# Arithmetic Progression and Geometric Progression import salome salome.salome_init_without_session() from salome.geom import geomBuilder geompy = geomBuilder.New() from salome.smesh import smeshBuilder smesh = smeshBuilder.New() # create a box box = geompy.MakeBoxDXDYDZ(10., 10., 10.) geompy.addToStudy(box, "Box") # create a hexahedral mesh on the box hexa = smesh.Mesh(box, "Box : hexahedrical mesh") # create a Regular 1D algorithm for edges algo1D = hexa.Segment() # optionally reverse node distribution on certain edges allEdges = geompy.SubShapeAllSorted( box, geompy.ShapeType["EDGE"]) reversedEdges = [ allEdges[0], allEdges[4] ] # define "Arithmetic1D" hypothesis to cut all edges in several segments with increasing arithmetic length algo1D.Arithmetic1D(1, 4, reversedEdges) # define "Geometric Progression" hypothesis on one edge to cut this edge in segments with length increasing by 20% starting from 1 gpAlgo = hexa.Segment( allEdges[1] ) gpAlgo.GeometricProgression( 1, 1.2 ) # propagate distribution of nodes computed using "Geometric Progression" to parallel edges gpAlgo.PropagationOfDistribution() # create a quadrangle 2D algorithm for faces hexa.Quadrangle() # create a hexahedron 3D algorithm for solids hexa.Hexahedron() # compute the mesh hexa.Compute()