// SMESH SMESH : implementaion of SMESH idl descriptions // // Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org // // // // File : SMESH_Hexa_3D.cxx // Author : Paul RASCLE, EDF // Module : SMESH // $Header$ using namespace std; using namespace std; #include "SMESH_Hexa_3D.hxx" #include "SMESH_Quadrangle_2D.hxx" #include "SMESH_Gen.hxx" #include "SMESH_Mesh.hxx" #include "SMDS_MeshElement.hxx" #include "SMDS_MeshNode.hxx" #include "SMDS_FacePosition.hxx" #include #include #include #include #include #include #include #include #include #include #include #include "utilities.h" //============================================================================= /*! * */ //============================================================================= SMESH_Hexa_3D::SMESH_Hexa_3D(int hypId, int studyId, SMESH_Gen* gen) : SMESH_3D_Algo(hypId, studyId, gen) { MESSAGE("SMESH_Hexa_3D::SMESH_Hexa_3D"); _name = "Hexa_3D"; // _shapeType = TopAbs_SOLID; _shapeType = (1 << TopAbs_SHELL) | (1 << TopAbs_SOLID);// 1 bit /shape type // MESSAGE("_shapeType octal " << oct << _shapeType); for (int i=0; i<6; i++) _quads[i] = 0; } //============================================================================= /*! * */ //============================================================================= SMESH_Hexa_3D::~SMESH_Hexa_3D() { MESSAGE("SMESH_Hexa_3D::~SMESH_Hexa_3D"); } //============================================================================= /*! * */ //============================================================================= bool SMESH_Hexa_3D::CheckHypothesis(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape) { MESSAGE("SMESH_Hexa_3D::CheckHypothesis"); bool isOk = true; // nothing to check return isOk; } //============================================================================= /*! * Hexahedron mesh on hexaedron like form * -0. - shape and face mesh verification * -1. - identify faces and vertices of the "cube" * -2. - Algorithm from: * "Application de l'interpolation transfinie à la création de maillages * C0 ou G1 continus sur des triangles, quadrangles, tetraedres, pentaedres * et hexaedres déformés." * Alain PERONNET - 8 janvier 1999 */ //============================================================================= bool SMESH_Hexa_3D::Compute(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape) throw (SALOME_Exception) { MESSAGE("SMESH_Hexa_3D::Compute"); bool isOk = false; const Handle(SMESHDS_Mesh)& meshDS = aMesh.GetMeshDS(); SMESH_subMesh* theSubMesh = aMesh.GetSubMesh(aShape); //const Handle(SMESHDS_SubMesh)& subMeshDS = theSubMesh->GetSubMeshDS(); // 0. - shape and face mesh verification // 0.1 - shape must be a solid (or a shell) with 6 faces MESSAGE("---"); vector meshFaces; for (TopExp_Explorer exp(aShape,TopAbs_FACE);exp.More();exp.Next()) { SMESH_subMesh* aSubMesh = aMesh.GetSubMeshContaining(exp.Current()); ASSERT (aSubMesh); meshFaces.push_back(aSubMesh); } if (meshFaces.size() != 6) { SCRUTE(meshFaces.size()); ASSERT(0); return false; } // 0.2 - is each face meshed with Quadrangle_2D? (so, with a wire of 4 edges) MESSAGE("---"); for (int i=0; i<6; i++) { TopoDS_Shape aShape = meshFaces[i]->GetSubShape(); SMESH_Algo* algo = _gen->GetAlgo(aMesh, aShape); string algoName = algo->GetName(); if (algoName != "Quadrangle_2D") { // *** delete _quads SCRUTE(algoName); ASSERT(0); return false; } SMESH_Quadrangle_2D* quadAlgo =dynamic_cast (algo); ASSERT(quadAlgo); try { _quads[i] = quadAlgo->CheckAnd2Dcompute(aMesh, aShape); // *** to delete after usage } catch (SALOME_Exception& S_ex) { // *** delete _quads // *** throw exception ASSERT(0); } } // 1. - identify faces and vertices of the "cube" // 1.1 - ancestor maps vertex->edges in the cube MESSAGE("---"); TopTools_IndexedDataMapOfShapeListOfShape MS; TopExp::MapShapesAndAncestors(aShape, TopAbs_VERTEX, TopAbs_EDGE, MS); // 1.2 - first face is choosen as face Y=0 of the unit cube MESSAGE("---"); const TopoDS_Shape& aFace = meshFaces[0]->GetSubShape(); const TopoDS_Face& F = TopoDS::Face(aFace); // 1.3 - identify the 4 vertices of the face Y=0: V000, V100, V101, V001 MESSAGE("---"); int i = 0; TopoDS_Edge E = _quads[0]->edge[i]; //edge will be Y=0,Z=0 on unit cube double f,l; Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E,F,f,l); TopoDS_Vertex VFirst, VLast; TopExp::Vertices(E, VFirst, VLast); // corresponds to f and l bool isForward = (((l-f)*(_quads[0]->last[i] - _quads[0]->first[i])) > 0); if (isForward) { _cube.V000 = VFirst; // will be (0,0,0) on the unit cube _cube.V100 = VLast; // will be (1,0,0) on the unit cube } else { _cube.V000 = VLast; _cube.V100 = VFirst; } i = 1; E = _quads[0]->edge[i]; C2d = BRep_Tool::CurveOnSurface(E,F,f,l); TopExp::Vertices(E, VFirst, VLast); isForward = (((l-f)*(_quads[0]->last[i] - _quads[0]->first[i])) > 0); if (isForward) _cube.V101 = VLast; // will be (1,0,1) on the unit cube else _cube.V101 = VFirst; i = 2; E = _quads[0]->edge[i]; C2d = BRep_Tool::CurveOnSurface(E,F,f,l); TopExp::Vertices(E, VFirst, VLast); isForward = (((l-f)*(_quads[0]->last[i] - _quads[0]->first[i])) > 0); if (isForward) _cube.V001 = VLast; // will be (0,0,1) on the unit cube else _cube.V001 = VFirst; // 1.4 - find edge X=0, Z=0 (ancestor of V000 not in face Y=0) // - find edge X=1, Z=0 (ancestor of V100 not in face Y=0) // - find edge X=1, Z=1 (ancestor of V101 not in face Y=0) // - find edge X=0, Z=1 (ancestor of V001 not in face Y=0) MESSAGE("---"); TopoDS_Edge E_0Y0 = EdgeNotInFace(aMesh, aShape, F, _cube.V000, MS); ASSERT(! E_0Y0.IsNull()); TopoDS_Edge E_1Y0 = EdgeNotInFace(aMesh, aShape, F, _cube.V100, MS); ASSERT(! E_1Y0.IsNull()); TopoDS_Edge E_1Y1 = EdgeNotInFace(aMesh, aShape, F, _cube.V101, MS); ASSERT(! E_1Y1.IsNull()); TopoDS_Edge E_0Y1 = EdgeNotInFace(aMesh, aShape, F, _cube.V001, MS); ASSERT(! E_0Y1.IsNull()); // 1.5 - identify the 4 vertices in face Y=1: V010, V110, V111, V011 MESSAGE("---"); TopExp::Vertices(E_0Y0, VFirst, VLast); if (VFirst.IsSame(_cube.V000)) _cube.V010 = VLast; else _cube.V010 = VFirst; TopExp::Vertices(E_1Y0, VFirst, VLast); if (VFirst.IsSame(_cube.V100)) _cube.V110 = VLast; else _cube.V110 = VFirst; TopExp::Vertices(E_1Y1, VFirst, VLast); if (VFirst.IsSame(_cube.V101)) _cube.V111 = VLast; else _cube.V111 = VFirst; TopExp::Vertices(E_0Y1, VFirst, VLast); if (VFirst.IsSame(_cube.V001)) _cube.V011 = VLast; else _cube.V011 = VFirst; // 1.6 - find remaining faces given 4 vertices MESSAGE("---"); _indY0 = 0; _cube.quad_Y0 = _quads[_indY0]; _indY1 = GetFaceIndex(aMesh, aShape, meshFaces, _cube.V010,_cube.V011,_cube.V110,_cube.V111); _cube.quad_Y1 = _quads[_indY1]; _indZ0 = GetFaceIndex(aMesh, aShape, meshFaces, _cube.V000,_cube.V010,_cube.V100,_cube.V110); _cube.quad_Z0 = _quads[_indZ0]; _indZ1 = GetFaceIndex(aMesh, aShape, meshFaces, _cube.V001,_cube.V011,_cube.V101,_cube.V111); _cube.quad_Z1 = _quads[_indZ1]; _indX0 = GetFaceIndex(aMesh, aShape, meshFaces, _cube.V000,_cube.V001,_cube.V010,_cube.V011); _cube.quad_X0 = _quads[_indX0]; _indX1 = GetFaceIndex(aMesh, aShape, meshFaces, _cube.V100,_cube.V101,_cube.V110,_cube.V111); _cube.quad_X1 = _quads[_indX1]; MESSAGE("---"); // 1.7 - get convertion coefs from face 2D normalized to 3D normalized Conv2DStruct cx0; // for face X=0 Conv2DStruct cx1; // for face X=1 Conv2DStruct cy0; Conv2DStruct cy1; Conv2DStruct cz0; Conv2DStruct cz1; GetConv2DCoefs(*_cube.quad_X0, meshFaces[_indX0]->GetSubShape(), _cube.V000,_cube.V010,_cube.V011,_cube.V001, cx0); GetConv2DCoefs(*_cube.quad_X1, meshFaces[_indX1]->GetSubShape(), _cube.V100,_cube.V110,_cube.V111,_cube.V101, cx1); GetConv2DCoefs(*_cube.quad_Y0, meshFaces[_indY0]->GetSubShape(), _cube.V000,_cube.V100,_cube.V101,_cube.V001, cy0); GetConv2DCoefs(*_cube.quad_Y1, meshFaces[_indY1]->GetSubShape(), _cube.V010,_cube.V110,_cube.V111,_cube.V011, cy1); GetConv2DCoefs(*_cube.quad_Z0, meshFaces[_indZ0]->GetSubShape(), _cube.V000,_cube.V100,_cube.V110,_cube.V010, cz0); GetConv2DCoefs(*_cube.quad_Z1, meshFaces[_indZ1]->GetSubShape(), _cube.V001,_cube.V101,_cube.V111,_cube.V011, cz1); // 1.8 - create a 3D structure for normalized values MESSAGE("---"); int nbx = _cube.quad_Y0->nbPts[0]; int nby = _cube.quad_Y0->nbPts[1]; int nbz; if (cx0.a1 != 0) nbz = _cube.quad_X0->nbPts[1]; else nbz = _cube.quad_X0->nbPts[0]; //SCRUTE(nbx); //SCRUTE(nby); //SCRUTE(nbz); int nbxyz= nbx*nby*nbz; Point3DStruct* np = new Point3DStruct[nbxyz]; // 1.9 - store node indexes of faces { const TopoDS_Face& F = TopoDS::Face(meshFaces[_indX0]->GetSubShape()); const TColStd_ListOfInteger& indElt = aMesh.GetSubMesh(F)->GetSubMeshDS()->GetIDNodes(); TColStd_ListIteratorOfListOfInteger itf(indElt); faceQuadStruct* quad = _cube.quad_X0; int i=0; // j = x/face , k = y/face int nbdown = quad->nbPts[0]; int nbright = quad->nbPts[1]; for (; itf.More(); itf.Next()) { int nodeId = itf.Value(); Handle (SMDS_MeshElement) elt = meshDS->FindNode(nodeId); Handle (SMDS_MeshNode) node = meshDS->GetNode(1, elt); Handle (SMDS_FacePosition) fpos = Handle (SMDS_FacePosition)::DownCast(node->GetPosition()); double ri = fpos->GetUParameter(); double rj = fpos->GetVParameter(); int i1 = int(ri); int j1 = int(rj); int ij1 = j1*nbdown +i1; quad->uv_grid[ij1].nodeId = nodeId; } for (int i1=0; i1uv_grid[ij1].nodeId; //SCRUTE(np[ijk].nodeId); } } { const TopoDS_Face& F = TopoDS::Face(meshFaces[_indX1]->GetSubShape()); const TColStd_ListOfInteger& indElt = aMesh.GetSubMesh(F)->GetSubMeshDS()->GetIDNodes(); TColStd_ListIteratorOfListOfInteger itf(indElt); faceQuadStruct* quad = _cube.quad_X1; int i=nbx-1; // j = x/face , k = y/face int nbdown = quad->nbPts[0]; int nbright = quad->nbPts[1]; for (; itf.More(); itf.Next()) { int nodeId = itf.Value(); Handle (SMDS_MeshElement) elt = meshDS->FindNode(nodeId); Handle (SMDS_MeshNode) node = meshDS->GetNode(1, elt); Handle (SMDS_FacePosition) fpos = Handle (SMDS_FacePosition)::DownCast(node->GetPosition()); double ri = fpos->GetUParameter(); double rj = fpos->GetVParameter(); int i1 = int(ri); int j1 = int(rj); int ij1 = j1*nbdown +i1; quad->uv_grid[ij1].nodeId = nodeId; } for (int i1=0; i1uv_grid[ij1].nodeId; //SCRUTE(np[ijk].nodeId); } } { const TopoDS_Face& F = TopoDS::Face(meshFaces[_indY0]->GetSubShape()); const TColStd_ListOfInteger& indElt = aMesh.GetSubMesh(F)->GetSubMeshDS()->GetIDNodes(); TColStd_ListIteratorOfListOfInteger itf(indElt); faceQuadStruct* quad = _cube.quad_Y0; int j=0; // i = x/face , k = y/face int nbdown = quad->nbPts[0]; int nbright = quad->nbPts[1]; for (; itf.More(); itf.Next()) { int nodeId = itf.Value(); Handle (SMDS_MeshElement) elt = meshDS->FindNode(nodeId); Handle (SMDS_MeshNode) node = meshDS->GetNode(1, elt); Handle (SMDS_FacePosition) fpos = Handle (SMDS_FacePosition)::DownCast(node->GetPosition()); double ri = fpos->GetUParameter(); double rj = fpos->GetVParameter(); int i1 = int(ri); int j1 = int(rj); int ij1 = j1*nbdown +i1; quad->uv_grid[ij1].nodeId = nodeId; } for (int i1=0; i1uv_grid[ij1].nodeId; //SCRUTE(np[ijk].nodeId); } } { const TopoDS_Face& F = TopoDS::Face(meshFaces[_indY1]->GetSubShape()); const TColStd_ListOfInteger& indElt = aMesh.GetSubMesh(F)->GetSubMeshDS()->GetIDNodes(); TColStd_ListIteratorOfListOfInteger itf(indElt); faceQuadStruct* quad = _cube.quad_Y1; int j=nby-1; // i = x/face , k = y/face int nbdown = quad->nbPts[0]; int nbright = quad->nbPts[1]; for (; itf.More(); itf.Next()) { int nodeId = itf.Value(); Handle (SMDS_MeshElement) elt = meshDS->FindNode(nodeId); Handle (SMDS_MeshNode) node = meshDS->GetNode(1, elt); Handle (SMDS_FacePosition) fpos = Handle (SMDS_FacePosition)::DownCast(node->GetPosition()); double ri = fpos->GetUParameter(); double rj = fpos->GetVParameter(); int i1 = int(ri); int j1 = int(rj); int ij1 = j1*nbdown +i1; quad->uv_grid[ij1].nodeId = nodeId; } for (int i1=0; i1uv_grid[ij1].nodeId; //SCRUTE(np[ijk].nodeId); } } { const TopoDS_Face& F = TopoDS::Face(meshFaces[_indZ0]->GetSubShape()); const TColStd_ListOfInteger& indElt = aMesh.GetSubMesh(F)->GetSubMeshDS()->GetIDNodes(); TColStd_ListIteratorOfListOfInteger itf(indElt); faceQuadStruct* quad = _cube.quad_Z0; int k=0; // i = x/face , j = y/face int nbdown = quad->nbPts[0]; int nbright = quad->nbPts[1]; for (; itf.More(); itf.Next()) { int nodeId = itf.Value(); Handle (SMDS_MeshElement) elt = meshDS->FindNode(nodeId); Handle (SMDS_MeshNode) node = meshDS->GetNode(1, elt); Handle (SMDS_FacePosition) fpos = Handle (SMDS_FacePosition)::DownCast(node->GetPosition()); double ri = fpos->GetUParameter(); double rj = fpos->GetVParameter(); int i1 = int(ri); int j1 = int(rj); int ij1 = j1*nbdown +i1; quad->uv_grid[ij1].nodeId = nodeId; } for (int i1=0; i1uv_grid[ij1].nodeId; //SCRUTE(np[ijk].nodeId); } } { const TopoDS_Face& F = TopoDS::Face(meshFaces[_indZ1]->GetSubShape()); const TColStd_ListOfInteger& indElt = aMesh.GetSubMesh(F)->GetSubMeshDS()->GetIDNodes(); TColStd_ListIteratorOfListOfInteger itf(indElt); faceQuadStruct* quad = _cube.quad_Z1; int k=nbz-1; // i = x/face , j = y/face int nbdown = quad->nbPts[0]; int nbright = quad->nbPts[1]; for (; itf.More(); itf.Next()) { int nodeId = itf.Value(); Handle (SMDS_MeshElement) elt = meshDS->FindNode(nodeId); Handle (SMDS_MeshNode) node = meshDS->GetNode(1, elt); Handle (SMDS_FacePosition) fpos = Handle (SMDS_FacePosition)::DownCast(node->GetPosition()); double ri = fpos->GetUParameter(); double rj = fpos->GetVParameter(); int i1 = int(ri); int j1 = int(rj); int ij1 = j1*nbdown +i1; quad->uv_grid[ij1].nodeId = nodeId; } for (int i1=0; i1uv_grid[ij1].nodeId; //SCRUTE(np[ijk].nodeId); } } // 2.0 - for each node of the cube: // - get the 8 points 3D = 8 vertices of the cube // - get the 12 points 3D on the 12 edges of the cube // - get the 6 points 3D on the 6 faces with their ID // - compute the point 3D // - store the point 3D in SMESHDS, store its ID in 3D structure TopoDS_Shell aShell; TopExp_Explorer exp(aShape,TopAbs_SHELL); if (exp.More()) { aShell = TopoDS::Shell(exp.Current()); } else { MESSAGE("no shell..."); ASSERT(0); } MESSAGE("---"); Pt3 p000, p001, p010, p011, p100, p101, p110, p111; Pt3 px00, px01, px10, px11; Pt3 p0y0, p0y1, p1y0, p1y1; Pt3 p00z, p01z, p10z, p11z; Pt3 pxy0, pxy1, px0z, px1z, p0yz, p1yz; GetPoint(p000, 0, 0, 0, nbx, nby, nbz, np, meshDS); GetPoint(p001, 0, 0, nbz-1, nbx, nby, nbz, np, meshDS); GetPoint(p010, 0, nby-1, 0, nbx, nby, nbz, np, meshDS); GetPoint(p011, 0, nby-1, nbz-1, nbx, nby, nbz, np, meshDS); GetPoint(p100, nbx-1, 0, 0, nbx, nby, nbz, np, meshDS); GetPoint(p101, nbx-1, 0, nbz-1, nbx, nby, nbz, np, meshDS); GetPoint(p110, nbx-1, nby-1, 0, nbx, nby, nbz, np, meshDS); GetPoint(p111, nbx-1, nby-1, nbz-1, nbx, nby, nbz, np, meshDS); for (int i=1; iAddNode(X[0],X[1],X[2]); //MESSAGE("point "<FindNode(myNodeId); Handle (SMDS_MeshNode) node = meshDS->GetNode(1, elt); //meshDS->SetNodeInVolume(node, TopoDS::Solid(aShape)); meshDS->SetNodeInVolume(node, aShell); } } } //2.1 - for each node of the cube (less 3 *1 Faces): // - store hexahedron in SMESHDS for (int i=0; iAddVolume(np[n1].nodeId, np[n2].nodeId, np[n3].nodeId, np[n4].nodeId, np[n5].nodeId, np[n6].nodeId, np[n7].nodeId, np[n8].nodeId); Handle (SMDS_MeshElement) elt = meshDS->FindElement(hexa); meshDS->SetMeshElementOnShape(elt, aShell); // *** 5 tetrahedres ... verifier orientations, // mettre en coherence &vec quadrangles-> triangles // choisir afficher 1 parmi edges, face et volumes // int tetra1 = meshDS->AddVolume(np[n1].nodeId, // np[n2].nodeId, // np[n4].nodeId, // np[n5].nodeId); // int tetra2 = meshDS->AddVolume(np[n2].nodeId, // np[n3].nodeId, // np[n4].nodeId, // np[n7].nodeId); // int tetra3 = meshDS->AddVolume(np[n5].nodeId, // np[n6].nodeId, // np[n7].nodeId, // np[n2].nodeId); // int tetra4 = meshDS->AddVolume(np[n5].nodeId, // np[n7].nodeId, // np[n8].nodeId, // np[n4].nodeId); // int tetra5 = meshDS->AddVolume(np[n5].nodeId, // np[n7].nodeId, // np[n2].nodeId, // np[n4].nodeId); } return true; } //============================================================================= /*! * */ //============================================================================= void SMESH_Hexa_3D::GetPoint(Pt3 p, int i, int j, int k, int nbx, int nby, int nbz, Point3DStruct *np, const Handle(SMESHDS_Mesh)& meshDS) { int ijk = k*nbx*nby + j*nbx + i; int nodeId = np[ijk].nodeId; Handle (SMDS_MeshElement) elt = meshDS->FindNode(nodeId); Handle (SMDS_MeshNode) node = meshDS->GetNode(1, elt); p[0] = node->X(); p[1] = node->Y(); p[2] = node->Z(); //MESSAGE(" "<& meshFaces, const TopoDS_Vertex& V0, const TopoDS_Vertex& V1, const TopoDS_Vertex& V2, const TopoDS_Vertex& V3) { MESSAGE("SMESH_Hexa_3D::GetFaceIndex"); int faceIndex = -1; for (int i=1; i<6; i++) { const TopoDS_Shape& aFace = meshFaces[i]->GetSubShape(); //const TopoDS_Face& F = TopoDS::Face(aFace); TopTools_IndexedMapOfShape M; TopExp::MapShapes(aFace, TopAbs_VERTEX, M); bool verticesInShape = false; if (M.Contains(V0)) if (M.Contains(V1)) if (M.Contains(V2)) if (M.Contains(V3)) verticesInShape = true; if (verticesInShape) { faceIndex = i; break; } } ASSERT(faceIndex>0); SCRUTE(faceIndex); return faceIndex; } //============================================================================= /*! * */ //============================================================================= TopoDS_Edge SMESH_Hexa_3D::EdgeNotInFace(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape, const TopoDS_Face& aFace, const TopoDS_Vertex& aVertex, const TopTools_IndexedDataMapOfShapeListOfShape& MS) { MESSAGE("SMESH_Hexa_3D::EdgeNotInFace"); TopTools_IndexedDataMapOfShapeListOfShape MF; TopExp::MapShapesAndAncestors(aFace, TopAbs_VERTEX, TopAbs_EDGE, MF); const TopTools_ListOfShape& ancestorsInSolid = MS.FindFromKey(aVertex); const TopTools_ListOfShape& ancestorsInFace = MF.FindFromKey(aVertex); SCRUTE(ancestorsInSolid.Extent()); SCRUTE(ancestorsInFace.Extent()); ASSERT(ancestorsInSolid.Extent() == 6); // 6 (edges doublees) ASSERT(ancestorsInFace.Extent() == 2); TopoDS_Edge E; E.Nullify(); TopTools_ListIteratorOfListOfShape its(ancestorsInSolid); for ( ; its.More();its.Next()) { TopoDS_Shape ancestor = its.Value(); TopTools_ListIteratorOfListOfShape itf(ancestorsInFace); bool isInFace = false; for ( ; itf.More();itf.Next()) { TopoDS_Shape ancestorInFace = itf.Value(); if (ancestorInFace.IsSame(ancestor)) { isInFace = true; break; } } if (! isInFace) { E = TopoDS::Edge(ancestor); break; } } return E; } //============================================================================= /*! * */ //============================================================================= void SMESH_Hexa_3D::GetConv2DCoefs(const faceQuadStruct& quad, const TopoDS_Shape& aShape, const TopoDS_Vertex& V0, const TopoDS_Vertex& V1, const TopoDS_Vertex& V2, const TopoDS_Vertex& V3, Conv2DStruct& conv) { MESSAGE("SMESH_Hexa_3D::GetConv2DCoefs"); const TopoDS_Face& F = TopoDS::Face(aShape); TopoDS_Edge E = quad.edge[0]; double f,l; Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface(E,F,f,l); TopoDS_Vertex VFirst, VLast; TopExp::Vertices(E, VFirst, VLast); // corresponds to f and l bool isForward = (((l-f)*(quad.last[0] - quad.first[0])) > 0); TopoDS_Vertex VA, VB; if (isForward) { VA = VFirst; VB = VLast; } else { VA = VLast; VB = VFirst; } int a1,b1,c1,a2,b2,c2; if (VA.IsSame(V0)) if (VB.IsSame(V1)) { a1= 1; b1= 0; c1= 0; // x a2= 0; b2= 1; c2= 0; // y } else { ASSERT(VB.IsSame(V3)); a1= 0; b1= 1; c1= 0; // y a2= 1; b2= 0; c2= 0; // x } if (VA.IsSame(V1)) if (VB.IsSame(V2)) { a1= 0; b1=-1; c1= 1; // 1-y a2= 1; b2= 0; c2= 0; // x } else { ASSERT(VB.IsSame(V0)); a1=-1; b1= 0; c1= 1; // 1-x a2= 0; b2= 1; c2= 0; // y } if (VA.IsSame(V2)) if (VB.IsSame(V3)) { a1=-1; b1= 0; c1= 1; // 1-x a2= 0; b2=-1; c2= 1; // 1-y } else { ASSERT(VB.IsSame(V1)); a1= 0; b1=-1; c1= 1; // 1-y a2=-1; b2= 0; c2= 1; // 1-x } if (VA.IsSame(V3)) if (VB.IsSame(V0)) { a1= 0; b1= 1; c1= 0; // y a2=-1; b2= 0; c2= 1; // 1-x } else { ASSERT(VB.IsSame(V2)); a1= 1; b1= 0; c1= 0; // x a2= 0; b2=-1; c2= 1; // 1-y } MESSAGE("X = "<> (*this); } //============================================================================= /*! * */ //============================================================================= ostream & operator << (ostream & save, SMESH_Hexa_3D & hyp) { return save; } //============================================================================= /*! * */ //============================================================================= istream & operator >> (istream & load, SMESH_Hexa_3D & hyp) { return load; }