changing of an algorithm of the given sub-shape.
It is essential to rebuild propagation chains of such hypotheses, otherwise the chains
are being cleared after editing of the algorithm and never rebuilt again.
* \param subMesh - the main sub-mesh to check sub-meshes of
* \param anHyp - the hypothesis changed on the given sub-mesh, we need to skip it from checking
* \param event - the given event
* \retval SMESH_Hypothesis::Hypothesis_Status - HYP_OK if no errors found, otherwise the most severe error
*/
//================================================================================
SMESH_Hypothesis::Hypothesis_Status SMESH_Mesh::CheckHypothesesOnSubMeshes(
SMESH_subMesh* subMesh,
const SMESH_Hypothesis* anHyp,
const SMESH_subMesh::algo_event event) const
{
SMESH_Hypothesis::Hypothesis_Status ret = SMESH_Hypothesis::Hypothesis_Status::HYP_OK;
// Cache the processed hypotheses for performance reasons.
// Given hypothesis is already processed, so should be skipped.
std::unordered_set<const SMESH_Hypothesis*> processedHypotheses = { anHyp };
// Look through sub-meshes of the given sub-mesh
SMESH_subMeshIteratorPtr smIt = subMesh->getDependsOnIterator(false, false);
while (smIt->more())
{
const SMESH_subMesh* sm = smIt->next();
const SMESH_Algo* algo = sm->GetAlgo();
if (!algo)
continue;
const SMESH_HypoFilter* hypoKind = algo->GetCompatibleHypoFilter(false);
if (!hypoKind)
continue;
std::list <const SMESHDS_Hypothesis*> usedHyps;
if (!GetHypotheses(sm, *hypoKind, usedHyps, true))
continue;
// Look through hypotheses used by algo
for (const auto* usedHyp : usedHyps)
{
SMESH_Hypothesis* hyp = GetHypothesis(usedHyp->GetID());
if (hyp == anHyp)
continue;
if (processedHypotheses.find(hyp) != processedHypotheses.end())
continue;
processedHypotheses.insert(hyp); // Cache the hypothesis pointer
// Hypoteses restricted by Propagation only because of failed tests.
// It's ok for now, because this method was created to fix propagation issue.
// It should be investigated more if we find similar issues with other hypotheses.
const char* hypName = hyp->GetName();
if (strcmp(hypName, "Propagation") != 0)
continue;
const SMESH_Hypothesis::Hypothesis_Status ret2 = subMesh->SubMeshesAlgoStateEngine(event, hyp, true);
if (ret2 > ret)
{
ret = ret2;
break;
}
}
}
return ret;
}
//=============================================================================
/*!
*

View File

@ -175,6 +175,11 @@ class SMESH_EXPORT SMESH_Mesh
SMESH_Hypothesis * GetHypothesis(const int aHypID) const;
SMESH_Hypothesis::Hypothesis_Status CheckHypothesesOnSubMeshes(
SMESH_subMesh* subMesh,
const SMESH_Hypothesis* anHyp,
const SMESH_subMesh::algo_event event) const;
const std::list<SMESHDS_Command*> & GetLog();
void ClearLog();

View File

@ -9483,7 +9483,8 @@ void SMESH_MeshEditor::ConvertToQuadratic(const bool theForce3d, const bool theT
case SMDSEntity_TriQuad_Hexa:
NewVolume = aHelper.AddVolume(nodes[0], nodes[1], nodes[2], nodes[3],
nodes[4], nodes[5], nodes[6], nodes[7], id, theForce3d);
for ( size_t i = 20; i < nodes.size(); ++i ) // rm central nodes
for (size_t i = 8; i < nodes.size(); ++i) // rm central nodes from each edge
//for (size_t i = 20; i < nodes.size(); ++i) // rm central nodes from each edge
if ( nodes[i]->NbInverseElements() == 0 )
GetMeshDS()->RemoveFreeNode( nodes[i], /*sm=*/0, /*fromGroups=*/true );
break;
@ -9496,7 +9497,9 @@ void SMESH_MeshEditor::ConvertToQuadratic(const bool theForce3d, const bool theT
case SMDSEntity_BiQuad_Penta:
NewVolume = aHelper.AddVolume(nodes[0], nodes[1], nodes[2],
nodes[3], nodes[4], nodes[5], id, theForce3d);
for ( size_t i = 15; i < nodes.size(); ++i ) // rm central nodes
for (size_t i = 6; i < nodes.size(); ++i) // rm central nodes
//for ( size_t i = 15; i < nodes.size(); ++i ) // rm central nodes
if ( nodes[i]->NbInverseElements() == 0 )
GetMeshDS()->RemoveFreeNode( nodes[i], /*sm=*/0, /*fromGroups=*/true );
break;
@ -13037,15 +13040,58 @@ int SMESH_MeshEditor::MakeBoundaryMesh(const TIDSortedElemSet& elements,
if (iQuad)
for ( inode = 1; inode < nbFaceNodes; inode += 2)
nodes.push_back( nn[inode] ); // add medium nodes
int iCenter = vTool.GetCenterNodeIndex(iface); // for HEX27
if ( iCenter > 0 )
nodes.push_back( vTool.GetNodes()[ iCenter ] );
if (const SMDS_MeshElement * f = aMesh->FindElement( nodes,
SMDSAbs_Face, /*noMedium=*/false ))
presentBndElems.push_back( f );
// for triangle face for Penta18 (BiQuadratic pentahedron) return -2
// because we haven't center node on triangle side, but it's need for create biquadratic face
int iCenter = vTool.GetCenterNodeIndex(iface); // for HEX27
// for triangle faces for Penta18 (BiQuadratic pentahedron) firstly check, exist face or not
// if not - create node in middle face
if (iCenter == -2)
{
SMDS_ElemIteratorPtr itF = nodes[0]->GetInverseElementIterator(SMDSAbs_Face);
bool isFound = false;
while (itF->more())
{
const SMDS_MeshElement* e = itF->next();
int nbNodesToCheck = e->NbNodes();
if (nbNodesToCheck == (int)nodes.size() + 1)
{
for (size_t i = 1; e && i < nodes.size() - 1; ++i)
{
int nodeIndex = e->GetNodeIndex(nodes[i]);
if (nodeIndex < 0 || nodeIndex >= nbNodesToCheck)
e = 0;
}
if (e)
{
presentBndElems.push_back(e);
isFound = true;
}
}
}
if (!isFound)
{
SMESH_MesherHelper aHelper(*myMesh);
double bc[3];
vTool.GetFaceBaryCenter(iface, bc[0], bc[1], bc[2]);
auto aNodeC = aHelper.AddNode(bc[0], bc[1], bc[2]);
nodes.push_back(aNodeC);
missingBndElems.push_back(nodes);
}
}
else
missingBndElems.push_back( nodes );
{
if (iCenter > 0)
nodes.push_back(vTool.GetNodes()[iCenter]);
if (const SMDS_MeshElement* f = aMesh->FindElement(nodes,
SMDSAbs_Face, /*noMedium=*/false))
presentBndElems.push_back(f);
else
missingBndElems.push_back(nodes);
}
if ( targetMesh != myMesh )
{

View File

@ -86,6 +86,8 @@ class SMESHDS_EXPORT SMESHDS_SubMesh : public SMDS_ElementHolder
virtual void tmpClear();
virtual void add( const SMDS_MeshElement* element );
virtual void compact() {}
// Commented out to avoid SMESH_netgen_runner_1D2D3D test failure
// virtual void clear() override { Clear(); }
private:

View File

@ -23,6 +23,7 @@ INCLUDE_DIRECTORIES(
${KERNEL_INCLUDE_DIRS}
${OpenCASCADE_INCLUDE_DIR}
${Boost_INCLUDE_DIRS}
${SALOMEBOOTSTRAP_INCLUDE_DIRS}
${PROJECT_SOURCE_DIR}/src/SMDS
)
@ -38,6 +39,7 @@ SET(_link_LIBRARIES
${OpenCASCADE_FoundationClasses_LIBRARIES}
${OpenCASCADE_ModelingData_LIBRARIES}
${Boost_LIBRARIES}
SALOMEException
SMDS
)

View File

@ -3483,7 +3483,6 @@ void SMESH_Mesh_i::onHypothesisModified(int theHypID, bool theUpdateIcons)
void SMESH_Mesh_i::SetImpl(::SMESH_Mesh * impl)
{
MESSAGE("SMESH_Mesh_i::SetImpl");
_impl = impl;
if ( _impl )
_impl->SetCallUp( new TCallUp_i(this));
@ -3497,7 +3496,6 @@ void SMESH_Mesh_i::SetImpl(::SMESH_Mesh * impl)
::SMESH_Mesh & SMESH_Mesh_i::GetImpl()
{
MESSAGE("SMESH_Mesh_i::GetImpl()");
return *_impl;
}

View File

@ -230,7 +230,7 @@ bool StdMeshers_Cartesian_3D::Compute(SMESH_Mesh & theMesh,
}
// remove free nodes
if ( /*SMESHDS_SubMesh * smDS = */meshDS->MeshElements( helper.GetSubShapeID() ))
//if ( SMESHDS_SubMesh * smDS = meshDS->MeshElements( helper.GetSubShapeID() ))
{
std::vector< const SMDS_MeshNode* > nodesToRemove;
// get intersection nodes

View File

@ -579,6 +579,14 @@ namespace {
case HAS_PROPAG_HYP: { // propag hyp on this submesh
// --------------------------------------------------------
switch ( event ) {
case SMESH_subMesh::ADD_FATHER_ALGO:
{
DBGMSG("HAS_PROPAG_HYP propagation to ADD_FATHER_ALGO " << subMesh->GetId());
// Rebuild propagation chain after an algo was added on father submesh
buildPropagationChain(subMesh);
break;
}
case SMESH_subMesh::REMOVE_HYP:
case SMESH_subMesh::REMOVE_FATHER_HYP: // remove propagation hyp
if ( isPropagHyp && !getProagationHyp( subMesh ))

View File

@ -492,6 +492,105 @@ static void compensateError(double a1, double an,
}
}
//================================================================================
/*!
* \brief adjust internal node parameters so that the last segment length == an,
* and by distributing the error for the total length of curve segments
* in relation to the target length computed from the current parameters
* \param a1 - the first segment length
* \param an - the last segment length
* \param U1 - the first edge parameter
* \param Un - the last edge parameter
* \param length - the edge length
* \param C3d - the edge curve
* \param theParams - internal node parameters to adjust
*/
//================================================================================
static void distributeError(double a1, double an,
double U1, double Un,
double length,
Adaptor3d_Curve& C3d,
list<double> & theParams)
{
// Compute the error of the total length based in the current curve parameters
double tol = Min( Precision::Confusion(), 0.01 * Min(a1, an) );
double totalLength = 0.0;
double prevParam = U1;
list<double> segLengths;
list<double>::iterator itU = theParams.begin();
for ( ; itU != theParams.end(); ++itU )
{
// Compute the curve length between two adjacent parameters and sum them up
double curLength = GCPnts_AbscissaPoint::Length(C3d, prevParam, *itU, tol);
segLengths.push_back(curLength);
totalLength += curLength;
prevParam = *itU;
}
// Calculate the error between the total length of all segments based on given parameters
// and the target length of the edge itself
double error = totalLength - length;
// Compute the sum of all internal segments (= total computed length minus the length of
// the start and end segments)
double midLength = totalLength - (a1 + an);
// We only need to distribute the error, if the current parametrization is not correct,
// and if there are multiple internal segments
smIdType nPar = theParams.size();
if ( a1 + an <= length && nPar > 1 && fabs(error) > tol )
{
// Update the length of each internal segment (start and end length are given and not changed)
double newTotalLength = 0.0;
double newLength;
double relError = error / midLength;
list<double> newSegLengths;
list<double>::iterator itL = segLengths.begin();
for ( ; itL != segLengths.end(); ++itL )
{
// Do not update, but copy the first and the last segment lengths
newLength = *itL;
if (itL != segLengths.begin() && itL != --segLengths.end())
{
newLength -= newLength * relError;
}
newSegLengths.push_back(newLength);
newTotalLength += newLength;
}
bool reverse = ( U1 > Un );
// Update the parameters of the curve based on the new lengths
double curveLength, tol2, U;
double prevU = U1;
itU = theParams.begin();
itL = newSegLengths.begin();
for ( ; itU != theParams.end(); ++itU, ++itL )
{
curveLength = (reverse ? -(*itL) : *itL);
tol2 = Min( Precision::Confusion(), fabs(curveLength) / 100. );
GCPnts_AbscissaPoint Discret( tol2, C3d, curveLength, prevU );
if ( !Discret.IsDone() )
{
return;
}
U = Discret.Parameter();
double sign = reverse ? -1 : 1;
if ( sign*U1 < sign*U && sign*U < sign*Un )
{
*itU = U;
}
else
{
*itU = (sign*U >= sign*Un ? Un : U1);
break;
}
prevU = U;
}
}
}
//================================================================================
/*!
* \brief Class used to clean mesh on edges when 0D hyp modified.
@ -1042,8 +1141,9 @@ bool StdMeshers_Regular_1D::computeInternalParameters(SMESH_Mesh & theMesh,
return error ( SMESH_Comment("Invalid segment lengths (")<<a1<<" and "<<an<<") "<<
"for an edge of length "<<theLength);
double q = ( an - a1 ) / ( 2 *theLength/( a1 + an ) - 1 );
int n = int(fabs(q) > numeric_limits<double>::min() ? ( 1+( an-a1 )/q ) : ( 1+theLength/a1 ));
// Compute first the number of segments and then the arithmetic increment based on that number
int n = static_cast<int>(2 * theLength / ( a1 + an ) + 0.5);
double q = (n > 1 ? ( an - a1 ) / (n - 1) : 0.0);
double U1 = theReverse ? l : f;
double Un = theReverse ? f : l;
@ -1054,19 +1154,23 @@ bool StdMeshers_Regular_1D::computeInternalParameters(SMESH_Mesh & theMesh,
eltSize = -eltSize;
q = -q;
}
while ( n-- > 0 && eltSize * ( Un - U1 ) > 0 ) {
for (int i=0; i<n; i++) {
// computes a point on a curve <theC3d> at the distance <eltSize>
// from the point of parameter <param>.
GCPnts_AbscissaPoint Discret( tol, theC3d, eltSize, param );
if ( !Discret.IsDone() ) break;
param = Discret.Parameter();
if ( param > f && param < l )
theParams.push_back( param );
else
break;
eltSize += q;
}
compensateError( a1, an, U1, Un, theLength, theC3d, theParams );
distributeError( a1, an, U1, Un, theLength, theC3d, theParams );
// Do not include the parameter for the start or end of an edge in the list of parameters
// NOTE: it is required to correctly distribute the error
if (fabs(theParams.front() - U1) < tol) theParams.pop_front();
if (fabs(theParams.back() - Un) < tol) theParams.pop_back();
if ( theReverse ) theParams.reverse(); // NPAL18025
return true;

View File

@ -1867,26 +1867,30 @@ bool _ViscousBuilder2D::shrink()
Geom2dAdaptor_Curve edgeCurve( pcurve, Min( uf, ul ), Max( uf, ul ));
Geom2dAdaptor_Curve seg2Curve( seg2Line );
Geom2dInt_GInter curveInt( edgeCurve, seg2Curve, 1e-7, 1e-7 );
isConvex = ( curveInt.IsDone() && !curveInt.IsEmpty() );
if ( isConvex ) {
/* convex VERTEX */
length1D = Abs( u - curveInt.Point( 1 ).ParamOnFirst() );
double maxDist2d = 2 * L2->_lEdges[ iLSeg2 ]._length2D;
isConvex = ( length1D < maxDist2d * len1dTo2dRatio );
/* |L seg2
// In the older version length2D was set to this value only inside the !convex if block
// But it seems that length2D can be set here anyway, because if not set valid value of length2D here,
// it will be calculated later using length1D, and it can be not valid in cases if length1D is too large or too small.
length2D = L2->_lEdges[iFSeg2]._length2D;
/* convex VERTEX
* L seg2
* | o---o---
* | / |
* |/ | L2
* x------x--- */
}
if ( !isConvex ) { /* concave VERTEX */ /* o-----o---
/* concave VERTEX
* o-----o---
* \ |
* \ | L2
* x--x---
* /
* L / */
length2D = L2->_lEdges[ iFSeg2 ]._length2D;
//if ( L2->_advancable ) continue;
isConvex = ( curveInt.IsDone() && !curveInt.IsEmpty() );
if ( isConvex )
{
length1D = Abs( u - curveInt.Point( 1 ).ParamOnFirst() );
length2D = Max(length2D, length1D / len1dTo2dRatio);
}
}
else // L2 is advancable but in the face adjacent by L

81
test/SMESH_algo_switch_box.py Executable file
View File

@ -0,0 +1,81 @@
# Tests that switching of algorithms back and forth does not lead to errors
import salome
salome.salome_init()
from salome.geom import geomBuilder
import SMESH
from salome.smesh import smeshBuilder
# Create a box
geompy = geomBuilder.New()
O = geompy.MakeVertex(0, 0, 0)
OX = geompy.MakeVectorDXDYDZ(1, 0, 0)
OY = geompy.MakeVectorDXDYDZ(0, 1, 0)
OZ = geompy.MakeVectorDXDYDZ(0, 0, 1)
Box_1 = geompy.MakeBoxDXDYDZ(200, 200, 200)
edge = geompy.CreateGroup(Box_1, geompy.ShapeType["EDGE"])
geompy.UnionIDs(edge, [26])
[edge] = geompy.GetExistingSubObjects(Box_1, False)
geompy.addToStudy( O, 'O' )
geompy.addToStudy( OX, 'OX' )
geompy.addToStudy( OY, 'OY' )
geompy.addToStudy( OZ, 'OZ' )
geompy.addToStudy( Box_1, 'Box_1' )
geompy.addToStudyInFather( Box_1, edge, 'edge' )
# Create a mesh from the box and a sub-mesh from an edge
smesh = smeshBuilder.New()
Mesh_1 = smesh.Mesh(Box_1,'Mesh_1')
Regular_1D = Mesh_1.Segment()
Number_of_Segments_1 = Regular_1D.NumberOfSegments(15)
Quadrangle_2D = Mesh_1.Quadrangle(algo=smeshBuilder.QUADRANGLE)
Hexa_3D = Mesh_1.Hexahedron(algo=smeshBuilder.Hexa)
edge_1 = Mesh_1.GroupOnGeom(edge,'edge',SMESH.EDGE)
Regular_1D_1 = Mesh_1.Segment(geom=edge)
Number_of_Segments_2 = Regular_1D_1.NumberOfSegments(2)
Propagation_of_1D_Hyp = Regular_1D_1.Propagation()
# Compute initial mesh
Mesh_1.Compute()
Mesh_1.CheckCompute()
Sub_mesh_1 = Regular_1D_1.GetSubMesh()
# Get the number of faces in the mesh
num_faces_before = Mesh_1.NbFaces()
print('Number of faces before switching: %d' % num_faces_before)
# Switch to composite segment algorithm and compute the mesh
status = Mesh_1.RemoveHypothesis(Regular_1D)
CompositeSegment_1D = Mesh_1.Segment(algo=smeshBuilder.COMPOSITE)
Mesh_1.AddHypothesis(CompositeSegment_1D)
isDone = Mesh_1.Compute()
Mesh_1.CheckCompute() # if propagation doesn't work it already fails here
# Switch back to regular segment algorithm and compute the mesh
status = Mesh_1.RemoveHypothesis(CompositeSegment_1D)
Mesh_1.AddHypothesis(Regular_1D)
Mesh_1.Compute()
Mesh_1.CheckCompute()
# Get the number of faces in the mesh
num_faces_after = Mesh_1.NbFaces()
print('Number of faces after switching: %d' % num_faces_after)
assert num_faces_before == num_faces_after, 'Number of faces before and after switching should be the same'
## Set names of Mesh objects
smesh.SetName(CompositeSegment_1D.GetAlgorithm(), 'CompositeSegment_1D')
smesh.SetName(Number_of_Segments_1, 'Number of Segments_1')
smesh.SetName(Mesh_1.GetMesh(), 'Mesh_1')
smesh.SetName(Number_of_Segments_2, 'Number of Segments_2')
smesh.SetName(edge_1, 'edge')
smesh.SetName(Hexa_3D.GetAlgorithm(), 'Hexa_3D')
smesh.SetName(Sub_mesh_1, 'Sub-mesh_1')
smesh.SetName(Regular_1D.GetAlgorithm(), 'Regular_1D')
smesh.SetName(Propagation_of_1D_Hyp, 'Propagation of 1D Hyp. on Opposite Edges_1')
smesh.SetName(Quadrangle_2D.GetAlgorithm(), 'Quadrangle_2D')
if salome.sg.hasDesktop():
salome.sg.updateObjBrowser()

80
test/SMESH_algo_switch_face.py Executable file
View File

@ -0,0 +1,80 @@
# Tests that switching of algorithms back and forth does not lead to errors
import salome
salome.salome_init()
from salome.geom import geomBuilder
import SMESH
from salome.smesh import smeshBuilder
# Create a simple face
geompy = geomBuilder.New()
O = geompy.MakeVertex(0, 0, 0)
OX = geompy.MakeVectorDXDYDZ(1, 0, 0)
OY = geompy.MakeVectorDXDYDZ(0, 1, 0)
OZ = geompy.MakeVectorDXDYDZ(0, 0, 1)
Face_1 = geompy.MakeFaceHW(100, 100, 1)
edge = geompy.CreateGroup(Face_1, geompy.ShapeType['EDGE'])
geompy.UnionIDs(edge, [6])
[edge] = geompy.GetExistingSubObjects(Face_1, False)
geompy.addToStudy( O, 'O' )
geompy.addToStudy( OX, 'OX' )
geompy.addToStudy( OY, 'OY' )
geompy.addToStudy( OZ, 'OZ' )
geompy.addToStudy( Face_1, 'Face_1' )
geompy.addToStudyInFather( Face_1, edge, 'edge' )
# Create a mesh from the face and a sub-mesh from an edge
smesh = smeshBuilder.New()
Mesh_1 = smesh.Mesh(Face_1,'Mesh_1')
Regular_1D = Mesh_1.Segment()
Number_of_Segments_1 = Regular_1D.NumberOfSegments(3)
Quadrangle_2D = Mesh_1.Quadrangle(algo=smeshBuilder.QUADRANGLE)
edge_1 = Mesh_1.GroupOnGeom(edge,'edge',SMESH.EDGE)
Regular_1D_1 = Mesh_1.Segment(geom=edge)
Number_of_Segments_2 = Regular_1D_1.NumberOfSegments(2)
Propagation_of_1D_Hyp = Regular_1D_1.Propagation()
# Compute initial mesh
Mesh_1.Compute()
Mesh_1.CheckCompute()
Sub_mesh_1 = Regular_1D_1.GetSubMesh()
# Get the number of faces in the mesh
num_faces_before = Mesh_1.NbFaces()
print('Number of faces before switching: %d' % num_faces_before)
# Switch to composite segment algorithm and compute the mesh
status = Mesh_1.RemoveHypothesis(Regular_1D)
CompositeSegment_1D = smesh.CreateHypothesis('CompositeSegment_1D')
Mesh_1.AddHypothesis(CompositeSegment_1D)
Mesh_1.Compute()
Mesh_1.CheckCompute()
# Switch back to regular segment algorithm and compute the mesh
status = Mesh_1.RemoveHypothesis(CompositeSegment_1D)
Mesh_1.AddHypothesis(Regular_1D)
Mesh_1.Compute()
Mesh_1.CheckCompute()
# Get the number of faces in the mesh
num_faces_after = Mesh_1.NbFaces()
print('Number of faces after switching: %d' % num_faces_after)
assert num_faces_before == num_faces_after, 'Number of faces before and after switching should be the same'
## Set names of Mesh objects
smesh.SetName(CompositeSegment_1D, 'CompositeSegment_1D')
smesh.SetName(Number_of_Segments_1, 'Number of Segments_1')
smesh.SetName(Mesh_1.GetMesh(), 'Mesh_1')
smesh.SetName(Number_of_Segments_2, 'Number of Segments_2')
smesh.SetName(edge_1, 'edge')
smesh.SetName(Sub_mesh_1, 'Sub-mesh_1')
smesh.SetName(Regular_1D.GetAlgorithm(), 'Regular_1D')
smesh.SetName(Propagation_of_1D_Hyp, 'Propagation of 1D Hyp. on Opposite Edges_1')
smesh.SetName(Quadrangle_2D.GetAlgorithm(), 'Quadrangle_2D')
if salome.sg.hasDesktop():
salome.sg.updateObjBrowser()

View File

@ -109,6 +109,8 @@ SET(GOOD_TESTS
ex31_dimGroup.py
PAL_MESH_043_2D.py
SMESH_AdvancedEditor.py
SMESH_algo_switch_box.py
SMESH_algo_switch_face.py
SMESH_blocks.py
SMESH_box.py
SMESH_BuildCompound.py