// Copyright (C) 2007-2016 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // SMESH SMESH : idl implementation based on 'SMESH' unit's calsses // File : StdMeshers_ProjectionUtils.hxx // Created : Thu Oct 26 15:37:24 2006 // Author : Edward AGAPOV (eap) // #ifndef StdMeshers_ProjectionUtils_HeaderFile #define StdMeshers_ProjectionUtils_HeaderFile #include "SMESH_StdMeshers.hxx" #include "SMDS_MeshElement.hxx" #include #include #include #include #include #include #include #include class SMDS_MeshNode; class SMESH_Algo; class SMESH_Hypothesis; class SMESH_Mesh; class SMESH_subMesh; class TopTools_IndexedDataMapOfShapeListOfShape; class TopTools_IndexedMapOfShape; class TopoDS_Shape; /*! * \brief Struct used instead of a sole TopTools_DataMapOfShapeShape to avoid * problems with bidirectional bindings */ struct StdMeshers_ShapeShapeBiDirectionMap { TopTools_DataMapOfShapeShape _map1to2, _map2to1; enum EAssocType { UNDEF, INIT_VERTEX, PROPAGATION, PARTNER, CLOSE_VERTEX, COMMON_VERTEX, FEW_EF }; EAssocType _assocType; // convention: s1 - target, s2 - source bool Bind( const TopoDS_Shape& s1, const TopoDS_Shape& s2 ) { _map1to2.Bind( s1, s2 ); return _map2to1.Bind( s2, s1 ); } bool IsBound( const TopoDS_Shape& s, const bool isShape2=false ) const { return (isShape2 ? _map2to1 : _map1to2).IsBound( s ); } bool IsEmpty() const { return _map1to2.IsEmpty(); } int Extent() const { return _map1to2.Extent(); } void Clear() { _map1to2.Clear(); _map2to1.Clear(); } const TopoDS_Shape& operator()( const TopoDS_Shape& s, const bool isShape2=false ) const { // if we get a Standard_NoSuchObject here, it means that the calling code // passes incorrect isShape2 return (isShape2 ? _map2to1 : _map1to2)( s ); } StdMeshers_ShapeShapeBiDirectionMap() : _assocType( UNDEF ) {} void SetAssocType( EAssocType type ) { if ( _assocType == UNDEF ) _assocType = type; } }; /*! * \brief Methods common to Projection algorithms */ namespace StdMeshers_ProjectionUtils { typedef StdMeshers_ShapeShapeBiDirectionMap TShapeShapeMap; typedef TopTools_IndexedDataMapOfShapeListOfShape TAncestorMap; typedef std::map TNodeNodeMap; /*! * \brief Finds transformation beween two sets of 2D points using * a least square approximation */ class TrsfFinder2D { gp_GTrsf2d _trsf; gp_XY _srcOrig; public: TrsfFinder2D(): _srcOrig(0,0) {} void Set( const gp_GTrsf2d& t ) { _trsf = t; } // it's an alternative to Solve() bool Solve( const std::vector< gp_XY >& srcPnts, const std::vector< gp_XY >& tgtPnts ); gp_XY Transform( const gp_Pnt2d& srcUV ) const; bool IsIdentity() const { return ( _trsf.Form() == gp_Identity ); } }; /*! * \brief Finds transformation beween two sets of 3D points using * a least square approximation */ class TrsfFinder3D { gp_GTrsf _trsf; gp_XYZ _srcOrig; public: TrsfFinder3D(): _srcOrig(0,0,0) {} void Set( const gp_GTrsf& t ) { _trsf = t; } // it's an alternative to Solve() bool Solve( const std::vector< gp_XYZ > & srcPnts, const std::vector< gp_XYZ > & tgtPnts ); gp_XYZ Transform( const gp_Pnt& srcP ) const; gp_XYZ TransformVec( const gp_Vec& v ) const; bool IsIdentity() const { return ( _trsf.Form() == gp_Identity ); } bool Invert(); }; /*! * \brief Looks for association of all sub-shapes of two shapes * \param theShape1 - shape 1 * \param theMesh1 - mesh built on shape 1 * \param theShape2 - shape 2 * \param theMesh2 - mesh built on shape 2 * \param theAssociation - association map to be filled that may * contain association of one or two pairs of vertices * \retval bool - true if association found */ bool FindSubShapeAssociation(const TopoDS_Shape& theShape1, SMESH_Mesh* theMesh1, const TopoDS_Shape& theShape2, SMESH_Mesh* theMesh2, TShapeShapeMap & theAssociationMap); /*! * \brief Find association of edges of faces * \param face1 - face 1 * \param VV1 - vertices of face 1 * \param face2 - face 2 * \param VV2 - vertices of face 2 associated with oned of face 1 * \param edges1 - out list of edges of face 1 * \param edges2 - out list of edges of face 2 * \param isClosenessAssoc - is association starting by VERTEX closeness * \retval int - nb of edges in an outer wire in a success case, else zero */ int FindFaceAssociation(const TopoDS_Face& face1, TopoDS_Vertex VV1[2], const TopoDS_Face& face2, TopoDS_Vertex VV2[2], std::list< TopoDS_Edge > & edges1, std::list< TopoDS_Edge > & edges2, const bool isClosenessAssoc=false); /*! * \brief Insert vertex association defined by a hypothesis into a map * \param theHyp - hypothesis * \param theAssociationMap - association map * \param theTargetShape - the shape theHyp assigned to */ void InitVertexAssociation( const SMESH_Hypothesis* theHyp, TShapeShapeMap & theAssociationMap); /*! * \brief Inserts association theShape1 <-> theShape2 to TShapeShapeMap * \param theShape1 - target shape * \param theShape2 - source shape * \param theAssociationMap - association map * \param theBidirectional - if false, inserts theShape1 -> theShape2 association * \retval bool - true if there was no association for these shapes before */ bool InsertAssociation( const TopoDS_Shape& theShape1, // target const TopoDS_Shape& theShape2, // source TShapeShapeMap & theAssociationMap); /*! * \brief Finds an edge by its vertices in a main shape of the mesh */ TopoDS_Edge GetEdgeByVertices( SMESH_Mesh* aMesh, const TopoDS_Vertex& V1, const TopoDS_Vertex& V2); /*! * \brief Return another face sharing an edge * \param edgeToFaces - data map of descendants to ancestors */ TopoDS_Face GetNextFace( const TAncestorMap& edgeToFaces, const TopoDS_Edge& edge, const TopoDS_Face& face); /*! * \brief Return other vertex of an edge */ TopoDS_Vertex GetNextVertex(const TopoDS_Edge& edge, const TopoDS_Vertex& vertex); /*! * \brief Return an oriented propagation edge * \param aMesh - mesh * \param fromEdge - start edge for propagation * \param chain - return, if provided, a propagation chain passed till * anEdge; if anEdge.IsNull() then a full propagation chain is returned * \retval pair - propagation step and found edge */ std::pair GetPropagationEdge( SMESH_Mesh* aMesh, const TopoDS_Edge& anEdge, const TopoDS_Edge& fromEdge, TopTools_IndexedMapOfShape* chain=0); /*! * \brief Find corresponding nodes on two faces * \param face1 - the first face * \param mesh1 - mesh containing elements on the first face * \param face2 - the second face * \param mesh2 - mesh containing elements on the second face * \param assocMap - map associating sub-shapes of the faces * \param nodeIn2OutMap - map containing found matching nodes * \retval bool - is a success */ bool FindMatchingNodesOnFaces( const TopoDS_Face& face1, SMESH_Mesh* mesh1, const TopoDS_Face& face2, SMESH_Mesh* mesh2, const TShapeShapeMap & assocMap, TNodeNodeMap & nodeIn2OutMap); /*! * \brief Return any sub-shape of a face belonging to the outer wire * \param face - the face * \param type - type of sub-shape to return * \retval TopoDS_Shape - the found sub-shape */ TopoDS_Shape OuterShape( const TopoDS_Face& face, TopAbs_ShapeEnum type); /*! * \brief Check that submeshis is computed and try to compute it if is not * \param sm - submesh to compute * \param iterationNb - int used to stop infinite recursive call * \retval bool - true if computed */ bool MakeComputed(SMESH_subMesh * sm, const int iterationNb = 0); /*! * \brief Returns an error message to show in case if MakeComputed( sm ) fails. */ std::string SourceNotComputedError( SMESH_subMesh * sm = 0, SMESH_Algo* projAlgo=0); /*! * \brief Set event listeners to submesh with projection algo * \param subMesh - submesh with projection algo * \param srcShape - source shape * \param srcMesh - source mesh */ void SetEventListener(SMESH_subMesh* subMesh, TopoDS_Shape srcShape, SMESH_Mesh* srcMesh); /*! * \brief Return a boundary EDGE (or all boundary EDGEs) of edgeContainer */ TopoDS_Edge GetBoundaryEdge(const TopoDS_Shape& edgeContainer, const SMESH_Mesh& mesh, std::list< TopoDS_Edge >* allBndEdges = 0 ); }; #endif