# -*- coding: iso-8859-1 -*-
# Copyright (C) 2007-2008 CEA/DEN, EDF R&D, OPEN CASCADE
#
# Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
# CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
#
# File : smesh.py
# Author : Francis KLOSS, OCC
# Module : SMESH
#
"""
\namespace smesh
\brief Module smesh
"""
## @defgroup l1_auxiliary Auxiliary methods and structures
## @defgroup l1_creating Creating meshes
## @{
## @defgroup l2_impexp Importing and exporting meshes
## @defgroup l2_construct Constructing meshes
## @defgroup l2_algorithms Defining Algorithms
## @{
## @defgroup l3_algos_basic Basic meshing algorithms
## @defgroup l3_algos_proj Projection Algorithms
## @defgroup l3_algos_radialp Radial Prism
## @defgroup l3_algos_segmarv Segments around Vertex
## @defgroup l3_algos_3dextr 3D extrusion meshing algorithm
## @}
## @defgroup l2_hypotheses Defining hypotheses
## @{
## @defgroup l3_hypos_1dhyps 1D Meshing Hypotheses
## @defgroup l3_hypos_2dhyps 2D Meshing Hypotheses
## @defgroup l3_hypos_maxvol Max Element Volume hypothesis
## @defgroup l3_hypos_netgen Netgen 2D and 3D hypotheses
## @defgroup l3_hypos_ghs3dh GHS3D Parameters hypothesis
## @defgroup l3_hypos_blsurf BLSURF Parameters hypothesis
## @defgroup l3_hypos_hexotic Hexotic Parameters hypothesis
## @defgroup l3_hypos_additi Additional Hypotheses
## @}
## @defgroup l2_submeshes Constructing submeshes
## @defgroup l2_compounds Building Compounds
## @defgroup l2_editing Editing Meshes
## @}
## @defgroup l1_meshinfo Mesh Information
## @defgroup l1_controls Quality controls and Filtering
## @defgroup l1_grouping Grouping elements
## @{
## @defgroup l2_grps_create Creating groups
## @defgroup l2_grps_edit Editing groups
## @defgroup l2_grps_operon Using operations on groups
## @defgroup l2_grps_delete Deleting Groups
## @}
## @defgroup l1_modifying Modifying meshes
## @{
## @defgroup l2_modif_add Adding nodes and elements
## @defgroup l2_modif_del Removing nodes and elements
## @defgroup l2_modif_edit Modifying nodes and elements
## @defgroup l2_modif_renumber Renumbering nodes and elements
## @defgroup l2_modif_trsf Transforming meshes (Translation, Rotation, Symmetry, Sewing, Merging)
## @defgroup l2_modif_movenode Moving nodes
## @defgroup l2_modif_throughp Mesh through point
## @defgroup l2_modif_invdiag Diagonal inversion of elements
## @defgroup l2_modif_unitetri Uniting triangles
## @defgroup l2_modif_changori Changing orientation of elements
## @defgroup l2_modif_cutquadr Cutting quadrangles
## @defgroup l2_modif_smooth Smoothing
## @defgroup l2_modif_extrurev Extrusion and Revolution
## @defgroup l2_modif_patterns Pattern mapping
## @defgroup l2_modif_tofromqu Convert to/from Quadratic Mesh
## @}
import salome
import geompyDC
import SMESH # This is necessary for back compatibility
from SMESH import *
import StdMeshers
import SALOME
# import NETGENPlugin module if possible
noNETGENPlugin = 0
try:
import NETGENPlugin
except ImportError:
noNETGENPlugin = 1
pass
# import GHS3DPlugin module if possible
noGHS3DPlugin = 0
try:
import GHS3DPlugin
except ImportError:
noGHS3DPlugin = 1
pass
# import GHS3DPRLPlugin module if possible
noGHS3DPRLPlugin = 0
try:
import GHS3DPRLPlugin
except ImportError:
noGHS3DPRLPlugin = 1
pass
# import HexoticPlugin module if possible
noHexoticPlugin = 0
try:
import HexoticPlugin
except ImportError:
noHexoticPlugin = 1
pass
# import BLSURFPlugin module if possible
noBLSURFPlugin = 0
try:
import BLSURFPlugin
except ImportError:
noBLSURFPlugin = 1
pass
## @addtogroup l1_auxiliary
## @{
# Types of algorithms
REGULAR = 1
PYTHON = 2
COMPOSITE = 3
SOLE = 0
SIMPLE = 1
MEFISTO = 3
NETGEN = 4
GHS3D = 5
FULL_NETGEN = 6
NETGEN_2D = 7
NETGEN_1D2D = NETGEN
NETGEN_1D2D3D = FULL_NETGEN
NETGEN_FULL = FULL_NETGEN
Hexa = 8
Hexotic = 9
BLSURF = 10
GHS3DPRL = 11
# MirrorType enumeration
POINT = SMESH_MeshEditor.POINT
AXIS = SMESH_MeshEditor.AXIS
PLANE = SMESH_MeshEditor.PLANE
# Smooth_Method enumeration
LAPLACIAN_SMOOTH = SMESH_MeshEditor.LAPLACIAN_SMOOTH
CENTROIDAL_SMOOTH = SMESH_MeshEditor.CENTROIDAL_SMOOTH
# Fineness enumeration (for NETGEN)
VeryCoarse = 0
Coarse = 1
Moderate = 2
Fine = 3
VeryFine = 4
Custom = 5
# Optimization level of GHS3D
# V3.1
None_Optimization, Light_Optimization, Medium_Optimization, Strong_Optimization = 0,1,2,3
# V4.1 (partialy redefines V3.1). Issue 0020574
None_Optimization, Light_Optimization, Standard_Optimization, StandardPlus_Optimization, Strong_Optimization = 0,1,2,3,4
# Topology treatment way of BLSURF
FromCAD, PreProcess, PreProcessPlus = 0,1,2
# Element size flag of BLSURF
DefaultSize, DefaultGeom, Custom = 0,0,1
PrecisionConfusion = 1e-07
## Converts an angle from degrees to radians
def DegreesToRadians(AngleInDegrees):
from math import pi
return AngleInDegrees * pi / 180.0
# Salome notebook variable separator
var_separator = ":"
# Parametrized substitute for PointStruct
class PointStructStr:
x = 0
y = 0
z = 0
xStr = ""
yStr = ""
zStr = ""
def __init__(self, xStr, yStr, zStr):
self.xStr = xStr
self.yStr = yStr
self.zStr = zStr
if isinstance(xStr, str) and notebook.isVariable(xStr):
self.x = notebook.get(xStr)
else:
self.x = xStr
if isinstance(yStr, str) and notebook.isVariable(yStr):
self.y = notebook.get(yStr)
else:
self.y = yStr
if isinstance(zStr, str) and notebook.isVariable(zStr):
self.z = notebook.get(zStr)
else:
self.z = zStr
# Parametrized substitute for PointStruct (with 6 parameters)
class PointStructStr6:
x1 = 0
y1 = 0
z1 = 0
x2 = 0
y2 = 0
z2 = 0
xStr1 = ""
yStr1 = ""
zStr1 = ""
xStr2 = ""
yStr2 = ""
zStr2 = ""
def __init__(self, x1Str, x2Str, y1Str, y2Str, z1Str, z2Str):
self.x1Str = x1Str
self.x2Str = x2Str
self.y1Str = y1Str
self.y2Str = y2Str
self.z1Str = z1Str
self.z2Str = z2Str
if isinstance(x1Str, str) and notebook.isVariable(x1Str):
self.x1 = notebook.get(x1Str)
else:
self.x1 = x1Str
if isinstance(x2Str, str) and notebook.isVariable(x2Str):
self.x2 = notebook.get(x2Str)
else:
self.x2 = x2Str
if isinstance(y1Str, str) and notebook.isVariable(y1Str):
self.y1 = notebook.get(y1Str)
else:
self.y1 = y1Str
if isinstance(y2Str, str) and notebook.isVariable(y2Str):
self.y2 = notebook.get(y2Str)
else:
self.y2 = y2Str
if isinstance(z1Str, str) and notebook.isVariable(z1Str):
self.z1 = notebook.get(z1Str)
else:
self.z1 = z1Str
if isinstance(z2Str, str) and notebook.isVariable(z2Str):
self.z2 = notebook.get(z2Str)
else:
self.z2 = z2Str
# Parametrized substitute for AxisStruct
class AxisStructStr:
x = 0
y = 0
z = 0
dx = 0
dy = 0
dz = 0
xStr = ""
yStr = ""
zStr = ""
dxStr = ""
dyStr = ""
dzStr = ""
def __init__(self, xStr, yStr, zStr, dxStr, dyStr, dzStr):
self.xStr = xStr
self.yStr = yStr
self.zStr = zStr
self.dxStr = dxStr
self.dyStr = dyStr
self.dzStr = dzStr
if isinstance(xStr, str) and notebook.isVariable(xStr):
self.x = notebook.get(xStr)
else:
self.x = xStr
if isinstance(yStr, str) and notebook.isVariable(yStr):
self.y = notebook.get(yStr)
else:
self.y = yStr
if isinstance(zStr, str) and notebook.isVariable(zStr):
self.z = notebook.get(zStr)
else:
self.z = zStr
if isinstance(dxStr, str) and notebook.isVariable(dxStr):
self.dx = notebook.get(dxStr)
else:
self.dx = dxStr
if isinstance(dyStr, str) and notebook.isVariable(dyStr):
self.dy = notebook.get(dyStr)
else:
self.dy = dyStr
if isinstance(dzStr, str) and notebook.isVariable(dzStr):
self.dz = notebook.get(dzStr)
else:
self.dz = dzStr
# Parametrized substitute for DirStruct
class DirStructStr:
def __init__(self, pointStruct):
self.pointStruct = pointStruct
# Returns list of variable values from salome notebook
def ParsePointStruct(Point):
Parameters = 2*var_separator
if isinstance(Point, PointStructStr):
Parameters = str(Point.xStr) + var_separator + str(Point.yStr) + var_separator + str(Point.zStr)
Point = PointStruct(Point.x, Point.y, Point.z)
return Point, Parameters
# Returns list of variable values from salome notebook
def ParseDirStruct(Dir):
Parameters = 2*var_separator
if isinstance(Dir, DirStructStr):
pntStr = Dir.pointStruct
if isinstance(pntStr, PointStructStr6):
Parameters = str(pntStr.x1Str) + var_separator + str(pntStr.x2Str) + var_separator
Parameters += str(pntStr.y1Str) + var_separator + str(pntStr.y2Str) + var_separator
Parameters += str(pntStr.z1Str) + var_separator + str(pntStr.z2Str)
Point = PointStruct(pntStr.x2 - pntStr.x1, pntStr.y2 - pntStr.y1, pntStr.z2 - pntStr.z1)
else:
Parameters = str(pntStr.xStr) + var_separator + str(pntStr.yStr) + var_separator + str(pntStr.zStr)
Point = PointStruct(pntStr.x, pntStr.y, pntStr.z)
Dir = DirStruct(Point)
return Dir, Parameters
# Returns list of variable values from salome notebook
def ParseAxisStruct(Axis):
Parameters = 5*var_separator
if isinstance(Axis, AxisStructStr):
Parameters = str(Axis.xStr) + var_separator + str(Axis.yStr) + var_separator + str(Axis.zStr) + var_separator
Parameters += str(Axis.dxStr) + var_separator + str(Axis.dyStr) + var_separator + str(Axis.dzStr)
Axis = AxisStruct(Axis.x, Axis.y, Axis.z, Axis.dx, Axis.dy, Axis.dz)
return Axis, Parameters
## Return list of variable values from salome notebook
def ParseAngles(list):
Result = []
Parameters = ""
for parameter in list:
if isinstance(parameter,str) and notebook.isVariable(parameter):
Result.append(DegreesToRadians(notebook.get(parameter)))
pass
else:
Result.append(parameter)
pass
Parameters = Parameters + str(parameter)
Parameters = Parameters + var_separator
pass
Parameters = Parameters[:len(Parameters)-1]
return Result, Parameters
def IsEqual(val1, val2, tol=PrecisionConfusion):
if abs(val1 - val2) < tol:
return True
return False
NO_NAME = "NoName"
## Gets object name
def GetName(obj):
ior = salome.orb.object_to_string(obj)
sobj = salome.myStudy.FindObjectIOR(ior)
if sobj is None:
return NO_NAME
else:
attr = sobj.FindAttribute("AttributeName")[1]
return attr.Value()
## Prints error message if a hypothesis was not assigned.
def TreatHypoStatus(status, hypName, geomName, isAlgo):
if isAlgo:
hypType = "algorithm"
else:
hypType = "hypothesis"
pass
if status == HYP_UNKNOWN_FATAL :
reason = "for unknown reason"
elif status == HYP_INCOMPATIBLE :
reason = "this hypothesis mismatches the algorithm"
elif status == HYP_NOTCONFORM :
reason = "a non-conform mesh would be built"
elif status == HYP_ALREADY_EXIST :
reason = hypType + " of the same dimension is already assigned to this shape"
elif status == HYP_BAD_DIM :
reason = hypType + " mismatches the shape"
elif status == HYP_CONCURENT :
reason = "there are concurrent hypotheses on sub-shapes"
elif status == HYP_BAD_SUBSHAPE :
reason = "the shape is neither the main one, nor its subshape, nor a valid group"
elif status == HYP_BAD_GEOMETRY:
reason = "geometry mismatches the expectation of the algorithm"
elif status == HYP_HIDDEN_ALGO:
reason = "it is hidden by an algorithm of an upper dimension, which generates elements of all dimensions"
elif status == HYP_HIDING_ALGO:
reason = "it hides algorithms of lower dimensions by generating elements of all dimensions"
elif status == HYP_NEED_SHAPE:
reason = "Algorithm can't work without shape"
else:
return
hypName = '"' + hypName + '"'
geomName= '"' + geomName+ '"'
if status < HYP_UNKNOWN_FATAL:
print hypName, "was assigned to", geomName,"but", reason
else:
print hypName, "was not assigned to",geomName,":", reason
pass
## Check meshing plugin availability
def CheckPlugin(plugin):
if plugin == NETGEN and noNETGENPlugin:
print "Warning: NETGENPlugin module unavailable"
return False
elif plugin == GHS3D and noGHS3DPlugin:
print "Warning: GHS3DPlugin module unavailable"
return False
elif plugin == GHS3DPRL and noGHS3DPRLPlugin:
print "Warning: GHS3DPRLPlugin module unavailable"
return False
elif plugin == Hexotic and noHexoticPlugin:
print "Warning: HexoticPlugin module unavailable"
return False
elif plugin == BLSURF and noBLSURFPlugin:
print "Warning: BLSURFPlugin module unavailable"
return False
return True
# end of l1_auxiliary
## @}
# All methods of this class are accessible directly from the smesh.py package.
class smeshDC(SMESH._objref_SMESH_Gen):
## Sets the current study and Geometry component
# @ingroup l1_auxiliary
def init_smesh(self,theStudy,geompyD):
self.SetCurrentStudy(theStudy,geompyD)
## Creates an empty Mesh. This mesh can have an underlying geometry.
# @param obj the Geometrical object on which the mesh is built. If not defined,
# the mesh will have no underlying geometry.
# @param name the name for the new mesh.
# @return an instance of Mesh class.
# @ingroup l2_construct
def Mesh(self, obj=0, name=0):
if isinstance(obj,str):
obj,name = name,obj
return Mesh(self,self.geompyD,obj,name)
## Returns a long value from enumeration
# Should be used for SMESH.FunctorType enumeration
# @ingroup l1_controls
def EnumToLong(self,theItem):
return theItem._v
## Gets PointStruct from vertex
# @param theVertex a GEOM object(vertex)
# @return SMESH.PointStruct
# @ingroup l1_auxiliary
def GetPointStruct(self,theVertex):
[x, y, z] = self.geompyD.PointCoordinates(theVertex)
return PointStruct(x,y,z)
## Gets DirStruct from vector
# @param theVector a GEOM object(vector)
# @return SMESH.DirStruct
# @ingroup l1_auxiliary
def GetDirStruct(self,theVector):
vertices = self.geompyD.SubShapeAll( theVector, geompyDC.ShapeType["VERTEX"] )
if(len(vertices) != 2):
print "Error: vector object is incorrect."
return None
p1 = self.geompyD.PointCoordinates(vertices[0])
p2 = self.geompyD.PointCoordinates(vertices[1])
pnt = PointStruct(p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
dirst = DirStruct(pnt)
return dirst
## Makes DirStruct from a triplet
# @param x,y,z vector components
# @return SMESH.DirStruct
# @ingroup l1_auxiliary
def MakeDirStruct(self,x,y,z):
pnt = PointStruct(x,y,z)
return DirStruct(pnt)
## Get AxisStruct from object
# @param theObj a GEOM object (line or plane)
# @return SMESH.AxisStruct
# @ingroup l1_auxiliary
def GetAxisStruct(self,theObj):
edges = self.geompyD.SubShapeAll( theObj, geompyDC.ShapeType["EDGE"] )
if len(edges) > 1:
vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geompyDC.ShapeType["VERTEX"] )
vertex3, vertex4 = self.geompyD.SubShapeAll( edges[1], geompyDC.ShapeType["VERTEX"] )
vertex1 = self.geompyD.PointCoordinates(vertex1)
vertex2 = self.geompyD.PointCoordinates(vertex2)
vertex3 = self.geompyD.PointCoordinates(vertex3)
vertex4 = self.geompyD.PointCoordinates(vertex4)
v1 = [vertex2[0]-vertex1[0], vertex2[1]-vertex1[1], vertex2[2]-vertex1[2]]
v2 = [vertex4[0]-vertex3[0], vertex4[1]-vertex3[1], vertex4[2]-vertex3[2]]
normal = [ v1[1]*v2[2]-v2[1]*v1[2], v1[2]*v2[0]-v2[2]*v1[0], v1[0]*v2[1]-v2[0]*v1[1] ]
axis = AxisStruct(vertex1[0], vertex1[1], vertex1[2], normal[0], normal[1], normal[2])
return axis
elif len(edges) == 1:
vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geompyDC.ShapeType["VERTEX"] )
p1 = self.geompyD.PointCoordinates( vertex1 )
p2 = self.geompyD.PointCoordinates( vertex2 )
axis = AxisStruct(p1[0], p1[1], p1[2], p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
return axis
return None
# From SMESH_Gen interface:
# ------------------------
## Sets the given name to the object
# @param obj the object to rename
# @param name a new object name
# @ingroup l1_auxiliary
def SetName(self, obj, name):
if isinstance( obj, Mesh ):
obj = obj.GetMesh()
elif isinstance( obj, Mesh_Algorithm ):
obj = obj.GetAlgorithm()
ior = salome.orb.object_to_string(obj)
SMESH._objref_SMESH_Gen.SetName(self, ior, name)
## Sets the current mode
# @ingroup l1_auxiliary
def SetEmbeddedMode( self,theMode ):
#self.SetEmbeddedMode(theMode)
SMESH._objref_SMESH_Gen.SetEmbeddedMode(self,theMode)
## Gets the current mode
# @ingroup l1_auxiliary
def IsEmbeddedMode(self):
#return self.IsEmbeddedMode()
return SMESH._objref_SMESH_Gen.IsEmbeddedMode(self)
## Sets the current study
# @ingroup l1_auxiliary
def SetCurrentStudy( self, theStudy, geompyD = None ):
#self.SetCurrentStudy(theStudy)
if not geompyD:
import geompy
geompyD = geompy.geom
pass
self.geompyD=geompyD
self.SetGeomEngine(geompyD)
SMESH._objref_SMESH_Gen.SetCurrentStudy(self,theStudy)
## Gets the current study
# @ingroup l1_auxiliary
def GetCurrentStudy(self):
#return self.GetCurrentStudy()
return SMESH._objref_SMESH_Gen.GetCurrentStudy(self)
## Creates a Mesh object importing data from the given UNV file
# @return an instance of Mesh class
# @ingroup l2_impexp
def CreateMeshesFromUNV( self,theFileName ):
aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromUNV(self,theFileName)
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
return aMesh
## Creates a Mesh object(s) importing data from the given MED file
# @return a list of Mesh class instances
# @ingroup l2_impexp
def CreateMeshesFromMED( self,theFileName ):
aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromMED(self,theFileName)
aMeshes = []
for iMesh in range(len(aSmeshMeshes)) :
aMesh = Mesh(self, self.geompyD, aSmeshMeshes[iMesh])
aMeshes.append(aMesh)
return aMeshes, aStatus
## Creates a Mesh object importing data from the given STL file
# @return an instance of Mesh class
# @ingroup l2_impexp
def CreateMeshesFromSTL( self, theFileName ):
aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromSTL(self,theFileName)
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
return aMesh
## From SMESH_Gen interface
# @return the list of integer values
# @ingroup l1_auxiliary
def GetSubShapesId( self, theMainObject, theListOfSubObjects ):
return SMESH._objref_SMESH_Gen.GetSubShapesId(self,theMainObject, theListOfSubObjects)
## From SMESH_Gen interface. Creates a pattern
# @return an instance of SMESH_Pattern
#
# Example of Patterns usage
# @ingroup l2_modif_patterns
def GetPattern(self):
return SMESH._objref_SMESH_Gen.GetPattern(self)
## Sets number of segments per diagonal of boundary box of geometry by which
# default segment length of appropriate 1D hypotheses is defined.
# Default value is 10
# @ingroup l1_auxiliary
def SetBoundaryBoxSegmentation(self, nbSegments):
SMESH._objref_SMESH_Gen.SetBoundaryBoxSegmentation(self,nbSegments)
## Concatenate the given meshes into one mesh.
# @return an instance of Mesh class
# @param meshes the meshes to combine into one mesh
# @param uniteIdenticalGroups if true, groups with same names are united, else they are renamed
# @param mergeNodesAndElements if true, equal nodes and elements aremerged
# @param mergeTolerance tolerance for merging nodes
# @param allGroups forces creation of groups of all elements
def Concatenate( self, meshes, uniteIdenticalGroups,
mergeNodesAndElements = False, mergeTolerance = 1e-5, allGroups = False):
mergeTolerance,Parameters = geompyDC.ParseParameters(mergeTolerance)
if allGroups:
aSmeshMesh = SMESH._objref_SMESH_Gen.ConcatenateWithGroups(
self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
else:
aSmeshMesh = SMESH._objref_SMESH_Gen.Concatenate(
self,meshes,uniteIdenticalGroups,mergeNodesAndElements,mergeTolerance)
aSmeshMesh.SetParameters(Parameters)
aMesh = Mesh(self, self.geompyD, aSmeshMesh)
return aMesh
# Filtering. Auxiliary functions:
# ------------------------------
## Creates an empty criterion
# @return SMESH.Filter.Criterion
# @ingroup l1_controls
def GetEmptyCriterion(self):
Type = self.EnumToLong(FT_Undefined)
Compare = self.EnumToLong(FT_Undefined)
Threshold = 0
ThresholdStr = ""
ThresholdID = ""
UnaryOp = self.EnumToLong(FT_Undefined)
BinaryOp = self.EnumToLong(FT_Undefined)
Tolerance = 1e-07
TypeOfElement = ALL
Precision = -1 ##@1e-07
return Filter.Criterion(Type, Compare, Threshold, ThresholdStr, ThresholdID,
UnaryOp, BinaryOp, Tolerance, TypeOfElement, Precision)
## Creates a criterion by the given parameters
# @param elementType the type of elements(NODE, EDGE, FACE, VOLUME)
# @param CritType the type of criterion (FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc.)
# @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
# @param Treshold the threshold value (range of ids as string, shape, numeric)
# @param UnaryOp FT_LogicalNOT or FT_Undefined
# @param BinaryOp a binary logical operation FT_LogicalAND, FT_LogicalOR or
# FT_Undefined (must be for the last criterion of all criteria)
# @return SMESH.Filter.Criterion
# @ingroup l1_controls
def GetCriterion(self,elementType,
CritType,
Compare = FT_EqualTo,
Treshold="",
UnaryOp=FT_Undefined,
BinaryOp=FT_Undefined):
aCriterion = self.GetEmptyCriterion()
aCriterion.TypeOfElement = elementType
aCriterion.Type = self.EnumToLong(CritType)
aTreshold = Treshold
if Compare in [FT_LessThan, FT_MoreThan, FT_EqualTo]:
aCriterion.Compare = self.EnumToLong(Compare)
elif Compare == "=" or Compare == "==":
aCriterion.Compare = self.EnumToLong(FT_EqualTo)
elif Compare == "<":
aCriterion.Compare = self.EnumToLong(FT_LessThan)
elif Compare == ">":
aCriterion.Compare = self.EnumToLong(FT_MoreThan)
else:
aCriterion.Compare = self.EnumToLong(FT_EqualTo)
aTreshold = Compare
if CritType in [FT_BelongToGeom, FT_BelongToPlane, FT_BelongToGenSurface,
FT_BelongToCylinder, FT_LyingOnGeom]:
# Checks the treshold
if isinstance(aTreshold, geompyDC.GEOM._objref_GEOM_Object):
aCriterion.ThresholdStr = GetName(aTreshold)
aCriterion.ThresholdID = salome.ObjectToID(aTreshold)
else:
print "Error: The treshold should be a shape."
return None
elif CritType == FT_RangeOfIds:
# Checks the treshold
if isinstance(aTreshold, str):
aCriterion.ThresholdStr = aTreshold
else:
print "Error: The treshold should be a string."
return None
elif CritType in [FT_FreeBorders, FT_FreeEdges, FT_BadOrientedVolume, FT_FreeNodes,
FT_FreeFaces, FT_ElemGeomType, FT_GroupColor]:
# At this point the treshold is unnecessary
if aTreshold == FT_LogicalNOT:
aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
elif aTreshold in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = aTreshold
else:
# Check treshold
try:
aTreshold = float(aTreshold)
aCriterion.Threshold = aTreshold
except:
print "Error: The treshold should be a number."
return None
if Treshold == FT_LogicalNOT or UnaryOp == FT_LogicalNOT:
aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
if Treshold in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = self.EnumToLong(Treshold)
if UnaryOp in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = self.EnumToLong(UnaryOp)
if BinaryOp in [FT_LogicalAND, FT_LogicalOR]:
aCriterion.BinaryOp = self.EnumToLong(BinaryOp)
return aCriterion
## Creates a filter with the given parameters
# @param elementType the type of elements in the group
# @param CritType the type of criterion ( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
# @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
# @param Treshold the threshold value (range of id ids as string, shape, numeric)
# @param UnaryOp FT_LogicalNOT or FT_Undefined
# @return SMESH_Filter
# @ingroup l1_controls
def GetFilter(self,elementType,
CritType=FT_Undefined,
Compare=FT_EqualTo,
Treshold="",
UnaryOp=FT_Undefined):
aCriterion = self.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
aFilterMgr = self.CreateFilterManager()
aFilter = aFilterMgr.CreateFilter()
aCriteria = []
aCriteria.append(aCriterion)
aFilter.SetCriteria(aCriteria)
return aFilter
## Creates a numerical functor by its type
# @param theCriterion FT_...; functor type
# @return SMESH_NumericalFunctor
# @ingroup l1_controls
def GetFunctor(self,theCriterion):
aFilterMgr = self.CreateFilterManager()
if theCriterion == FT_AspectRatio:
return aFilterMgr.CreateAspectRatio()
elif theCriterion == FT_AspectRatio3D:
return aFilterMgr.CreateAspectRatio3D()
elif theCriterion == FT_Warping:
return aFilterMgr.CreateWarping()
elif theCriterion == FT_MinimumAngle:
return aFilterMgr.CreateMinimumAngle()
elif theCriterion == FT_Taper:
return aFilterMgr.CreateTaper()
elif theCriterion == FT_Skew:
return aFilterMgr.CreateSkew()
elif theCriterion == FT_Area:
return aFilterMgr.CreateArea()
elif theCriterion == FT_Volume3D:
return aFilterMgr.CreateVolume3D()
elif theCriterion == FT_MultiConnection:
return aFilterMgr.CreateMultiConnection()
elif theCriterion == FT_MultiConnection2D:
return aFilterMgr.CreateMultiConnection2D()
elif theCriterion == FT_Length:
return aFilterMgr.CreateLength()
elif theCriterion == FT_Length2D:
return aFilterMgr.CreateLength2D()
else:
print "Error: given parameter is not numerucal functor type."
## Creates hypothesis
# @param theHType mesh hypothesis type (string)
# @param theLibName mesh plug-in library name
# @return created hypothesis instance
def CreateHypothesis(self, theHType, theLibName="libStdMeshersEngine.so"):
return SMESH._objref_SMESH_Gen.CreateHypothesis(self, theHType, theLibName )
## Gets the mesh stattistic
# @return dictionary type element - count of elements
# @ingroup l1_meshinfo
def GetMeshInfo(self, obj):
if isinstance( obj, Mesh ):
obj = obj.GetMesh()
d = {}
if hasattr(obj, "_narrow") and obj._narrow(SMESH.SMESH_IDSource):
values = obj.GetMeshInfo()
for i in range(SMESH.Entity_Last._v):
if i < len(values): d[SMESH.EntityType._item(i)]=values[i]
pass
return d
import omniORB
#Registering the new proxy for SMESH_Gen
omniORB.registerObjref(SMESH._objref_SMESH_Gen._NP_RepositoryId, smeshDC)
# Public class: Mesh
# ==================
## This class allows defining and managing a mesh.
# It has a set of methods to build a mesh on the given geometry, including the definition of sub-meshes.
# It also has methods to define groups of mesh elements, to modify a mesh (by addition of
# new nodes and elements and by changing the existing entities), to get information
# about a mesh and to export a mesh into different formats.
class Mesh:
geom = 0
mesh = 0
editor = 0
## Constructor
#
# Creates a mesh on the shape \a obj (or an empty mesh if \a obj is equal to 0) and
# sets the GUI name of this mesh to \a name.
# @param smeshpyD an instance of smeshDC class
# @param geompyD an instance of geompyDC class
# @param obj Shape to be meshed or SMESH_Mesh object
# @param name Study name of the mesh
# @ingroup l2_construct
def __init__(self, smeshpyD, geompyD, obj=0, name=0):
self.smeshpyD=smeshpyD
self.geompyD=geompyD
if obj is None:
obj = 0
if obj != 0:
if isinstance(obj, geompyDC.GEOM._objref_GEOM_Object):
self.geom = obj
self.mesh = self.smeshpyD.CreateMesh(self.geom)
elif isinstance(obj, SMESH._objref_SMESH_Mesh):
self.SetMesh(obj)
else:
self.mesh = self.smeshpyD.CreateEmptyMesh()
if name != 0:
self.smeshpyD.SetName(self.mesh, name)
elif obj != 0:
self.smeshpyD.SetName(self.mesh, GetName(obj))
if not self.geom:
self.geom = self.mesh.GetShapeToMesh()
self.editor = self.mesh.GetMeshEditor()
## Initializes the Mesh object from an instance of SMESH_Mesh interface
# @param theMesh a SMESH_Mesh object
# @ingroup l2_construct
def SetMesh(self, theMesh):
self.mesh = theMesh
self.geom = self.mesh.GetShapeToMesh()
## Returns the mesh, that is an instance of SMESH_Mesh interface
# @return a SMESH_Mesh object
# @ingroup l2_construct
def GetMesh(self):
return self.mesh
## Gets the name of the mesh
# @return the name of the mesh as a string
# @ingroup l2_construct
def GetName(self):
name = GetName(self.GetMesh())
return name
## Sets a name to the mesh
# @param name a new name of the mesh
# @ingroup l2_construct
def SetName(self, name):
self.smeshpyD.SetName(self.GetMesh(), name)
## Gets the subMesh object associated to a \a theSubObject geometrical object.
# The subMesh object gives access to the IDs of nodes and elements.
# @param theSubObject a geometrical object (shape)
# @param theName a name for the submesh
# @return an object of type SMESH_SubMesh, representing a part of mesh, which lies on the given shape
# @ingroup l2_submeshes
def GetSubMesh(self, theSubObject, theName):
submesh = self.mesh.GetSubMesh(theSubObject, theName)
return submesh
## Returns the shape associated to the mesh
# @return a GEOM_Object
# @ingroup l2_construct
def GetShape(self):
return self.geom
## Associates the given shape to the mesh (entails the recreation of the mesh)
# @param geom the shape to be meshed (GEOM_Object)
# @ingroup l2_construct
def SetShape(self, geom):
self.mesh = self.smeshpyD.CreateMesh(geom)
## Returns true if the hypotheses are defined well
# @param theSubObject a subshape of a mesh shape
# @return True or False
# @ingroup l2_construct
def IsReadyToCompute(self, theSubObject):
return self.smeshpyD.IsReadyToCompute(self.mesh, theSubObject)
## Returns errors of hypotheses definition.
# The list of errors is empty if everything is OK.
# @param theSubObject a subshape of a mesh shape
# @return a list of errors
# @ingroup l2_construct
def GetAlgoState(self, theSubObject):
return self.smeshpyD.GetAlgoState(self.mesh, theSubObject)
## Returns a geometrical object on which the given element was built.
# The returned geometrical object, if not nil, is either found in the
# study or published by this method with the given name
# @param theElementID the id of the mesh element
# @param theGeomName the user-defined name of the geometrical object
# @return GEOM::GEOM_Object instance
# @ingroup l2_construct
def GetGeometryByMeshElement(self, theElementID, theGeomName):
return self.smeshpyD.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName )
## Returns the mesh dimension depending on the dimension of the underlying shape
# @return mesh dimension as an integer value [0,3]
# @ingroup l1_auxiliary
def MeshDimension(self):
shells = self.geompyD.SubShapeAllIDs( self.geom, geompyDC.ShapeType["SHELL"] )
if len( shells ) > 0 :
return 3
elif self.geompyD.NumberOfFaces( self.geom ) > 0 :
return 2
elif self.geompyD.NumberOfEdges( self.geom ) > 0 :
return 1
else:
return 0;
pass
## Creates a segment discretization 1D algorithm.
# If the optional \a algo parameter is not set, this algorithm is REGULAR.
# \n If the optional \a geom parameter is not set, this algorithm is global.
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
# @param algo the type of the required algorithm. Possible values are:
# - smesh.REGULAR,
# - smesh.PYTHON for discretization via a python function,
# - smesh.COMPOSITE for meshing a set of edges on one face side as a whole.
# @param geom If defined is the subshape to be meshed
# @return an instance of Mesh_Segment or Mesh_Segment_Python, or Mesh_CompositeSegment class
# @ingroup l3_algos_basic
def Segment(self, algo=REGULAR, geom=0):
## if Segment(geom) is called by mistake
if isinstance( algo, geompyDC.GEOM._objref_GEOM_Object):
algo, geom = geom, algo
if not algo: algo = REGULAR
pass
if algo == REGULAR:
return Mesh_Segment(self, geom)
elif algo == PYTHON:
return Mesh_Segment_Python(self, geom)
elif algo == COMPOSITE:
return Mesh_CompositeSegment(self, geom)
else:
return Mesh_Segment(self, geom)
## Enables creation of nodes and segments usable by 2D algoritms.
# The added nodes and segments must be bound to edges and vertices by
# SetNodeOnVertex(), SetNodeOnEdge() and SetMeshElementOnShape()
# If the optional \a geom parameter is not set, this algorithm is global.
# \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
# @param geom the subshape to be manually meshed
# @return StdMeshers_UseExisting_1D algorithm that generates nothing
# @ingroup l3_algos_basic
def UseExistingSegments(self, geom=0):
algo = Mesh_UseExisting(1,self,geom)
return algo.GetAlgorithm()
## Enables creation of nodes and faces usable by 3D algoritms.
# The added nodes and faces must be bound to geom faces by SetNodeOnFace()
# and SetMeshElementOnShape()
# If the optional \a geom parameter is not set, this algorithm is global.
# \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
# @param geom the subshape to be manually meshed
# @return StdMeshers_UseExisting_2D algorithm that generates nothing
# @ingroup l3_algos_basic
def UseExistingFaces(self, geom=0):
algo = Mesh_UseExisting(2,self,geom)
return algo.GetAlgorithm()
## Creates a triangle 2D algorithm for faces.
# If the optional \a geom parameter is not set, this algorithm is global.
# \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
# @param algo values are: smesh.MEFISTO || smesh.NETGEN_1D2D || smesh.NETGEN_2D || smesh.BLSURF
# @param geom If defined, the subshape to be meshed (GEOM_Object)
# @return an instance of Mesh_Triangle algorithm
# @ingroup l3_algos_basic
def Triangle(self, algo=MEFISTO, geom=0):
## if Triangle(geom) is called by mistake
if (isinstance(algo, geompyDC.GEOM._objref_GEOM_Object)):
geom = algo
algo = MEFISTO
return Mesh_Triangle(self, algo, geom)
## Creates a quadrangle 2D algorithm for faces.
# If the optional \a geom parameter is not set, this algorithm is global.
# \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
# @param geom If defined, the subshape to be meshed (GEOM_Object)
# @return an instance of Mesh_Quadrangle algorithm
# @ingroup l3_algos_basic
def Quadrangle(self, geom=0):
return Mesh_Quadrangle(self, geom)
## Creates a tetrahedron 3D algorithm for solids.
# The parameter \a algo permits to choose the algorithm: NETGEN or GHS3D
# If the optional \a geom parameter is not set, this algorithm is global.
# \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
# @param algo values are: smesh.NETGEN, smesh.GHS3D, smesh.GHS3DPRL, smesh.FULL_NETGEN
# @param geom If defined, the subshape to be meshed (GEOM_Object)
# @return an instance of Mesh_Tetrahedron algorithm
# @ingroup l3_algos_basic
def Tetrahedron(self, algo=NETGEN, geom=0):
## if Tetrahedron(geom) is called by mistake
if ( isinstance( algo, geompyDC.GEOM._objref_GEOM_Object)):
algo, geom = geom, algo
if not algo: algo = NETGEN
pass
return Mesh_Tetrahedron(self, algo, geom)
## Creates a hexahedron 3D algorithm for solids.
# If the optional \a geom parameter is not set, this algorithm is global.
# \n Otherwise, this algorithm defines a submesh based on \a geom subshape.
# @param algo possible values are: smesh.Hexa, smesh.Hexotic
# @param geom If defined, the subshape to be meshed (GEOM_Object)
# @return an instance of Mesh_Hexahedron algorithm
# @ingroup l3_algos_basic
def Hexahedron(self, algo=Hexa, geom=0):
## if Hexahedron(geom, algo) or Hexahedron(geom) is called by mistake
if ( isinstance(algo, geompyDC.GEOM._objref_GEOM_Object) ):
if geom in [Hexa, Hexotic]: algo, geom = geom, algo
elif geom == 0: algo, geom = Hexa, algo
return Mesh_Hexahedron(self, algo, geom)
## Deprecated, used only for compatibility!
# @return an instance of Mesh_Netgen algorithm
# @ingroup l3_algos_basic
def Netgen(self, is3D, geom=0):
return Mesh_Netgen(self, is3D, geom)
## Creates a projection 1D algorithm for edges.
# If the optional \a geom parameter is not set, this algorithm is global.
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
# @param geom If defined, the subshape to be meshed
# @return an instance of Mesh_Projection1D algorithm
# @ingroup l3_algos_proj
def Projection1D(self, geom=0):
return Mesh_Projection1D(self, geom)
## Creates a projection 2D algorithm for faces.
# If the optional \a geom parameter is not set, this algorithm is global.
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
# @param geom If defined, the subshape to be meshed
# @return an instance of Mesh_Projection2D algorithm
# @ingroup l3_algos_proj
def Projection2D(self, geom=0):
return Mesh_Projection2D(self, geom)
## Creates a projection 3D algorithm for solids.
# If the optional \a geom parameter is not set, this algorithm is global.
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
# @param geom If defined, the subshape to be meshed
# @return an instance of Mesh_Projection3D algorithm
# @ingroup l3_algos_proj
def Projection3D(self, geom=0):
return Mesh_Projection3D(self, geom)
## Creates a 3D extrusion (Prism 3D) or RadialPrism 3D algorithm for solids.
# If the optional \a geom parameter is not set, this algorithm is global.
# Otherwise, this algorithm defines a submesh based on \a geom subshape.
# @param geom If defined, the subshape to be meshed
# @return an instance of Mesh_Prism3D or Mesh_RadialPrism3D algorithm
# @ingroup l3_algos_radialp l3_algos_3dextr
def Prism(self, geom=0):
shape = geom
if shape==0:
shape = self.geom
nbSolids = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SOLID"] ))
nbShells = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SHELL"] ))
if nbSolids == 0 or nbSolids == nbShells:
return Mesh_Prism3D(self, geom)
return Mesh_RadialPrism3D(self, geom)
## Evaluates size of prospective mesh on a shape
# @return True or False
def Evaluate(self, geom=0):
if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object):
if self.geom == 0:
geom = self.mesh.GetShapeToMesh()
else:
geom = self.geom
return self.smeshpyD.Evaluate(self.mesh, geom)
## Computes the mesh and returns the status of the computation
# @return True or False
# @ingroup l2_construct
def Compute(self, geom=0):
if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object):
if self.geom == 0:
geom = self.mesh.GetShapeToMesh()
else:
geom = self.geom
ok = False
try:
ok = self.smeshpyD.Compute(self.mesh, geom)
except SALOME.SALOME_Exception, ex:
print "Mesh computation failed, exception caught:"
print " ", ex.details.text
except:
import traceback
print "Mesh computation failed, exception caught:"
traceback.print_exc()
if True:#not ok:
errors = self.smeshpyD.GetAlgoState( self.mesh, geom )
allReasons = ""
for err in errors:
if err.isGlobalAlgo:
glob = "global"
else:
glob = "local"
pass
dim = err.algoDim
name = err.algoName
if len(name) == 0:
reason = '%s %sD algorithm is missing' % (glob, dim)
elif err.state == HYP_MISSING:
reason = ('%s %sD algorithm "%s" misses %sD hypothesis'
% (glob, dim, name, dim))
elif err.state == HYP_NOTCONFORM:
reason = 'Global "Not Conform mesh allowed" hypothesis is missing'
elif err.state == HYP_BAD_PARAMETER:
reason = ('Hypothesis of %s %sD algorithm "%s" has a bad parameter value'
% ( glob, dim, name ))
elif err.state == HYP_BAD_GEOMETRY:
reason = ('%s %sD algorithm "%s" is assigned to mismatching'
'geometry' % ( glob, dim, name ))
else:
reason = "For unknown reason."+\
" Revise Mesh.Compute() implementation in smeshDC.py!"
pass
if allReasons != "":
allReasons += "\n"
pass
allReasons += reason
pass
if allReasons != "":
print '"' + GetName(self.mesh) + '"',"has not been computed:"
print allReasons
ok = False
elif not ok:
print '"' + GetName(self.mesh) + '"',"has not been computed."
pass
pass
if salome.sg.hasDesktop():
smeshgui = salome.ImportComponentGUI("SMESH")
smeshgui.Init(self.mesh.GetStudyId())
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), ok, (self.NbNodes()==0) )
salome.sg.updateObjBrowser(1)
pass
return ok
## Return submesh objects list in meshing order
# @return list of list of submesh objects
# @ingroup l2_construct
def GetMeshOrder(self):
return self.mesh.GetMeshOrder()
## Return submesh objects list in meshing order
# @return list of list of submesh objects
# @ingroup l2_construct
def SetMeshOrder(self, submeshes):
return self.mesh.SetMeshOrder(submeshes)
## Removes all nodes and elements
# @ingroup l2_construct
def Clear(self):
self.mesh.Clear()
if salome.sg.hasDesktop():
smeshgui = salome.ImportComponentGUI("SMESH")
smeshgui.Init(self.mesh.GetStudyId())
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), False, True )
salome.sg.updateObjBrowser(1)
## Removes all nodes and elements of indicated shape
# @ingroup l2_construct
def ClearSubMesh(self, geomId):
self.mesh.ClearSubMesh(geomId)
if salome.sg.hasDesktop():
smeshgui = salome.ImportComponentGUI("SMESH")
smeshgui.Init(self.mesh.GetStudyId())
smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), False, True )
salome.sg.updateObjBrowser(1)
## Computes a tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN
# @param fineness [0,-1] defines mesh fineness
# @return True or False
# @ingroup l3_algos_basic
def AutomaticTetrahedralization(self, fineness=0):
dim = self.MeshDimension()
# assign hypotheses
self.RemoveGlobalHypotheses()
self.Segment().AutomaticLength(fineness)
if dim > 1 :
self.Triangle().LengthFromEdges()
pass
if dim > 2 :
self.Tetrahedron(NETGEN)
pass
return self.Compute()
## Computes an hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
# @param fineness [0,-1] defines mesh fineness
# @return True or False
# @ingroup l3_algos_basic
def AutomaticHexahedralization(self, fineness=0):
dim = self.MeshDimension()
# assign the hypotheses
self.RemoveGlobalHypotheses()
self.Segment().AutomaticLength(fineness)
if dim > 1 :
self.Quadrangle()
pass
if dim > 2 :
self.Hexahedron()
pass
return self.Compute()
## Assigns a hypothesis
# @param hyp a hypothesis to assign
# @param geom a subhape of mesh geometry
# @return SMESH.Hypothesis_Status
# @ingroup l2_hypotheses
def AddHypothesis(self, hyp, geom=0):
if isinstance( hyp, Mesh_Algorithm ):
hyp = hyp.GetAlgorithm()
pass
if not geom:
geom = self.geom
if not geom:
geom = self.mesh.GetShapeToMesh()
pass
status = self.mesh.AddHypothesis(geom, hyp)
isAlgo = hyp._narrow( SMESH_Algo )
TreatHypoStatus( status, GetName( hyp ), GetName( geom ), isAlgo )
return status
## Unassigns a hypothesis
# @param hyp a hypothesis to unassign
# @param geom a subshape of mesh geometry
# @return SMESH.Hypothesis_Status
# @ingroup l2_hypotheses
def RemoveHypothesis(self, hyp, geom=0):
if isinstance( hyp, Mesh_Algorithm ):
hyp = hyp.GetAlgorithm()
pass
if not geom:
geom = self.geom
pass
status = self.mesh.RemoveHypothesis(geom, hyp)
return status
## Gets the list of hypotheses added on a geometry
# @param geom a subshape of mesh geometry
# @return the sequence of SMESH_Hypothesis
# @ingroup l2_hypotheses
def GetHypothesisList(self, geom):
return self.mesh.GetHypothesisList( geom )
## Removes all global hypotheses
# @ingroup l2_hypotheses
def RemoveGlobalHypotheses(self):
current_hyps = self.mesh.GetHypothesisList( self.geom )
for hyp in current_hyps:
self.mesh.RemoveHypothesis( self.geom, hyp )
pass
pass
## Creates a mesh group based on the geometric object \a grp
# and gives a \a name, \n if this parameter is not defined
# the name is the same as the geometric group name \n
# Note: Works like GroupOnGeom().
# @param grp a geometric group, a vertex, an edge, a face or a solid
# @param name the name of the mesh group
# @return SMESH_GroupOnGeom
# @ingroup l2_grps_create
def Group(self, grp, name=""):
return self.GroupOnGeom(grp, name)
## Deprecated, used only for compatibility! Please, use ExportToMEDX() method instead.
# Exports the mesh in a file in MED format and chooses the \a version of MED format
## allowing to overwrite the file if it exists or add the exported data to its contents
# @param f the file name
# @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2
# @param opt boolean parameter for creating/not creating
# the groups Group_On_All_Nodes, Group_On_All_Faces, ...
# @param overwrite boolean parameter for overwriting/not overwriting the file
# @ingroup l2_impexp
def ExportToMED(self, f, version, opt=0, overwrite=1):
self.mesh.ExportToMEDX(f, opt, version, overwrite)
## Exports the mesh in a file in MED format and chooses the \a version of MED format
## allowing to overwrite the file if it exists or add the exported data to its contents
# @param f is the file name
# @param auto_groups boolean parameter for creating/not creating
# the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
# the typical use is auto_groups=false.
# @param version MED format version(MED_V2_1 or MED_V2_2)
# @param overwrite boolean parameter for overwriting/not overwriting the file
# @ingroup l2_impexp
def ExportMED(self, f, auto_groups=0, version=MED_V2_2, overwrite=1):
self.mesh.ExportToMEDX(f, auto_groups, version, overwrite)
## Exports the mesh in a file in DAT format
# @param f the file name
# @ingroup l2_impexp
def ExportDAT(self, f):
self.mesh.ExportDAT(f)
## Exports the mesh in a file in UNV format
# @param f the file name
# @ingroup l2_impexp
def ExportUNV(self, f):
self.mesh.ExportUNV(f)
## Export the mesh in a file in STL format
# @param f the file name
# @param ascii defines the file encoding
# @ingroup l2_impexp
def ExportSTL(self, f, ascii=1):
self.mesh.ExportSTL(f, ascii)
# Operations with groups:
# ----------------------
## Creates an empty mesh group
# @param elementType the type of elements in the group
# @param name the name of the mesh group
# @return SMESH_Group
# @ingroup l2_grps_create
def CreateEmptyGroup(self, elementType, name):
return self.mesh.CreateGroup(elementType, name)
## Creates a mesh group based on the geometrical object \a grp
# and gives a \a name, \n if this parameter is not defined
# the name is the same as the geometrical group name
# @param grp a geometrical group, a vertex, an edge, a face or a solid
# @param name the name of the mesh group
# @param typ the type of elements in the group. If not set, it is
# automatically detected by the type of the geometry
# @return SMESH_GroupOnGeom
# @ingroup l2_grps_create
def GroupOnGeom(self, grp, name="", typ=None):
if name == "":
name = grp.GetName()
if typ == None:
tgeo = str(grp.GetShapeType())
if tgeo == "VERTEX":
typ = NODE
elif tgeo == "EDGE":
typ = EDGE
elif tgeo == "FACE":
typ = FACE
elif tgeo == "SOLID":
typ = VOLUME
elif tgeo == "SHELL":
typ = VOLUME
elif tgeo == "COMPOUND":
try: # it raises on a compound of compounds
if len( self.geompyD.GetObjectIDs( grp )) == 0:
print "Mesh.Group: empty geometric group", GetName( grp )
return 0
pass
except:
pass
if grp.GetType() == 37: # GEOMImpl_Types.hxx: #define GEOM_GROUP 37
# group
tgeo = self.geompyD.GetType(grp)
if tgeo == geompyDC.ShapeType["VERTEX"]:
typ = NODE
elif tgeo == geompyDC.ShapeType["EDGE"]:
typ = EDGE
elif tgeo == geompyDC.ShapeType["FACE"]:
typ = FACE
elif tgeo == geompyDC.ShapeType["SOLID"]:
typ = VOLUME
pass
pass
else:
# just a compound
for elemType, shapeType in [[VOLUME,"SOLID"],[FACE,"FACE"],
[EDGE,"EDGE"],[NODE,"VERTEX"]]:
if self.geompyD.SubShapeAll(grp,geompyDC.ShapeType[shapeType]):
typ = elemType
break
pass
pass
pass
pass
if typ == None:
print "Mesh.Group: bad first argument: expected a group, a vertex, an edge, a face or a solid"
return 0
else:
return self.mesh.CreateGroupFromGEOM(typ, name, grp)
## Creates a mesh group by the given ids of elements
# @param groupName the name of the mesh group
# @param elementType the type of elements in the group
# @param elemIDs the list of ids
# @return SMESH_Group
# @ingroup l2_grps_create
def MakeGroupByIds(self, groupName, elementType, elemIDs):
group = self.mesh.CreateGroup(elementType, groupName)
group.Add(elemIDs)
return group
## Creates a mesh group by the given conditions
# @param groupName the name of the mesh group
# @param elementType the type of elements in the group
# @param CritType the type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
# @param Compare belongs to {FT_LessThan, FT_MoreThan, FT_EqualTo}
# @param Treshold the threshold value (range of id ids as string, shape, numeric)
# @param UnaryOp FT_LogicalNOT or FT_Undefined
# @return SMESH_Group
# @ingroup l2_grps_create
def MakeGroup(self,
groupName,
elementType,
CritType=FT_Undefined,
Compare=FT_EqualTo,
Treshold="",
UnaryOp=FT_Undefined):
aCriterion = self.smeshpyD.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
group = self.MakeGroupByCriterion(groupName, aCriterion)
return group
## Creates a mesh group by the given criterion
# @param groupName the name of the mesh group
# @param Criterion the instance of Criterion class
# @return SMESH_Group
# @ingroup l2_grps_create
def MakeGroupByCriterion(self, groupName, Criterion):
aFilterMgr = self.smeshpyD.CreateFilterManager()
aFilter = aFilterMgr.CreateFilter()
aCriteria = []
aCriteria.append(Criterion)
aFilter.SetCriteria(aCriteria)
group = self.MakeGroupByFilter(groupName, aFilter)
return group
## Creates a mesh group by the given criteria (list of criteria)
# @param groupName the name of the mesh group
# @param theCriteria the list of criteria
# @return SMESH_Group
# @ingroup l2_grps_create
def MakeGroupByCriteria(self, groupName, theCriteria):
aFilterMgr = self.smeshpyD.CreateFilterManager()
aFilter = aFilterMgr.CreateFilter()
aFilter.SetCriteria(theCriteria)
group = self.MakeGroupByFilter(groupName, aFilter)
return group
## Creates a mesh group by the given filter
# @param groupName the name of the mesh group
# @param theFilter the instance of Filter class
# @return SMESH_Group
# @ingroup l2_grps_create
def MakeGroupByFilter(self, groupName, theFilter):
anIds = theFilter.GetElementsId(self.mesh)
anElemType = theFilter.GetElementType()
group = self.MakeGroupByIds(groupName, anElemType, anIds)
return group
## Passes mesh elements through the given filter and return IDs of fitting elements
# @param theFilter SMESH_Filter
# @return a list of ids
# @ingroup l1_controls
def GetIdsFromFilter(self, theFilter):
return theFilter.GetElementsId(self.mesh)
## Verifies whether a 2D mesh element has free edges (edges connected to one face only)\n
# Returns a list of special structures (borders).
# @return a list of SMESH.FreeEdges.Border structure: edge id and ids of two its nodes.
# @ingroup l1_controls
def GetFreeBorders(self):
aFilterMgr = self.smeshpyD.CreateFilterManager()
aPredicate = aFilterMgr.CreateFreeEdges()
aPredicate.SetMesh(self.mesh)
aBorders = aPredicate.GetBorders()
return aBorders
## Removes a group
# @ingroup l2_grps_delete
def RemoveGroup(self, group):
self.mesh.RemoveGroup(group)
## Removes a group with its contents
# @ingroup l2_grps_delete
def RemoveGroupWithContents(self, group):
self.mesh.RemoveGroupWithContents(group)
## Gets the list of groups existing in the mesh
# @return a sequence of SMESH_GroupBase
# @ingroup l2_grps_create
def GetGroups(self):
return self.mesh.GetGroups()
## Gets the number of groups existing in the mesh
# @return the quantity of groups as an integer value
# @ingroup l2_grps_create
def NbGroups(self):
return self.mesh.NbGroups()
## Gets the list of names of groups existing in the mesh
# @return list of strings
# @ingroup l2_grps_create
def GetGroupNames(self):
groups = self.GetGroups()
names = []
for group in groups:
names.append(group.GetName())
return names
## Produces a union of two groups
# A new group is created. All mesh elements that are
# present in the initial groups are added to the new one
# @return an instance of SMESH_Group
# @ingroup l2_grps_operon
def UnionGroups(self, group1, group2, name):
return self.mesh.UnionGroups(group1, group2, name)
## Produces a union list of groups
# New group is created. All mesh elements that are present in
# initial groups are added to the new one
# @return an instance of SMESH_Group
# @ingroup l2_grps_operon
def UnionListOfGroups(self, groups, name):
return self.mesh.UnionListOfGroups(groups, name)
## Prodices an intersection of two groups
# A new group is created. All mesh elements that are common
# for the two initial groups are added to the new one.
# @return an instance of SMESH_Group
# @ingroup l2_grps_operon
def IntersectGroups(self, group1, group2, name):
return self.mesh.IntersectGroups(group1, group2, name)
## Produces an intersection of groups
# New group is created. All mesh elements that are present in all
# initial groups simultaneously are added to the new one
# @return an instance of SMESH_Group
# @ingroup l2_grps_operon
def IntersectListOfGroups(self, groups, name):
return self.mesh.IntersectListOfGroups(groups, name)
## Produces a cut of two groups
# A new group is created. All mesh elements that are present in
# the main group but are not present in the tool group are added to the new one
# @return an instance of SMESH_Group
# @ingroup l2_grps_operon
def CutGroups(self, main_group, tool_group, name):
return self.mesh.CutGroups(main_group, tool_group, name)
## Produces a cut of groups
# A new group is created. All mesh elements that are present in main groups
# but do not present in tool groups are added to the new one
# @return an instance of SMESH_Group
# @ingroup l2_grps_operon
def CutListOfGroups(self, main_groups, tool_groups, name):
return self.mesh.CutListOfGroups(main_groups, tool_groups, name)
## Produces a group of elements with specified element type using list of existing groups
# A new group is created. System
# 1) extract all nodes on which groups elements are built
# 2) combine all elements of specified dimension laying on these nodes
# @return an instance of SMESH_Group
# @ingroup l2_grps_operon
def CreateDimGroup(self, groups, elem_type, name):
return self.mesh.CreateDimGroup(groups, elem_type, name)
## Convert group on geom into standalone group
# @ingroup l2_grps_delete
def ConvertToStandalone(self, group):
return self.mesh.ConvertToStandalone(group)
# Get some info about mesh:
# ------------------------
## Returns the log of nodes and elements added or removed
# since the previous clear of the log.
# @param clearAfterGet log is emptied after Get (safe if concurrents access)
# @return list of log_block structures:
# commandType
# number
# coords
# indexes
# @ingroup l1_auxiliary
def GetLog(self, clearAfterGet):
return self.mesh.GetLog(clearAfterGet)
## Clears the log of nodes and elements added or removed since the previous
# clear. Must be used immediately after GetLog if clearAfterGet is false.
# @ingroup l1_auxiliary
def ClearLog(self):
self.mesh.ClearLog()
## Toggles auto color mode on the object.
# @param theAutoColor the flag which toggles auto color mode.
# @ingroup l1_auxiliary
def SetAutoColor(self, theAutoColor):
self.mesh.SetAutoColor(theAutoColor)
## Gets flag of object auto color mode.
# @return True or False
# @ingroup l1_auxiliary
def GetAutoColor(self):
return self.mesh.GetAutoColor()
## Gets the internal ID
# @return integer value, which is the internal Id of the mesh
# @ingroup l1_auxiliary
def GetId(self):
return self.mesh.GetId()
## Get the study Id
# @return integer value, which is the study Id of the mesh
# @ingroup l1_auxiliary
def GetStudyId(self):
return self.mesh.GetStudyId()
## Checks the group names for duplications.
# Consider the maximum group name length stored in MED file.
# @return True or False
# @ingroup l1_auxiliary
def HasDuplicatedGroupNamesMED(self):
return self.mesh.HasDuplicatedGroupNamesMED()
## Obtains the mesh editor tool
# @return an instance of SMESH_MeshEditor
# @ingroup l1_modifying
def GetMeshEditor(self):
return self.mesh.GetMeshEditor()
## Gets MED Mesh
# @return an instance of SALOME_MED::MESH
# @ingroup l1_auxiliary
def GetMEDMesh(self):
return self.mesh.GetMEDMesh()
# Get informations about mesh contents:
# ------------------------------------
## Gets the mesh stattistic
# @return dictionary type element - count of elements
# @ingroup l1_meshinfo
def GetMeshInfo(self, obj = None):
if not obj: obj = self.mesh
return self.smeshpyD.GetMeshInfo(obj)
## Returns the number of nodes in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def NbNodes(self):
return self.mesh.NbNodes()
## Returns the number of elements in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def NbElements(self):
return self.mesh.NbElements()
## Returns the number of 0d elements in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def Nb0DElements(self):
return self.mesh.Nb0DElements()
## Returns the number of edges in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def NbEdges(self):
return self.mesh.NbEdges()
## Returns the number of edges with the given order in the mesh
# @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
# @ingroup l1_meshinfo
def NbEdgesOfOrder(self, elementOrder):
return self.mesh.NbEdgesOfOrder(elementOrder)
## Returns the number of faces in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def NbFaces(self):
return self.mesh.NbFaces()
## Returns the number of faces with the given order in the mesh
# @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
# @ingroup l1_meshinfo
def NbFacesOfOrder(self, elementOrder):
return self.mesh.NbFacesOfOrder(elementOrder)
## Returns the number of triangles in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def NbTriangles(self):
return self.mesh.NbTriangles()
## Returns the number of triangles with the given order in the mesh
# @param elementOrder is the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
# @ingroup l1_meshinfo
def NbTrianglesOfOrder(self, elementOrder):
return self.mesh.NbTrianglesOfOrder(elementOrder)
## Returns the number of quadrangles in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def NbQuadrangles(self):
return self.mesh.NbQuadrangles()
## Returns the number of quadrangles with the given order in the mesh
# @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
# @ingroup l1_meshinfo
def NbQuadranglesOfOrder(self, elementOrder):
return self.mesh.NbQuadranglesOfOrder(elementOrder)
## Returns the number of polygons in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def NbPolygons(self):
return self.mesh.NbPolygons()
## Returns the number of volumes in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def NbVolumes(self):
return self.mesh.NbVolumes()
## Returns the number of volumes with the given order in the mesh
# @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
# @ingroup l1_meshinfo
def NbVolumesOfOrder(self, elementOrder):
return self.mesh.NbVolumesOfOrder(elementOrder)
## Returns the number of tetrahedrons in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def NbTetras(self):
return self.mesh.NbTetras()
## Returns the number of tetrahedrons with the given order in the mesh
# @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
# @ingroup l1_meshinfo
def NbTetrasOfOrder(self, elementOrder):
return self.mesh.NbTetrasOfOrder(elementOrder)
## Returns the number of hexahedrons in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def NbHexas(self):
return self.mesh.NbHexas()
## Returns the number of hexahedrons with the given order in the mesh
# @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
# @ingroup l1_meshinfo
def NbHexasOfOrder(self, elementOrder):
return self.mesh.NbHexasOfOrder(elementOrder)
## Returns the number of pyramids in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def NbPyramids(self):
return self.mesh.NbPyramids()
## Returns the number of pyramids with the given order in the mesh
# @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
# @ingroup l1_meshinfo
def NbPyramidsOfOrder(self, elementOrder):
return self.mesh.NbPyramidsOfOrder(elementOrder)
## Returns the number of prisms in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def NbPrisms(self):
return self.mesh.NbPrisms()
## Returns the number of prisms with the given order in the mesh
# @param elementOrder the order of elements:
# ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
# @return an integer value
# @ingroup l1_meshinfo
def NbPrismsOfOrder(self, elementOrder):
return self.mesh.NbPrismsOfOrder(elementOrder)
## Returns the number of polyhedrons in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def NbPolyhedrons(self):
return self.mesh.NbPolyhedrons()
## Returns the number of submeshes in the mesh
# @return an integer value
# @ingroup l1_meshinfo
def NbSubMesh(self):
return self.mesh.NbSubMesh()
## Returns the list of mesh elements IDs
# @return the list of integer values
# @ingroup l1_meshinfo
def GetElementsId(self):
return self.mesh.GetElementsId()
## Returns the list of IDs of mesh elements with the given type
# @param elementType the required type of elements
# @return list of integer values
# @ingroup l1_meshinfo
def GetElementsByType(self, elementType):
return self.mesh.GetElementsByType(elementType)
## Returns the list of mesh nodes IDs
# @return the list of integer values
# @ingroup l1_meshinfo
def GetNodesId(self):
return self.mesh.GetNodesId()
# Get the information about mesh elements:
# ------------------------------------
## Returns the type of mesh element
# @return the value from SMESH::ElementType enumeration
# @ingroup l1_meshinfo
def GetElementType(self, id, iselem):
return self.mesh.GetElementType(id, iselem)
## Returns the list of submesh elements IDs
# @param Shape a geom object(subshape) IOR
# Shape must be the subshape of a ShapeToMesh()
# @return the list of integer values
# @ingroup l1_meshinfo
def GetSubMeshElementsId(self, Shape):
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
ShapeID = Shape.GetSubShapeIndices()[0]
else:
ShapeID = Shape
return self.mesh.GetSubMeshElementsId(ShapeID)
## Returns the list of submesh nodes IDs
# @param Shape a geom object(subshape) IOR
# Shape must be the subshape of a ShapeToMesh()
# @param all If true, gives all nodes of submesh elements, otherwise gives only submesh nodes
# @return the list of integer values
# @ingroup l1_meshinfo
def GetSubMeshNodesId(self, Shape, all):
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
ShapeID = Shape.GetSubShapeIndices()[0]
else:
ShapeID = Shape
return self.mesh.GetSubMeshNodesId(ShapeID, all)
## Returns type of elements on given shape
# @param Shape a geom object(subshape) IOR
# Shape must be a subshape of a ShapeToMesh()
# @return element type
# @ingroup l1_meshinfo
def GetSubMeshElementType(self, Shape):
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
ShapeID = Shape.GetSubShapeIndices()[0]
else:
ShapeID = Shape
return self.mesh.GetSubMeshElementType(ShapeID)
## Gets the mesh description
# @return string value
# @ingroup l1_meshinfo
def Dump(self):
return self.mesh.Dump()
# Get the information about nodes and elements of a mesh by its IDs:
# -----------------------------------------------------------
## Gets XYZ coordinates of a node
# \n If there is no nodes for the given ID - returns an empty list
# @return a list of double precision values
# @ingroup l1_meshinfo
def GetNodeXYZ(self, id):
return self.mesh.GetNodeXYZ(id)
## Returns list of IDs of inverse elements for the given node
# \n If there is no node for the given ID - returns an empty list
# @return a list of integer values
# @ingroup l1_meshinfo
def GetNodeInverseElements(self, id):
return self.mesh.GetNodeInverseElements(id)
## @brief Returns the position of a node on the shape
# @return SMESH::NodePosition
# @ingroup l1_meshinfo
def GetNodePosition(self,NodeID):
return self.mesh.GetNodePosition(NodeID)
## If the given element is a node, returns the ID of shape
# \n If there is no node for the given ID - returns -1
# @return an integer value
# @ingroup l1_meshinfo
def GetShapeID(self, id):
return self.mesh.GetShapeID(id)
## Returns the ID of the result shape after
# FindShape() from SMESH_MeshEditor for the given element
# \n If there is no element for the given ID - returns -1
# @return an integer value
# @ingroup l1_meshinfo
def GetShapeIDForElem(self,id):
return self.mesh.GetShapeIDForElem(id)
## Returns the number of nodes for the given element
# \n If there is no element for the given ID - returns -1
# @return an integer value
# @ingroup l1_meshinfo
def GetElemNbNodes(self, id):
return self.mesh.GetElemNbNodes(id)
## Returns the node ID the given index for the given element
# \n If there is no element for the given ID - returns -1
# \n If there is no node for the given index - returns -2
# @return an integer value
# @ingroup l1_meshinfo
def GetElemNode(self, id, index):
return self.mesh.GetElemNode(id, index)
## Returns the IDs of nodes of the given element
# @return a list of integer values
# @ingroup l1_meshinfo
def GetElemNodes(self, id):
return self.mesh.GetElemNodes(id)
## Returns true if the given node is the medium node in the given quadratic element
# @ingroup l1_meshinfo
def IsMediumNode(self, elementID, nodeID):
return self.mesh.IsMediumNode(elementID, nodeID)
## Returns true if the given node is the medium node in one of quadratic elements
# @ingroup l1_meshinfo
def IsMediumNodeOfAnyElem(self, nodeID, elementType):
return self.mesh.IsMediumNodeOfAnyElem(nodeID, elementType)
## Returns the number of edges for the given element
# @ingroup l1_meshinfo
def ElemNbEdges(self, id):
return self.mesh.ElemNbEdges(id)
## Returns the number of faces for the given element
# @ingroup l1_meshinfo
def ElemNbFaces(self, id):
return self.mesh.ElemNbFaces(id)
## Returns true if the given element is a polygon
# @ingroup l1_meshinfo
def IsPoly(self, id):
return self.mesh.IsPoly(id)
## Returns true if the given element is quadratic
# @ingroup l1_meshinfo
def IsQuadratic(self, id):
return self.mesh.IsQuadratic(id)
## Returns XYZ coordinates of the barycenter of the given element
# \n If there is no element for the given ID - returns an empty list
# @return a list of three double values
# @ingroup l1_meshinfo
def BaryCenter(self, id):
return self.mesh.BaryCenter(id)
# Mesh edition (SMESH_MeshEditor functionality):
# ---------------------------------------------
## Removes the elements from the mesh by ids
# @param IDsOfElements is a list of ids of elements to remove
# @return True or False
# @ingroup l2_modif_del
def RemoveElements(self, IDsOfElements):
return self.editor.RemoveElements(IDsOfElements)
## Removes nodes from mesh by ids
# @param IDsOfNodes is a list of ids of nodes to remove
# @return True or False
# @ingroup l2_modif_del
def RemoveNodes(self, IDsOfNodes):
return self.editor.RemoveNodes(IDsOfNodes)
## Add a node to the mesh by coordinates
# @return Id of the new node
# @ingroup l2_modif_add
def AddNode(self, x, y, z):
x,y,z,Parameters = geompyDC.ParseParameters(x,y,z)
self.mesh.SetParameters(Parameters)
return self.editor.AddNode( x, y, z)
## Creates a 0D element on a node with given number.
# @param IDOfNode the ID of node for creation of the element.
# @return the Id of the new 0D element
# @ingroup l2_modif_add
def Add0DElement(self, IDOfNode):
return self.editor.Add0DElement(IDOfNode)
## Creates a linear or quadratic edge (this is determined
# by the number of given nodes).
# @param IDsOfNodes the list of node IDs for creation of the element.
# The order of nodes in this list should correspond to the description
# of MED. \n This description is located by the following link:
# http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
# @return the Id of the new edge
# @ingroup l2_modif_add
def AddEdge(self, IDsOfNodes):
return self.editor.AddEdge(IDsOfNodes)
## Creates a linear or quadratic face (this is determined
# by the number of given nodes).
# @param IDsOfNodes the list of node IDs for creation of the element.
# The order of nodes in this list should correspond to the description
# of MED. \n This description is located by the following link:
# http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
# @return the Id of the new face
# @ingroup l2_modif_add
def AddFace(self, IDsOfNodes):
return self.editor.AddFace(IDsOfNodes)
## Adds a polygonal face to the mesh by the list of node IDs
# @param IdsOfNodes the list of node IDs for creation of the element.
# @return the Id of the new face
# @ingroup l2_modif_add
def AddPolygonalFace(self, IdsOfNodes):
return self.editor.AddPolygonalFace(IdsOfNodes)
## Creates both simple and quadratic volume (this is determined
# by the number of given nodes).
# @param IDsOfNodes the list of node IDs for creation of the element.
# The order of nodes in this list should correspond to the description
# of MED. \n This description is located by the following link:
# http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
# @return the Id of the new volumic element
# @ingroup l2_modif_add
def AddVolume(self, IDsOfNodes):
return self.editor.AddVolume(IDsOfNodes)
## Creates a volume of many faces, giving nodes for each face.
# @param IdsOfNodes the list of node IDs for volume creation face by face.
# @param Quantities the list of integer values, Quantities[i]
# gives the quantity of nodes in face number i.
# @return the Id of the new volumic element
# @ingroup l2_modif_add
def AddPolyhedralVolume (self, IdsOfNodes, Quantities):
return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities)
## Creates a volume of many faces, giving the IDs of the existing faces.
# @param IdsOfFaces the list of face IDs for volume creation.
#
# Note: The created volume will refer only to the nodes
# of the given faces, not to the faces themselves.
# @return the Id of the new volumic element
# @ingroup l2_modif_add
def AddPolyhedralVolumeByFaces (self, IdsOfFaces):
return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces)
## @brief Binds a node to a vertex
# @param NodeID a node ID
# @param Vertex a vertex or vertex ID
# @return True if succeed else raises an exception
# @ingroup l2_modif_add
def SetNodeOnVertex(self, NodeID, Vertex):
if ( isinstance( Vertex, geompyDC.GEOM._objref_GEOM_Object)):
VertexID = Vertex.GetSubShapeIndices()[0]
else:
VertexID = Vertex
try:
self.editor.SetNodeOnVertex(NodeID, VertexID)
except SALOME.SALOME_Exception, inst:
raise ValueError, inst.details.text
return True
## @brief Stores the node position on an edge
# @param NodeID a node ID
# @param Edge an edge or edge ID
# @param paramOnEdge a parameter on the edge where the node is located
# @return True if succeed else raises an exception
# @ingroup l2_modif_add
def SetNodeOnEdge(self, NodeID, Edge, paramOnEdge):
if ( isinstance( Edge, geompyDC.GEOM._objref_GEOM_Object)):
EdgeID = Edge.GetSubShapeIndices()[0]
else:
EdgeID = Edge
try:
self.editor.SetNodeOnEdge(NodeID, EdgeID, paramOnEdge)
except SALOME.SALOME_Exception, inst:
raise ValueError, inst.details.text
return True
## @brief Stores node position on a face
# @param NodeID a node ID
# @param Face a face or face ID
# @param u U parameter on the face where the node is located
# @param v V parameter on the face where the node is located
# @return True if succeed else raises an exception
# @ingroup l2_modif_add
def SetNodeOnFace(self, NodeID, Face, u, v):
if ( isinstance( Face, geompyDC.GEOM._objref_GEOM_Object)):
FaceID = Face.GetSubShapeIndices()[0]
else:
FaceID = Face
try:
self.editor.SetNodeOnFace(NodeID, FaceID, u, v)
except SALOME.SALOME_Exception, inst:
raise ValueError, inst.details.text
return True
## @brief Binds a node to a solid
# @param NodeID a node ID
# @param Solid a solid or solid ID
# @return True if succeed else raises an exception
# @ingroup l2_modif_add
def SetNodeInVolume(self, NodeID, Solid):
if ( isinstance( Solid, geompyDC.GEOM._objref_GEOM_Object)):
SolidID = Solid.GetSubShapeIndices()[0]
else:
SolidID = Solid
try:
self.editor.SetNodeInVolume(NodeID, SolidID)
except SALOME.SALOME_Exception, inst:
raise ValueError, inst.details.text
return True
## @brief Bind an element to a shape
# @param ElementID an element ID
# @param Shape a shape or shape ID
# @return True if succeed else raises an exception
# @ingroup l2_modif_add
def SetMeshElementOnShape(self, ElementID, Shape):
if ( isinstance( Shape, geompyDC.GEOM._objref_GEOM_Object)):
ShapeID = Shape.GetSubShapeIndices()[0]
else:
ShapeID = Shape
try:
self.editor.SetMeshElementOnShape(ElementID, ShapeID)
except SALOME.SALOME_Exception, inst:
raise ValueError, inst.details.text
return True
## Moves the node with the given id
# @param NodeID the id of the node
# @param x a new X coordinate
# @param y a new Y coordinate
# @param z a new Z coordinate
# @return True if succeed else False
# @ingroup l2_modif_movenode
def MoveNode(self, NodeID, x, y, z):
x,y,z,Parameters = geompyDC.ParseParameters(x,y,z)
self.mesh.SetParameters(Parameters)
return self.editor.MoveNode(NodeID, x, y, z)
## Finds the node closest to a point and moves it to a point location
# @param x the X coordinate of a point
# @param y the Y coordinate of a point
# @param z the Z coordinate of a point
# @param NodeID if specified (>0), the node with this ID is moved,
# otherwise, the node closest to point (@a x,@a y,@a z) is moved
# @return the ID of a node
# @ingroup l2_modif_throughp
def MoveClosestNodeToPoint(self, x, y, z, NodeID):
x,y,z,Parameters = geompyDC.ParseParameters(x,y,z)
self.mesh.SetParameters(Parameters)
return self.editor.MoveClosestNodeToPoint(x, y, z, NodeID)
## Finds the node closest to a point
# @param x the X coordinate of a point
# @param y the Y coordinate of a point
# @param z the Z coordinate of a point
# @return the ID of a node
# @ingroup l2_modif_throughp
def FindNodeClosestTo(self, x, y, z):
#preview = self.mesh.GetMeshEditPreviewer()
#return preview.MoveClosestNodeToPoint(x, y, z, -1)
return self.editor.FindNodeClosestTo(x, y, z)
## Finds the elements where a point lays IN or ON
# @param x the X coordinate of a point
# @param y the Y coordinate of a point
# @param z the Z coordinate of a point
# @param elementType type of elements to find (SMESH.ALL type
# means elements of any type excluding nodes and 0D elements)
# @return list of IDs of found elements
# @ingroup l2_modif_throughp
def FindElementsByPoint(self, x, y, z, elementType = SMESH.ALL):
return self.editor.FindElementsByPoint(x, y, z, elementType)
## Finds the node closest to a point and moves it to a point location
# @param x the X coordinate of a point
# @param y the Y coordinate of a point
# @param z the Z coordinate of a point
# @return the ID of a moved node
# @ingroup l2_modif_throughp
def MeshToPassThroughAPoint(self, x, y, z):
return self.editor.MoveClosestNodeToPoint(x, y, z, -1)
## Replaces two neighbour triangles sharing Node1-Node2 link
# with the triangles built on the same 4 nodes but having other common link.
# @param NodeID1 the ID of the first node
# @param NodeID2 the ID of the second node
# @return false if proper faces were not found
# @ingroup l2_modif_invdiag
def InverseDiag(self, NodeID1, NodeID2):
return self.editor.InverseDiag(NodeID1, NodeID2)
## Replaces two neighbour triangles sharing Node1-Node2 link
# with a quadrangle built on the same 4 nodes.
# @param NodeID1 the ID of the first node
# @param NodeID2 the ID of the second node
# @return false if proper faces were not found
# @ingroup l2_modif_unitetri
def DeleteDiag(self, NodeID1, NodeID2):
return self.editor.DeleteDiag(NodeID1, NodeID2)
## Reorients elements by ids
# @param IDsOfElements if undefined reorients all mesh elements
# @return True if succeed else False
# @ingroup l2_modif_changori
def Reorient(self, IDsOfElements=None):
if IDsOfElements == None:
IDsOfElements = self.GetElementsId()
return self.editor.Reorient(IDsOfElements)
## Reorients all elements of the object
# @param theObject mesh, submesh or group
# @return True if succeed else False
# @ingroup l2_modif_changori
def ReorientObject(self, theObject):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.ReorientObject(theObject)
## Fuses the neighbouring triangles into quadrangles.
# @param IDsOfElements The triangles to be fused,
# @param theCriterion is FT_...; used to choose a neighbour to fuse with.
# @param MaxAngle is the maximum angle between element normals at which the fusion
# is still performed; theMaxAngle is mesured in radians.
# Also it could be a name of variable which defines angle in degrees.
# @return TRUE in case of success, FALSE otherwise.
# @ingroup l2_modif_unitetri
def TriToQuad(self, IDsOfElements, theCriterion, MaxAngle):
flag = False
if isinstance(MaxAngle,str):
flag = True
MaxAngle,Parameters = geompyDC.ParseParameters(MaxAngle)
if flag:
MaxAngle = DegreesToRadians(MaxAngle)
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
self.mesh.SetParameters(Parameters)
Functor = 0
if ( isinstance( theCriterion, SMESH._objref_NumericalFunctor ) ):
Functor = theCriterion
else:
Functor = self.smeshpyD.GetFunctor(theCriterion)
return self.editor.TriToQuad(IDsOfElements, Functor, MaxAngle)
## Fuses the neighbouring triangles of the object into quadrangles
# @param theObject is mesh, submesh or group
# @param theCriterion is FT_...; used to choose a neighbour to fuse with.
# @param MaxAngle a max angle between element normals at which the fusion
# is still performed; theMaxAngle is mesured in radians.
# @return TRUE in case of success, FALSE otherwise.
# @ingroup l2_modif_unitetri
def TriToQuadObject (self, theObject, theCriterion, MaxAngle):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.TriToQuadObject(theObject, self.smeshpyD.GetFunctor(theCriterion), MaxAngle)
## Splits quadrangles into triangles.
# @param IDsOfElements the faces to be splitted.
# @param theCriterion FT_...; used to choose a diagonal for splitting.
# @return TRUE in case of success, FALSE otherwise.
# @ingroup l2_modif_cutquadr
def QuadToTri (self, IDsOfElements, theCriterion):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
return self.editor.QuadToTri(IDsOfElements, self.smeshpyD.GetFunctor(theCriterion))
## Splits quadrangles into triangles.
# @param theObject the object from which the list of elements is taken, this is mesh, submesh or group
# @param theCriterion FT_...; used to choose a diagonal for splitting.
# @return TRUE in case of success, FALSE otherwise.
# @ingroup l2_modif_cutquadr
def QuadToTriObject (self, theObject, theCriterion):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.QuadToTriObject(theObject, self.smeshpyD.GetFunctor(theCriterion))
## Splits quadrangles into triangles.
# @param IDsOfElements the faces to be splitted
# @param Diag13 is used to choose a diagonal for splitting.
# @return TRUE in case of success, FALSE otherwise.
# @ingroup l2_modif_cutquadr
def SplitQuad (self, IDsOfElements, Diag13):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
return self.editor.SplitQuad(IDsOfElements, Diag13)
## Splits quadrangles into triangles.
# @param theObject the object from which the list of elements is taken, this is mesh, submesh or group
# @param Diag13 is used to choose a diagonal for splitting.
# @return TRUE in case of success, FALSE otherwise.
# @ingroup l2_modif_cutquadr
def SplitQuadObject (self, theObject, Diag13):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.SplitQuadObject(theObject, Diag13)
## Finds a better splitting of the given quadrangle.
# @param IDOfQuad the ID of the quadrangle to be splitted.
# @param theCriterion FT_...; a criterion to choose a diagonal for splitting.
# @return 1 if 1-3 diagonal is better, 2 if 2-4
# diagonal is better, 0 if error occurs.
# @ingroup l2_modif_cutquadr
def BestSplit (self, IDOfQuad, theCriterion):
return self.editor.BestSplit(IDOfQuad, self.smeshpyD.GetFunctor(theCriterion))
## Splits quadrangle faces near triangular facets of volumes
#
# @ingroup l1_auxiliary
def SplitQuadsNearTriangularFacets(self):
faces_array = self.GetElementsByType(SMESH.FACE)
for face_id in faces_array:
if self.GetElemNbNodes(face_id) == 4: # quadrangle
quad_nodes = self.mesh.GetElemNodes(face_id)
node1_elems = self.GetNodeInverseElements(quad_nodes[1 -1])
isVolumeFound = False
for node1_elem in node1_elems:
if not isVolumeFound:
if self.GetElementType(node1_elem, True) == SMESH.VOLUME:
nb_nodes = self.GetElemNbNodes(node1_elem)
if 3 < nb_nodes and nb_nodes < 7: # tetra or penta, or prism
volume_elem = node1_elem
volume_nodes = self.mesh.GetElemNodes(volume_elem)
if volume_nodes.count(quad_nodes[2 -1]) > 0: # 1,2
if volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,2,4
isVolumeFound = True
if volume_nodes.count(quad_nodes[3 -1]) == 0: # 1,2,4 & !3
self.SplitQuad([face_id], False) # diagonal 2-4
elif volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,2,3 & !4
isVolumeFound = True
self.SplitQuad([face_id], True) # diagonal 1-3
elif volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,4 & !2
if volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,4,3 & !2
isVolumeFound = True
self.SplitQuad([face_id], True) # diagonal 1-3
## @brief Splits hexahedrons into tetrahedrons.
#
# This operation uses pattern mapping functionality for splitting.
# @param theObject the object from which the list of hexahedrons is taken; this is mesh, submesh or group.
# @param theNode000,theNode001 within the range [0,7]; gives the orientation of the
# pattern relatively each hexahedron: the (0,0,0) key-point of the pattern
# will be mapped into theNode000-th node of each volume, the (0,0,1)
# key-point will be mapped into theNode001-th node of each volume.
# The (0,0,0) key-point of the used pattern corresponds to a non-split corner.
# @return TRUE in case of success, FALSE otherwise.
# @ingroup l1_auxiliary
def SplitHexaToTetras (self, theObject, theNode000, theNode001):
# Pattern: 5.---------.6
# /|#* /|
# / | #* / |
# / | # * / |
# / | # /* |
# (0,0,1) 4.---------.7 * |
# |#* |1 | # *|
# | # *.----|---#.2
# | #/ * | /
# | /# * | /
# | / # * | /
# |/ #*|/
# (0,0,0) 0.---------.3
pattern_tetra = "!!! Nb of points: \n 8 \n\
!!! Points: \n\
0 0 0 !- 0 \n\
0 1 0 !- 1 \n\
1 1 0 !- 2 \n\
1 0 0 !- 3 \n\
0 0 1 !- 4 \n\
0 1 1 !- 5 \n\
1 1 1 !- 6 \n\
1 0 1 !- 7 \n\
!!! Indices of points of 6 tetras: \n\
0 3 4 1 \n\
7 4 3 1 \n\
4 7 5 1 \n\
6 2 5 7 \n\
1 5 2 7 \n\
2 3 1 7 \n"
pattern = self.smeshpyD.GetPattern()
isDone = pattern.LoadFromFile(pattern_tetra)
if not isDone:
print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
return isDone
pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
isDone = pattern.MakeMesh(self.mesh, False, False)
if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
# split quafrangle faces near triangular facets of volumes
self.SplitQuadsNearTriangularFacets()
return isDone
## @brief Split hexahedrons into prisms.
#
# Uses the pattern mapping functionality for splitting.
# @param theObject the object (mesh, submesh or group) from where the list of hexahedrons is taken;
# @param theNode000,theNode001 (within the range [0,7]) gives the orientation of the
# pattern relatively each hexahedron: keypoint (0,0,0) of the pattern
# will be mapped into the theNode000-th node of each volume, keypoint (0,0,1)
# will be mapped into the theNode001-th node of each volume.
# Edge (0,0,0)-(0,0,1) of used pattern connects two not split corners.
# @return TRUE in case of success, FALSE otherwise.
# @ingroup l1_auxiliary
def SplitHexaToPrisms (self, theObject, theNode000, theNode001):
# Pattern: 5.---------.6
# /|# /|
# / | # / |
# / | # / |
# / | # / |
# (0,0,1) 4.---------.7 |
# | | | |
# | 1.----|----.2
# | / * | /
# | / * | /
# | / * | /
# |/ *|/
# (0,0,0) 0.---------.3
pattern_prism = "!!! Nb of points: \n 8 \n\
!!! Points: \n\
0 0 0 !- 0 \n\
0 1 0 !- 1 \n\
1 1 0 !- 2 \n\
1 0 0 !- 3 \n\
0 0 1 !- 4 \n\
0 1 1 !- 5 \n\
1 1 1 !- 6 \n\
1 0 1 !- 7 \n\
!!! Indices of points of 2 prisms: \n\
0 1 3 4 5 7 \n\
2 3 1 6 7 5 \n"
pattern = self.smeshpyD.GetPattern()
isDone = pattern.LoadFromFile(pattern_prism)
if not isDone:
print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
return isDone
pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
isDone = pattern.MakeMesh(self.mesh, False, False)
if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
# Splits quafrangle faces near triangular facets of volumes
self.SplitQuadsNearTriangularFacets()
return isDone
## Smoothes elements
# @param IDsOfElements the list if ids of elements to smooth
# @param IDsOfFixedNodes the list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
# @param MaxNbOfIterations the maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
# @return TRUE in case of success, FALSE otherwise.
# @ingroup l2_modif_smooth
def Smooth(self, IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
MaxNbOfIterations,MaxAspectRatio,Parameters = geompyDC.ParseParameters(MaxNbOfIterations,MaxAspectRatio)
self.mesh.SetParameters(Parameters)
return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
## Smoothes elements which belong to the given object
# @param theObject the object to smooth
# @param IDsOfFixedNodes the list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
# @param MaxNbOfIterations the maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
# @return TRUE in case of success, FALSE otherwise.
# @ingroup l2_modif_smooth
def SmoothObject(self, theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.SmoothObject(theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
## Parametrically smoothes the given elements
# @param IDsOfElements the list if ids of elements to smooth
# @param IDsOfFixedNodes the list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
# @param MaxNbOfIterations the maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
# @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
# @return TRUE in case of success, FALSE otherwise.
# @ingroup l2_modif_smooth
def SmoothParametric(self, IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
MaxNbOfIterations,MaxAspectRatio,Parameters = geompyDC.ParseParameters(MaxNbOfIterations,MaxAspectRatio)
self.mesh.SetParameters(Parameters)
return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
## Parametrically smoothes the elements which belong to the given object
# @param theObject the object to smooth
# @param IDsOfFixedNodes the list of ids of fixed nodes.
# Note that nodes built on edges and boundary nodes are always fixed.
# @param MaxNbOfIterations the maximum number of iterations
# @param MaxAspectRatio varies in range [1.0, inf]
# @param Method Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
# @return TRUE in case of success, FALSE otherwise.
# @ingroup l2_modif_smooth
def SmoothParametricObject(self, theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes,
MaxNbOfIterations, MaxAspectRatio, Method)
## Converts the mesh to quadratic, deletes old elements, replacing
# them with quadratic with the same id.
# @ingroup l2_modif_tofromqu
def ConvertToQuadratic(self, theForce3d):
self.editor.ConvertToQuadratic(theForce3d)
## Converts the mesh from quadratic to ordinary,
# deletes old quadratic elements, \n replacing
# them with ordinary mesh elements with the same id.
# @return TRUE in case of success, FALSE otherwise.
# @ingroup l2_modif_tofromqu
def ConvertFromQuadratic(self):
return self.editor.ConvertFromQuadratic()
## Creates 2D mesh as skin on boundary faces of a 3D mesh
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
def Make2DMeshFrom3D(self):
return self.editor. Make2DMeshFrom3D()
## Renumber mesh nodes
# @ingroup l2_modif_renumber
def RenumberNodes(self):
self.editor.RenumberNodes()
## Renumber mesh elements
# @ingroup l2_modif_renumber
def RenumberElements(self):
self.editor.RenumberElements()
## Generates new elements by rotation of the elements around the axis
# @param IDsOfElements the list of ids of elements to sweep
# @param Axis the axis of rotation, AxisStruct or line(geom object)
# @param AngleInRadians the angle of Rotation (in radians) or a name of variable which defines angle in degrees
# @param NbOfSteps the number of steps
# @param Tolerance tolerance
# @param MakeGroups forces the generation of new groups from existing ones
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
# of all steps, else - size of each step
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_extrurev
def RotationSweep(self, IDsOfElements, Axis, AngleInRadians, NbOfSteps, Tolerance,
MakeGroups=False, TotalAngle=False):
flag = False
if isinstance(AngleInRadians,str):
flag = True
AngleInRadians,AngleParameters = geompyDC.ParseParameters(AngleInRadians)
if flag:
AngleInRadians = DegreesToRadians(AngleInRadians)
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
Axis,AxisParameters = ParseAxisStruct(Axis)
if TotalAngle and NbOfSteps:
AngleInRadians /= NbOfSteps
NbOfSteps,Tolerance,Parameters = geompyDC.ParseParameters(NbOfSteps,Tolerance)
Parameters = AxisParameters + var_separator + AngleParameters + var_separator + Parameters
self.mesh.SetParameters(Parameters)
if MakeGroups:
return self.editor.RotationSweepMakeGroups(IDsOfElements, Axis,
AngleInRadians, NbOfSteps, Tolerance)
self.editor.RotationSweep(IDsOfElements, Axis, AngleInRadians, NbOfSteps, Tolerance)
return []
## Generates new elements by rotation of the elements of object around the axis
# @param theObject object which elements should be sweeped
# @param Axis the axis of rotation, AxisStruct or line(geom object)
# @param AngleInRadians the angle of Rotation
# @param NbOfSteps number of steps
# @param Tolerance tolerance
# @param MakeGroups forces the generation of new groups from existing ones
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
# of all steps, else - size of each step
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_extrurev
def RotationSweepObject(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
MakeGroups=False, TotalAngle=False):
flag = False
if isinstance(AngleInRadians,str):
flag = True
AngleInRadians,AngleParameters = geompyDC.ParseParameters(AngleInRadians)
if flag:
AngleInRadians = DegreesToRadians(AngleInRadians)
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
Axis,AxisParameters = ParseAxisStruct(Axis)
if TotalAngle and NbOfSteps:
AngleInRadians /= NbOfSteps
NbOfSteps,Tolerance,Parameters = geompyDC.ParseParameters(NbOfSteps,Tolerance)
Parameters = AxisParameters + var_separator + AngleParameters + var_separator + Parameters
self.mesh.SetParameters(Parameters)
if MakeGroups:
return self.editor.RotationSweepObjectMakeGroups(theObject, Axis, AngleInRadians,
NbOfSteps, Tolerance)
self.editor.RotationSweepObject(theObject, Axis, AngleInRadians, NbOfSteps, Tolerance)
return []
## Generates new elements by rotation of the elements of object around the axis
# @param theObject object which elements should be sweeped
# @param Axis the axis of rotation, AxisStruct or line(geom object)
# @param AngleInRadians the angle of Rotation
# @param NbOfSteps number of steps
# @param Tolerance tolerance
# @param MakeGroups forces the generation of new groups from existing ones
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
# of all steps, else - size of each step
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_extrurev
def RotationSweepObject1D(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
MakeGroups=False, TotalAngle=False):
flag = False
if isinstance(AngleInRadians,str):
flag = True
AngleInRadians,AngleParameters = geompyDC.ParseParameters(AngleInRadians)
if flag:
AngleInRadians = DegreesToRadians(AngleInRadians)
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
Axis,AxisParameters = ParseAxisStruct(Axis)
if TotalAngle and NbOfSteps:
AngleInRadians /= NbOfSteps
NbOfSteps,Tolerance,Parameters = geompyDC.ParseParameters(NbOfSteps,Tolerance)
Parameters = AxisParameters + var_separator + AngleParameters + var_separator + Parameters
self.mesh.SetParameters(Parameters)
if MakeGroups:
return self.editor.RotationSweepObject1DMakeGroups(theObject, Axis, AngleInRadians,
NbOfSteps, Tolerance)
self.editor.RotationSweepObject1D(theObject, Axis, AngleInRadians, NbOfSteps, Tolerance)
return []
## Generates new elements by rotation of the elements of object around the axis
# @param theObject object which elements should be sweeped
# @param Axis the axis of rotation, AxisStruct or line(geom object)
# @param AngleInRadians the angle of Rotation
# @param NbOfSteps number of steps
# @param Tolerance tolerance
# @param MakeGroups forces the generation of new groups from existing ones
# @param TotalAngle gives meaning of AngleInRadians: if True then it is an angular size
# of all steps, else - size of each step
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_extrurev
def RotationSweepObject2D(self, theObject, Axis, AngleInRadians, NbOfSteps, Tolerance,
MakeGroups=False, TotalAngle=False):
flag = False
if isinstance(AngleInRadians,str):
flag = True
AngleInRadians,AngleParameters = geompyDC.ParseParameters(AngleInRadians)
if flag:
AngleInRadians = DegreesToRadians(AngleInRadians)
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
Axis,AxisParameters = ParseAxisStruct(Axis)
if TotalAngle and NbOfSteps:
AngleInRadians /= NbOfSteps
NbOfSteps,Tolerance,Parameters = geompyDC.ParseParameters(NbOfSteps,Tolerance)
Parameters = AxisParameters + var_separator + AngleParameters + var_separator + Parameters
self.mesh.SetParameters(Parameters)
if MakeGroups:
return self.editor.RotationSweepObject2DMakeGroups(theObject, Axis, AngleInRadians,
NbOfSteps, Tolerance)
self.editor.RotationSweepObject2D(theObject, Axis, AngleInRadians, NbOfSteps, Tolerance)
return []
## Generates new elements by extrusion of the elements with given ids
# @param IDsOfElements the list of elements ids for extrusion
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
# @param MakeGroups forces the generation of new groups from existing ones
# @return the list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_extrurev
def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps, MakeGroups=False):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
StepVector = self.smeshpyD.GetDirStruct(StepVector)
StepVector,StepVectorParameters = ParseDirStruct(StepVector)
NbOfSteps,Parameters = geompyDC.ParseParameters(NbOfSteps)
Parameters = StepVectorParameters + var_separator + Parameters
self.mesh.SetParameters(Parameters)
if MakeGroups:
return self.editor.ExtrusionSweepMakeGroups(IDsOfElements, StepVector, NbOfSteps)
self.editor.ExtrusionSweep(IDsOfElements, StepVector, NbOfSteps)
return []
## Generates new elements by extrusion of the elements with given ids
# @param IDsOfElements is ids of elements
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
# @param ExtrFlags sets flags for extrusion
# @param SewTolerance uses for comparing locations of nodes if flag
# EXTRUSION_FLAG_SEW is set
# @param MakeGroups forces the generation of new groups from existing ones
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_extrurev
def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps,
ExtrFlags, SewTolerance, MakeGroups=False):
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
StepVector = self.smeshpyD.GetDirStruct(StepVector)
if MakeGroups:
return self.editor.AdvancedExtrusionMakeGroups(IDsOfElements, StepVector, NbOfSteps,
ExtrFlags, SewTolerance)
self.editor.AdvancedExtrusion(IDsOfElements, StepVector, NbOfSteps,
ExtrFlags, SewTolerance)
return []
## Generates new elements by extrusion of the elements which belong to the object
# @param theObject the object which elements should be processed
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
# @param MakeGroups forces the generation of new groups from existing ones
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_extrurev
def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
StepVector = self.smeshpyD.GetDirStruct(StepVector)
StepVector,StepVectorParameters = ParseDirStruct(StepVector)
NbOfSteps,Parameters = geompyDC.ParseParameters(NbOfSteps)
Parameters = StepVectorParameters + var_separator + Parameters
self.mesh.SetParameters(Parameters)
if MakeGroups:
return self.editor.ExtrusionSweepObjectMakeGroups(theObject, StepVector, NbOfSteps)
self.editor.ExtrusionSweepObject(theObject, StepVector, NbOfSteps)
return []
## Generates new elements by extrusion of the elements which belong to the object
# @param theObject object which elements should be processed
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
# @param MakeGroups to generate new groups from existing ones
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_extrurev
def ExtrusionSweepObject1D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
StepVector = self.smeshpyD.GetDirStruct(StepVector)
StepVector,StepVectorParameters = ParseDirStruct(StepVector)
NbOfSteps,Parameters = geompyDC.ParseParameters(NbOfSteps)
Parameters = StepVectorParameters + var_separator + Parameters
self.mesh.SetParameters(Parameters)
if MakeGroups:
return self.editor.ExtrusionSweepObject1DMakeGroups(theObject, StepVector, NbOfSteps)
self.editor.ExtrusionSweepObject1D(theObject, StepVector, NbOfSteps)
return []
## Generates new elements by extrusion of the elements which belong to the object
# @param theObject object which elements should be processed
# @param StepVector vector, defining the direction and value of extrusion
# @param NbOfSteps the number of steps
# @param MakeGroups forces the generation of new groups from existing ones
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_extrurev
def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
StepVector = self.smeshpyD.GetDirStruct(StepVector)
StepVector,StepVectorParameters = ParseDirStruct(StepVector)
NbOfSteps,Parameters = geompyDC.ParseParameters(NbOfSteps)
Parameters = StepVectorParameters + var_separator + Parameters
self.mesh.SetParameters(Parameters)
if MakeGroups:
return self.editor.ExtrusionSweepObject2DMakeGroups(theObject, StepVector, NbOfSteps)
self.editor.ExtrusionSweepObject2D(theObject, StepVector, NbOfSteps)
return []
## Generates new elements by extrusion of the given elements
# The path of extrusion must be a meshed edge.
# @param Base mesh or list of ids of elements for extrusion
# @param Path - 1D mesh or 1D sub-mesh, along which proceeds the extrusion
# @param NodeStart the start node from Path. Defines the direction of extrusion
# @param HasAngles allows the shape to be rotated around the path
# to get the resulting mesh in a helical fashion
# @param Angles list of angles in radians
# @param LinearVariation forces the computation of rotation angles as linear
# variation of the given Angles along path steps
# @param HasRefPoint allows using the reference point
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
# The User can specify any point as the Reference Point.
# @param MakeGroups forces the generation of new groups from existing ones
# @param ElemType type of elements for extrusion (if param Base is a mesh)
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
# only SMESH::Extrusion_Error otherwise
# @ingroup l2_modif_extrurev
def ExtrusionAlongPathX(self, Base, Path, NodeStart,
HasAngles, Angles, LinearVariation,
HasRefPoint, RefPoint, MakeGroups, ElemType):
Angles,AnglesParameters = ParseAngles(Angles)
RefPoint,RefPointParameters = ParsePointStruct(RefPoint)
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
pass
Parameters = AnglesParameters + var_separator + RefPointParameters
self.mesh.SetParameters(Parameters)
if isinstance(Base,list):
IDsOfElements = []
if Base == []: IDsOfElements = self.GetElementsId()
else: IDsOfElements = Base
return self.editor.ExtrusionAlongPathX(IDsOfElements, Path, NodeStart,
HasAngles, Angles, LinearVariation,
HasRefPoint, RefPoint, MakeGroups, ElemType)
else:
if isinstance(Base,Mesh):
return self.editor.ExtrusionAlongPathObjX(Base, Path, NodeStart,
HasAngles, Angles, LinearVariation,
HasRefPoint, RefPoint, MakeGroups, ElemType)
else:
raise RuntimeError, "Invalid Base for ExtrusionAlongPathX"
## Generates new elements by extrusion of the given elements
# The path of extrusion must be a meshed edge.
# @param IDsOfElements ids of elements
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
# @param PathShape shape(edge) defines the sub-mesh for the path
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
# @param HasAngles allows the shape to be rotated around the path
# to get the resulting mesh in a helical fashion
# @param Angles list of angles in radians
# @param HasRefPoint allows using the reference point
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
# The User can specify any point as the Reference Point.
# @param MakeGroups forces the generation of new groups from existing ones
# @param LinearVariation forces the computation of rotation angles as linear
# variation of the given Angles along path steps
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
# only SMESH::Extrusion_Error otherwise
# @ingroup l2_modif_extrurev
def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart,
HasAngles, Angles, HasRefPoint, RefPoint,
MakeGroups=False, LinearVariation=False):
Angles,AnglesParameters = ParseAngles(Angles)
RefPoint,RefPointParameters = ParsePointStruct(RefPoint)
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
pass
if ( isinstance( PathMesh, Mesh )):
PathMesh = PathMesh.GetMesh()
if HasAngles and Angles and LinearVariation:
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
pass
Parameters = AnglesParameters + var_separator + RefPointParameters
self.mesh.SetParameters(Parameters)
if MakeGroups:
return self.editor.ExtrusionAlongPathMakeGroups(IDsOfElements, PathMesh,
PathShape, NodeStart, HasAngles,
Angles, HasRefPoint, RefPoint)
return self.editor.ExtrusionAlongPath(IDsOfElements, PathMesh, PathShape,
NodeStart, HasAngles, Angles, HasRefPoint, RefPoint)
## Generates new elements by extrusion of the elements which belong to the object
# The path of extrusion must be a meshed edge.
# @param theObject the object which elements should be processed
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
# @param PathShape shape(edge) defines the sub-mesh for the path
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
# @param HasAngles allows the shape to be rotated around the path
# to get the resulting mesh in a helical fashion
# @param Angles list of angles
# @param HasRefPoint allows using the reference point
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
# The User can specify any point as the Reference Point.
# @param MakeGroups forces the generation of new groups from existing ones
# @param LinearVariation forces the computation of rotation angles as linear
# variation of the given Angles along path steps
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
# only SMESH::Extrusion_Error otherwise
# @ingroup l2_modif_extrurev
def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart,
HasAngles, Angles, HasRefPoint, RefPoint,
MakeGroups=False, LinearVariation=False):
Angles,AnglesParameters = ParseAngles(Angles)
RefPoint,RefPointParameters = ParsePointStruct(RefPoint)
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
if ( isinstance( PathMesh, Mesh )):
PathMesh = PathMesh.GetMesh()
if HasAngles and Angles and LinearVariation:
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
pass
Parameters = AnglesParameters + var_separator + RefPointParameters
self.mesh.SetParameters(Parameters)
if MakeGroups:
return self.editor.ExtrusionAlongPathObjectMakeGroups(theObject, PathMesh,
PathShape, NodeStart, HasAngles,
Angles, HasRefPoint, RefPoint)
return self.editor.ExtrusionAlongPathObject(theObject, PathMesh, PathShape,
NodeStart, HasAngles, Angles, HasRefPoint,
RefPoint)
## Generates new elements by extrusion of the elements which belong to the object
# The path of extrusion must be a meshed edge.
# @param theObject the object which elements should be processed
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
# @param PathShape shape(edge) defines the sub-mesh for the path
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
# @param HasAngles allows the shape to be rotated around the path
# to get the resulting mesh in a helical fashion
# @param Angles list of angles
# @param HasRefPoint allows using the reference point
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
# The User can specify any point as the Reference Point.
# @param MakeGroups forces the generation of new groups from existing ones
# @param LinearVariation forces the computation of rotation angles as linear
# variation of the given Angles along path steps
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
# only SMESH::Extrusion_Error otherwise
# @ingroup l2_modif_extrurev
def ExtrusionAlongPathObject1D(self, theObject, PathMesh, PathShape, NodeStart,
HasAngles, Angles, HasRefPoint, RefPoint,
MakeGroups=False, LinearVariation=False):
Angles,AnglesParameters = ParseAngles(Angles)
RefPoint,RefPointParameters = ParsePointStruct(RefPoint)
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
if ( isinstance( PathMesh, Mesh )):
PathMesh = PathMesh.GetMesh()
if HasAngles and Angles and LinearVariation:
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
pass
Parameters = AnglesParameters + var_separator + RefPointParameters
self.mesh.SetParameters(Parameters)
if MakeGroups:
return self.editor.ExtrusionAlongPathObject1DMakeGroups(theObject, PathMesh,
PathShape, NodeStart, HasAngles,
Angles, HasRefPoint, RefPoint)
return self.editor.ExtrusionAlongPathObject1D(theObject, PathMesh, PathShape,
NodeStart, HasAngles, Angles, HasRefPoint,
RefPoint)
## Generates new elements by extrusion of the elements which belong to the object
# The path of extrusion must be a meshed edge.
# @param theObject the object which elements should be processed
# @param PathMesh mesh containing a 1D sub-mesh on the edge, along which the extrusion proceeds
# @param PathShape shape(edge) defines the sub-mesh for the path
# @param NodeStart the first or the last node on the edge. Defines the direction of extrusion
# @param HasAngles allows the shape to be rotated around the path
# to get the resulting mesh in a helical fashion
# @param Angles list of angles
# @param HasRefPoint allows using the reference point
# @param RefPoint the point around which the shape is rotated (the mass center of the shape by default).
# The User can specify any point as the Reference Point.
# @param MakeGroups forces the generation of new groups from existing ones
# @param LinearVariation forces the computation of rotation angles as linear
# variation of the given Angles along path steps
# @return list of created groups (SMESH_GroupBase) and SMESH::Extrusion_Error if MakeGroups=True,
# only SMESH::Extrusion_Error otherwise
# @ingroup l2_modif_extrurev
def ExtrusionAlongPathObject2D(self, theObject, PathMesh, PathShape, NodeStart,
HasAngles, Angles, HasRefPoint, RefPoint,
MakeGroups=False, LinearVariation=False):
Angles,AnglesParameters = ParseAngles(Angles)
RefPoint,RefPointParameters = ParsePointStruct(RefPoint)
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
if ( isinstance( PathMesh, Mesh )):
PathMesh = PathMesh.GetMesh()
if HasAngles and Angles and LinearVariation:
Angles = self.editor.LinearAnglesVariation( PathMesh, PathShape, Angles )
pass
Parameters = AnglesParameters + var_separator + RefPointParameters
self.mesh.SetParameters(Parameters)
if MakeGroups:
return self.editor.ExtrusionAlongPathObject2DMakeGroups(theObject, PathMesh,
PathShape, NodeStart, HasAngles,
Angles, HasRefPoint, RefPoint)
return self.editor.ExtrusionAlongPathObject2D(theObject, PathMesh, PathShape,
NodeStart, HasAngles, Angles, HasRefPoint,
RefPoint)
## Creates a symmetrical copy of mesh elements
# @param IDsOfElements list of elements ids
# @param Mirror is AxisStruct or geom object(point, line, plane)
# @param theMirrorType is POINT, AXIS or PLANE
# If the Mirror is a geom object this parameter is unnecessary
# @param Copy allows to copy element (Copy is 1) or to replace with its mirroring (Copy is 0)
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_trsf
def Mirror(self, IDsOfElements, Mirror, theMirrorType, Copy=0, MakeGroups=False):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
Mirror,Parameters = ParseAxisStruct(Mirror)
self.mesh.SetParameters(Parameters)
if Copy and MakeGroups:
return self.editor.MirrorMakeGroups(IDsOfElements, Mirror, theMirrorType)
self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy)
return []
## Creates a new mesh by a symmetrical copy of mesh elements
# @param IDsOfElements the list of elements ids
# @param Mirror is AxisStruct or geom object (point, line, plane)
# @param theMirrorType is POINT, AXIS or PLANE
# If the Mirror is a geom object this parameter is unnecessary
# @param MakeGroups to generate new groups from existing ones
# @param NewMeshName a name of the new mesh to create
# @return instance of Mesh class
# @ingroup l2_modif_trsf
def MirrorMakeMesh(self, IDsOfElements, Mirror, theMirrorType, MakeGroups=0, NewMeshName=""):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
Mirror,Parameters = ParseAxisStruct(Mirror)
mesh = self.editor.MirrorMakeMesh(IDsOfElements, Mirror, theMirrorType,
MakeGroups, NewMeshName)
mesh.SetParameters(Parameters)
return Mesh(self.smeshpyD,self.geompyD,mesh)
## Creates a symmetrical copy of the object
# @param theObject mesh, submesh or group
# @param Mirror AxisStruct or geom object (point, line, plane)
# @param theMirrorType is POINT, AXIS or PLANE
# If the Mirror is a geom object this parameter is unnecessary
# @param Copy allows copying the element (Copy is 1) or replacing it with its mirror (Copy is 0)
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_trsf
def MirrorObject (self, theObject, Mirror, theMirrorType, Copy=0, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
Mirror,Parameters = ParseAxisStruct(Mirror)
self.mesh.SetParameters(Parameters)
if Copy and MakeGroups:
return self.editor.MirrorObjectMakeGroups(theObject, Mirror, theMirrorType)
self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy)
return []
## Creates a new mesh by a symmetrical copy of the object
# @param theObject mesh, submesh or group
# @param Mirror AxisStruct or geom object (point, line, plane)
# @param theMirrorType POINT, AXIS or PLANE
# If the Mirror is a geom object this parameter is unnecessary
# @param MakeGroups forces the generation of new groups from existing ones
# @param NewMeshName the name of the new mesh to create
# @return instance of Mesh class
# @ingroup l2_modif_trsf
def MirrorObjectMakeMesh (self, theObject, Mirror, theMirrorType,MakeGroups=0, NewMeshName=""):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if (isinstance(Mirror, geompyDC.GEOM._objref_GEOM_Object)):
Mirror = self.smeshpyD.GetAxisStruct(Mirror)
Mirror,Parameters = ParseAxisStruct(Mirror)
mesh = self.editor.MirrorObjectMakeMesh(theObject, Mirror, theMirrorType,
MakeGroups, NewMeshName)
mesh.SetParameters(Parameters)
return Mesh( self.smeshpyD,self.geompyD,mesh )
## Translates the elements
# @param IDsOfElements list of elements ids
# @param Vector the direction of translation (DirStruct or vector)
# @param Copy allows copying the translated elements
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_trsf
def Translate(self, IDsOfElements, Vector, Copy, MakeGroups=False):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
Vector = self.smeshpyD.GetDirStruct(Vector)
Vector,Parameters = ParseDirStruct(Vector)
self.mesh.SetParameters(Parameters)
if Copy and MakeGroups:
return self.editor.TranslateMakeGroups(IDsOfElements, Vector)
self.editor.Translate(IDsOfElements, Vector, Copy)
return []
## Creates a new mesh of translated elements
# @param IDsOfElements list of elements ids
# @param Vector the direction of translation (DirStruct or vector)
# @param MakeGroups forces the generation of new groups from existing ones
# @param NewMeshName the name of the newly created mesh
# @return instance of Mesh class
# @ingroup l2_modif_trsf
def TranslateMakeMesh(self, IDsOfElements, Vector, MakeGroups=False, NewMeshName=""):
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
Vector = self.smeshpyD.GetDirStruct(Vector)
Vector,Parameters = ParseDirStruct(Vector)
mesh = self.editor.TranslateMakeMesh(IDsOfElements, Vector, MakeGroups, NewMeshName)
mesh.SetParameters(Parameters)
return Mesh ( self.smeshpyD, self.geompyD, mesh )
## Translates the object
# @param theObject the object to translate (mesh, submesh, or group)
# @param Vector direction of translation (DirStruct or geom vector)
# @param Copy allows copying the translated elements
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_trsf
def TranslateObject(self, theObject, Vector, Copy, MakeGroups=False):
if ( isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
Vector = self.smeshpyD.GetDirStruct(Vector)
Vector,Parameters = ParseDirStruct(Vector)
self.mesh.SetParameters(Parameters)
if Copy and MakeGroups:
return self.editor.TranslateObjectMakeGroups(theObject, Vector)
self.editor.TranslateObject(theObject, Vector, Copy)
return []
## Creates a new mesh from the translated object
# @param theObject the object to translate (mesh, submesh, or group)
# @param Vector the direction of translation (DirStruct or geom vector)
# @param MakeGroups forces the generation of new groups from existing ones
# @param NewMeshName the name of the newly created mesh
# @return instance of Mesh class
# @ingroup l2_modif_trsf
def TranslateObjectMakeMesh(self, theObject, Vector, MakeGroups=False, NewMeshName=""):
if (isinstance(theObject, Mesh)):
theObject = theObject.GetMesh()
if (isinstance(Vector, geompyDC.GEOM._objref_GEOM_Object)):
Vector = self.smeshpyD.GetDirStruct(Vector)
Vector,Parameters = ParseDirStruct(Vector)
mesh = self.editor.TranslateObjectMakeMesh(theObject, Vector, MakeGroups, NewMeshName)
mesh.SetParameters(Parameters)
return Mesh( self.smeshpyD, self.geompyD, mesh )
## Rotates the elements
# @param IDsOfElements list of elements ids
# @param Axis the axis of rotation (AxisStruct or geom line)
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
# @param Copy allows copying the rotated elements
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_trsf
def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy, MakeGroups=False):
flag = False
if isinstance(AngleInRadians,str):
flag = True
AngleInRadians,Parameters = geompyDC.ParseParameters(AngleInRadians)
if flag:
AngleInRadians = DegreesToRadians(AngleInRadians)
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
Axis,AxisParameters = ParseAxisStruct(Axis)
Parameters = AxisParameters + var_separator + Parameters
self.mesh.SetParameters(Parameters)
if Copy and MakeGroups:
return self.editor.RotateMakeGroups(IDsOfElements, Axis, AngleInRadians)
self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy)
return []
## Creates a new mesh of rotated elements
# @param IDsOfElements list of element ids
# @param Axis the axis of rotation (AxisStruct or geom line)
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
# @param MakeGroups forces the generation of new groups from existing ones
# @param NewMeshName the name of the newly created mesh
# @return instance of Mesh class
# @ingroup l2_modif_trsf
def RotateMakeMesh (self, IDsOfElements, Axis, AngleInRadians, MakeGroups=0, NewMeshName=""):
flag = False
if isinstance(AngleInRadians,str):
flag = True
AngleInRadians,Parameters = geompyDC.ParseParameters(AngleInRadians)
if flag:
AngleInRadians = DegreesToRadians(AngleInRadians)
if IDsOfElements == []:
IDsOfElements = self.GetElementsId()
if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
Axis,AxisParameters = ParseAxisStruct(Axis)
Parameters = AxisParameters + var_separator + Parameters
mesh = self.editor.RotateMakeMesh(IDsOfElements, Axis, AngleInRadians,
MakeGroups, NewMeshName)
mesh.SetParameters(Parameters)
return Mesh( self.smeshpyD, self.geompyD, mesh )
## Rotates the object
# @param theObject the object to rotate( mesh, submesh, or group)
# @param Axis the axis of rotation (AxisStruct or geom line)
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
# @param Copy allows copying the rotated elements
# @param MakeGroups forces the generation of new groups from existing ones (if Copy)
# @return list of created groups (SMESH_GroupBase) if MakeGroups=True, empty list otherwise
# @ingroup l2_modif_trsf
def RotateObject (self, theObject, Axis, AngleInRadians, Copy, MakeGroups=False):
flag = False
if isinstance(AngleInRadians,str):
flag = True
AngleInRadians,Parameters = geompyDC.ParseParameters(AngleInRadians)
if flag:
AngleInRadians = DegreesToRadians(AngleInRadians)
if (isinstance(theObject, Mesh)):
theObject = theObject.GetMesh()
if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
Axis,AxisParameters = ParseAxisStruct(Axis)
Parameters = AxisParameters + ":" + Parameters
self.mesh.SetParameters(Parameters)
if Copy and MakeGroups:
return self.editor.RotateObjectMakeGroups(theObject, Axis, AngleInRadians)
self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy)
return []
## Creates a new mesh from the rotated object
# @param theObject the object to rotate (mesh, submesh, or group)
# @param Axis the axis of rotation (AxisStruct or geom line)
# @param AngleInRadians the angle of rotation (in radians) or a name of variable which defines angle in degrees
# @param MakeGroups forces the generation of new groups from existing ones
# @param NewMeshName the name of the newly created mesh
# @return instance of Mesh class
# @ingroup l2_modif_trsf
def RotateObjectMakeMesh(self, theObject, Axis, AngleInRadians, MakeGroups=0,NewMeshName=""):
flag = False
if isinstance(AngleInRadians,str):
flag = True
AngleInRadians,Parameters = geompyDC.ParseParameters(AngleInRadians)
if flag:
AngleInRadians = DegreesToRadians(AngleInRadians)
if (isinstance( theObject, Mesh )):
theObject = theObject.GetMesh()
if (isinstance(Axis, geompyDC.GEOM._objref_GEOM_Object)):
Axis = self.smeshpyD.GetAxisStruct(Axis)
Axis,AxisParameters = ParseAxisStruct(Axis)
Parameters = AxisParameters + ":" + Parameters
mesh = self.editor.RotateObjectMakeMesh(theObject, Axis, AngleInRadians,
MakeGroups, NewMeshName)
mesh.SetParameters(Parameters)
return Mesh( self.smeshpyD, self.geompyD, mesh )
## Finds groups of ajacent nodes within Tolerance.
# @param Tolerance the value of tolerance
# @return the list of groups of nodes
# @ingroup l2_modif_trsf
def FindCoincidentNodes (self, Tolerance):
return self.editor.FindCoincidentNodes(Tolerance)
## Finds groups of ajacent nodes within Tolerance.
# @param Tolerance the value of tolerance
# @param SubMeshOrGroup SubMesh or Group
# @return the list of groups of nodes
# @ingroup l2_modif_trsf
def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance):
return self.editor.FindCoincidentNodesOnPart(SubMeshOrGroup, Tolerance)
## Merges nodes
# @param GroupsOfNodes the list of groups of nodes
# @ingroup l2_modif_trsf
def MergeNodes (self, GroupsOfNodes):
self.editor.MergeNodes(GroupsOfNodes)
## Finds the elements built on the same nodes.
# @param MeshOrSubMeshOrGroup Mesh or SubMesh, or Group of elements for searching
# @return a list of groups of equal elements
# @ingroup l2_modif_trsf
def FindEqualElements (self, MeshOrSubMeshOrGroup):
if ( isinstance( MeshOrSubMeshOrGroup, Mesh )):
MeshOrSubMeshOrGroup = MeshOrSubMeshOrGroup.GetMesh()
return self.editor.FindEqualElements(MeshOrSubMeshOrGroup)
## Merges elements in each given group.
# @param GroupsOfElementsID groups of elements for merging
# @ingroup l2_modif_trsf
def MergeElements(self, GroupsOfElementsID):
self.editor.MergeElements(GroupsOfElementsID)
## Leaves one element and removes all other elements built on the same nodes.
# @ingroup l2_modif_trsf
def MergeEqualElements(self):
self.editor.MergeEqualElements()
## Sews free borders
# @return SMESH::Sew_Error
# @ingroup l2_modif_trsf
def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2, LastNodeID2,
CreatePolygons, CreatePolyedrs):
return self.editor.SewFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2, LastNodeID2,
CreatePolygons, CreatePolyedrs)
## Sews conform free borders
# @return SMESH::Sew_Error
# @ingroup l2_modif_trsf
def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2):
return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
FirstNodeID2, SecondNodeID2)
## Sews border to side
# @return SMESH::Sew_Error
# @ingroup l2_modif_trsf
def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs):
return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs)
## Sews two sides of a mesh. The nodes belonging to Side1 are
# merged with the nodes of elements of Side2.
# The number of elements in theSide1 and in theSide2 must be
# equal and they should have similar nodal connectivity.
# The nodes to merge should belong to side borders and
# the first node should be linked to the second.
# @return SMESH::Sew_Error
# @ingroup l2_modif_trsf
def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements,
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge):
return self.editor.SewSideElements(IDsOfSide1Elements, IDsOfSide2Elements,
NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge)
## Sets new nodes for the given element.
# @param ide the element id
# @param newIDs nodes ids
# @return If the number of nodes does not correspond to the type of element - returns false
# @ingroup l2_modif_edit
def ChangeElemNodes(self, ide, newIDs):
return self.editor.ChangeElemNodes(ide, newIDs)
## If during the last operation of MeshEditor some nodes were
# created, this method returns the list of their IDs, \n
# if new nodes were not created - returns empty list
# @return the list of integer values (can be empty)
# @ingroup l1_auxiliary
def GetLastCreatedNodes(self):
return self.editor.GetLastCreatedNodes()
## If during the last operation of MeshEditor some elements were
# created this method returns the list of their IDs, \n
# if new elements were not created - returns empty list
# @return the list of integer values (can be empty)
# @ingroup l1_auxiliary
def GetLastCreatedElems(self):
return self.editor.GetLastCreatedElems()
## Creates a hole in a mesh by doubling the nodes of some particular elements
# @param theNodes identifiers of nodes to be doubled
# @param theModifiedElems identifiers of elements to be updated by the new (doubled)
# nodes. If list of element identifiers is empty then nodes are doubled but
# they not assigned to elements
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
def DoubleNodes(self, theNodes, theModifiedElems):
return self.editor.DoubleNodes(theNodes, theModifiedElems)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# This method provided for convenience works as DoubleNodes() described above.
# @param theNodes identifiers of node to be doubled
# @param theModifiedElems identifiers of elements to be updated
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
def DoubleNode(self, theNodeId, theModifiedElems):
return self.editor.DoubleNode(theNodeId, theModifiedElems)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# This method provided for convenience works as DoubleNodes() described above.
# @param theNodes group of nodes to be doubled
# @param theModifiedElems group of elements to be updated.
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
def DoubleNodeGroup(self, theNodes, theModifiedElems):
return self.editor.DoubleNodeGroup(theNodes, theModifiedElems)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# This method provided for convenience works as DoubleNodes() described above.
# @param theNodes list of groups of nodes to be doubled
# @param theModifiedElems list of groups of elements to be updated.
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
def DoubleNodeGroups(self, theNodes, theModifiedElems):
return self.editor.DoubleNodeGroups(theNodes, theModifiedElems)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# @param theElems - the list of elements (edges or faces) to be replicated
# The nodes for duplication could be found from these elements
# @param theNodesNot - list of nodes to NOT replicate
# @param theAffectedElems - the list of elements (cells and edges) to which the
# replicated nodes should be associated to.
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
def DoubleNodeElem(self, theElems, theNodesNot, theAffectedElems):
return self.editor.DoubleNodeElem(theElems, theNodesNot, theAffectedElems)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# @param theElems - the list of elements (edges or faces) to be replicated
# The nodes for duplication could be found from these elements
# @param theNodesNot - list of nodes to NOT replicate
# @param theShape - shape to detect affected elements (element which geometric center
# located on or inside shape).
# The replicated nodes should be associated to affected elements.
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
def DoubleNodeElemInRegion(self, theElems, theNodesNot, theShape):
return self.editor.DoubleNodeElemInRegion(theElems, theNodesNot, theShape)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# This method provided for convenience works as DoubleNodes() described above.
# @param theElems - group of of elements (edges or faces) to be replicated
# @param theNodesNot - group of nodes not to replicated
# @param theAffectedElems - group of elements to which the replicated nodes
# should be associated to.
# @ingroup l2_modif_edit
def DoubleNodeElemGroup(self, theElems, theNodesNot, theAffectedElems):
return self.editor.DoubleNodeElemGroup(theElems, theNodesNot, theAffectedElems)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# This method provided for convenience works as DoubleNodes() described above.
# @param theElems - group of of elements (edges or faces) to be replicated
# @param theNodesNot - group of nodes not to replicated
# @param theShape - shape to detect affected elements (element which geometric center
# located on or inside shape).
# The replicated nodes should be associated to affected elements.
# @ingroup l2_modif_edit
def DoubleNodeElemGroupInRegion(self, theElems, theNodesNot, theShape):
return self.editor.DoubleNodeElemGroupInRegion(theElems, theNodesNot, theShape)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# This method provided for convenience works as DoubleNodes() described above.
# @param theElems - list of groups of elements (edges or faces) to be replicated
# @param theNodesNot - list of groups of nodes not to replicated
# @param theAffectedElems - group of elements to which the replicated nodes
# should be associated to.
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
def DoubleNodeElemGroups(self, theElems, theNodesNot, theAffectedElems):
return self.editor.DoubleNodeElemGroups(theElems, theNodesNot, theAffectedElems)
## Creates a hole in a mesh by doubling the nodes of some particular elements
# This method provided for convenience works as DoubleNodes() described above.
# @param theElems - list of groups of elements (edges or faces) to be replicated
# @param theNodesNot - list of groups of nodes not to replicated
# @param theShape - shape to detect affected elements (element which geometric center
# located on or inside shape).
# The replicated nodes should be associated to affected elements.
# @return TRUE if operation has been completed successfully, FALSE otherwise
# @ingroup l2_modif_edit
def DoubleNodeElemGroupsInRegion(self, theElems, theNodesNot, theShape):
return self.editor.DoubleNodeElemGroupsInRegion(theElems, theNodesNot, theShape)
## The mother class to define algorithm, it is not recommended to use it directly.
#
# More details.
# @ingroup l2_algorithms
class Mesh_Algorithm:
# @class Mesh_Algorithm
# @brief Class Mesh_Algorithm
#def __init__(self,smesh):
# self.smesh=smesh
def __init__(self):
self.mesh = None
self.geom = None
self.subm = None
self.algo = None
## Finds a hypothesis in the study by its type name and parameters.
# Finds only the hypotheses created in smeshpyD engine.
# @return SMESH.SMESH_Hypothesis
def FindHypothesis (self, hypname, args, CompareMethod, smeshpyD):
study = smeshpyD.GetCurrentStudy()
#to do: find component by smeshpyD object, not by its data type
scomp = study.FindComponent(smeshpyD.ComponentDataType())
if scomp is not None:
res,hypRoot = scomp.FindSubObject(SMESH.Tag_HypothesisRoot)
# Check if the root label of the hypotheses exists
if res and hypRoot is not None:
iter = study.NewChildIterator(hypRoot)
# Check all published hypotheses
while iter.More():
hypo_so_i = iter.Value()
attr = hypo_so_i.FindAttribute("AttributeIOR")[1]
if attr is not None:
anIOR = attr.Value()
hypo_o_i = salome.orb.string_to_object(anIOR)
if hypo_o_i is not None:
# Check if this is a hypothesis
hypo_i = hypo_o_i._narrow(SMESH.SMESH_Hypothesis)
if hypo_i is not None:
# Check if the hypothesis belongs to current engine
if smeshpyD.GetObjectId(hypo_i) > 0:
# Check if this is the required hypothesis
if hypo_i.GetName() == hypname:
# Check arguments
if CompareMethod(hypo_i, args):
# found!!!
return hypo_i
pass
pass
pass
pass
pass
iter.Next()
pass
pass
pass
return None
## Finds the algorithm in the study by its type name.
# Finds only the algorithms, which have been created in smeshpyD engine.
# @return SMESH.SMESH_Algo
def FindAlgorithm (self, algoname, smeshpyD):
study = smeshpyD.GetCurrentStudy()
#to do: find component by smeshpyD object, not by its data type
scomp = study.FindComponent(smeshpyD.ComponentDataType())
if scomp is not None:
res,hypRoot = scomp.FindSubObject(SMESH.Tag_AlgorithmsRoot)
# Check if the root label of the algorithms exists
if res and hypRoot is not None:
iter = study.NewChildIterator(hypRoot)
# Check all published algorithms
while iter.More():
algo_so_i = iter.Value()
attr = algo_so_i.FindAttribute("AttributeIOR")[1]
if attr is not None:
anIOR = attr.Value()
algo_o_i = salome.orb.string_to_object(anIOR)
if algo_o_i is not None:
# Check if this is an algorithm
algo_i = algo_o_i._narrow(SMESH.SMESH_Algo)
if algo_i is not None:
# Checks if the algorithm belongs to the current engine
if smeshpyD.GetObjectId(algo_i) > 0:
# Check if this is the required algorithm
if algo_i.GetName() == algoname:
# found!!!
return algo_i
pass
pass
pass
pass
iter.Next()
pass
pass
pass
return None
## If the algorithm is global, returns 0; \n
# else returns the submesh associated to this algorithm.
def GetSubMesh(self):
return self.subm
## Returns the wrapped mesher.
def GetAlgorithm(self):
return self.algo
## Gets the list of hypothesis that can be used with this algorithm
def GetCompatibleHypothesis(self):
mylist = []
if self.algo:
mylist = self.algo.GetCompatibleHypothesis()
return mylist
## Gets the name of the algorithm
def GetName(self):
GetName(self.algo)
## Sets the name to the algorithm
def SetName(self, name):
self.mesh.smeshpyD.SetName(self.algo, name)
## Gets the id of the algorithm
def GetId(self):
return self.algo.GetId()
## Private method.
def Create(self, mesh, geom, hypo, so="libStdMeshersEngine.so"):
if geom is None:
raise RuntimeError, "Attemp to create " + hypo + " algoritm on None shape"
algo = self.FindAlgorithm(hypo, mesh.smeshpyD)
if algo is None:
algo = mesh.smeshpyD.CreateHypothesis(hypo, so)
pass
self.Assign(algo, mesh, geom)
return self.algo
## Private method
def Assign(self, algo, mesh, geom):
if geom is None:
raise RuntimeError, "Attemp to create " + algo + " algoritm on None shape"
self.mesh = mesh
piece = mesh.geom
if not geom:
self.geom = piece
else:
self.geom = geom
name = GetName(geom)
if name==NO_NAME:
name = mesh.geompyD.SubShapeName(geom, piece)
mesh.geompyD.addToStudyInFather(piece, geom, name)
self.subm = mesh.mesh.GetSubMesh(geom, algo.GetName())
self.algo = algo
status = mesh.mesh.AddHypothesis(self.geom, self.algo)
TreatHypoStatus( status, algo.GetName(), GetName(self.geom), True )
def CompareHyp (self, hyp, args):
print "CompareHyp is not implemented for ", self.__class__.__name__, ":", hyp.GetName()
return False
def CompareEqualHyp (self, hyp, args):
return True
## Private method
def Hypothesis (self, hyp, args=[], so="libStdMeshersEngine.so",
UseExisting=0, CompareMethod=""):
hypo = None
if UseExisting:
if CompareMethod == "": CompareMethod = self.CompareHyp
hypo = self.FindHypothesis(hyp, args, CompareMethod, self.mesh.smeshpyD)
pass
if hypo is None:
hypo = self.mesh.smeshpyD.CreateHypothesis(hyp, so)
a = ""
s = "="
i = 0
n = len(args)
while i 0.0:
# set given length
hyp.SetLength(length)
if not UseExisting:
# set preestimated length
gen = self.mesh.smeshpyD
initHyp = gen.GetHypothesisParameterValues("MaxLength", "libStdMeshersEngine.so",
self.mesh.GetMesh(), self.mesh.GetShape(),
False) # <- byMesh
preHyp = initHyp._narrow(StdMeshers.StdMeshers_MaxLength)
if preHyp:
hyp.SetPreestimatedLength( preHyp.GetPreestimatedLength() )
pass
pass
hyp.SetUsePreestimatedLength( length == 0.0 )
return hyp
## Defines "NumberOfSegments" hypothesis to cut an edge in a fixed number of segments
# @param n for the number of segments that cut an edge
# @param s for the scale factor (optional)
# @param reversedEdges is a list of edges to mesh using reversed orientation
# @param UseExisting if ==true - searches for an existing hypothesis created with
# the same parameters, else (default) - create a new one
# @return an instance of StdMeshers_NumberOfSegments hypothesis
# @ingroup l3_hypos_1dhyps
def NumberOfSegments(self, n, s=[], reversedEdges=[], UseExisting=0):
if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
reversedEdges, UseExisting = [], reversedEdges
entry = self.MainShapeEntry()
if s == []:
hyp = self.Hypothesis("NumberOfSegments", [n, reversedEdges, entry],
UseExisting=UseExisting,
CompareMethod=self.CompareNumberOfSegments)
else:
hyp = self.Hypothesis("NumberOfSegments", [n,s, reversedEdges, entry],
UseExisting=UseExisting,
CompareMethod=self.CompareNumberOfSegments)
hyp.SetDistrType( 1 )
hyp.SetScaleFactor(s)
hyp.SetNumberOfSegments(n)
hyp.SetReversedEdges( reversedEdges )
hyp.SetObjectEntry( entry )
return hyp
## Private method
## Checks if the given "NumberOfSegments" hypothesis has the same parameters as the given arguments
def CompareNumberOfSegments(self, hyp, args):
if hyp.GetNumberOfSegments() == args[0]:
if len(args) == 3:
if hyp.GetReversedEdges() == args[1]:
if not args[1] or hyp.GetObjectEntry() == args[2]:
return True
else:
if hyp.GetReversedEdges() == args[2]:
if not args[2] or hyp.GetObjectEntry() == args[3]:
if hyp.GetDistrType() == 1:
if IsEqual(hyp.GetScaleFactor(), args[1]):
return True
return False
## Defines "Arithmetic1D" hypothesis to cut an edge in several segments with increasing arithmetic length
# @param start defines the length of the first segment
# @param end defines the length of the last segment
# @param reversedEdges is a list of edges to mesh using reversed orientation
# @param UseExisting if ==true - searches for an existing hypothesis created with
# the same parameters, else (default) - creates a new one
# @return an instance of StdMeshers_Arithmetic1D hypothesis
# @ingroup l3_hypos_1dhyps
def Arithmetic1D(self, start, end, reversedEdges=[], UseExisting=0):
if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
reversedEdges, UseExisting = [], reversedEdges
entry = self.MainShapeEntry()
hyp = self.Hypothesis("Arithmetic1D", [start, end, reversedEdges, entry],
UseExisting=UseExisting,
CompareMethod=self.CompareArithmetic1D)
hyp.SetStartLength(start)
hyp.SetEndLength(end)
hyp.SetReversedEdges( reversedEdges )
hyp.SetObjectEntry( entry )
return hyp
## Private method
## Check if the given "Arithmetic1D" hypothesis has the same parameters as the given arguments
def CompareArithmetic1D(self, hyp, args):
if IsEqual(hyp.GetLength(1), args[0]):
if IsEqual(hyp.GetLength(0), args[1]):
if hyp.GetReversedEdges() == args[2]:
if not args[2] or hyp.GetObjectEntry() == args[3]:
return True
return False
## Defines "FixedPoints1D" hypothesis to cut an edge using parameter
# on curve from 0 to 1 (additionally it is neecessary to check
# orientation of edges and create list of reversed edges if it is
# needed) and sets numbers of segments between given points (default
# values are equals 1
# @param points defines the list of parameters on curve
# @param nbSegs defines the list of numbers of segments
# @param reversedEdges is a list of edges to mesh using reversed orientation
# @param UseExisting if ==true - searches for an existing hypothesis created with
# the same parameters, else (default) - creates a new one
# @return an instance of StdMeshers_Arithmetic1D hypothesis
# @ingroup l3_hypos_1dhyps
def FixedPoints1D(self, points, nbSegs=[1], reversedEdges=[], UseExisting=0):
if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
reversedEdges, UseExisting = [], reversedEdges
entry = self.MainShapeEntry()
hyp = self.Hypothesis("FixedPoints1D", [points, nbSegs, reversedEdges, entry],
UseExisting=UseExisting,
CompareMethod=self.CompareArithmetic1D)
hyp.SetPoints(points)
hyp.SetNbSegments(nbSegs)
hyp.SetReversedEdges(reversedEdges)
hyp.SetObjectEntry(entry)
return hyp
## Private method
## Check if the given "FixedPoints1D" hypothesis has the same parameters
## as the given arguments
def CompareFixedPoints1D(self, hyp, args):
if hyp.GetPoints() == args[0]:
if hyp.GetNbSegments() == args[1]:
if hyp.GetReversedEdges() == args[2]:
if not args[2] or hyp.GetObjectEntry() == args[3]:
return True
return False
## Defines "StartEndLength" hypothesis to cut an edge in several segments with increasing geometric length
# @param start defines the length of the first segment
# @param end defines the length of the last segment
# @param reversedEdges is a list of edges to mesh using reversed orientation
# @param UseExisting if ==true - searches for an existing hypothesis created with
# the same parameters, else (default) - creates a new one
# @return an instance of StdMeshers_StartEndLength hypothesis
# @ingroup l3_hypos_1dhyps
def StartEndLength(self, start, end, reversedEdges=[], UseExisting=0):
if not isinstance(reversedEdges,list): #old version script, before adding reversedEdges
reversedEdges, UseExisting = [], reversedEdges
entry = self.MainShapeEntry()
hyp = self.Hypothesis("StartEndLength", [start, end, reversedEdges, entry],
UseExisting=UseExisting,
CompareMethod=self.CompareStartEndLength)
hyp.SetStartLength(start)
hyp.SetEndLength(end)
hyp.SetReversedEdges( reversedEdges )
hyp.SetObjectEntry( entry )
return hyp
## Check if the given "StartEndLength" hypothesis has the same parameters as the given arguments
def CompareStartEndLength(self, hyp, args):
if IsEqual(hyp.GetLength(1), args[0]):
if IsEqual(hyp.GetLength(0), args[1]):
if hyp.GetReversedEdges() == args[2]:
if not args[2] or hyp.GetObjectEntry() == args[3]:
return True
return False
## Defines "Deflection1D" hypothesis
# @param d for the deflection
# @param UseExisting if ==true - searches for an existing hypothesis created with
# the same parameters, else (default) - create a new one
# @ingroup l3_hypos_1dhyps
def Deflection1D(self, d, UseExisting=0):
hyp = self.Hypothesis("Deflection1D", [d], UseExisting=UseExisting,
CompareMethod=self.CompareDeflection1D)
hyp.SetDeflection(d)
return hyp
## Check if the given "Deflection1D" hypothesis has the same parameters as the given arguments
def CompareDeflection1D(self, hyp, args):
return IsEqual(hyp.GetDeflection(), args[0])
## Defines "Propagation" hypothesis that propagates all other hypotheses on all other edges that are at
# the opposite side in case of quadrangular faces
# @ingroup l3_hypos_additi
def Propagation(self):
return self.Hypothesis("Propagation", UseExisting=1, CompareMethod=self.CompareEqualHyp)
## Defines "AutomaticLength" hypothesis
# @param fineness for the fineness [0-1]
# @param UseExisting if ==true - searches for an existing hypothesis created with the
# same parameters, else (default) - create a new one
# @ingroup l3_hypos_1dhyps
def AutomaticLength(self, fineness=0, UseExisting=0):
hyp = self.Hypothesis("AutomaticLength",[fineness],UseExisting=UseExisting,
CompareMethod=self.CompareAutomaticLength)
hyp.SetFineness( fineness )
return hyp
## Checks if the given "AutomaticLength" hypothesis has the same parameters as the given arguments
def CompareAutomaticLength(self, hyp, args):
return IsEqual(hyp.GetFineness(), args[0])
## Defines "SegmentLengthAroundVertex" hypothesis
# @param length for the segment length
# @param vertex for the length localization: the vertex index [0,1] | vertex object.
# Any other integer value means that the hypothesis will be set on the
# whole 1D shape, where Mesh_Segment algorithm is assigned.
# @param UseExisting if ==true - searches for an existing hypothesis created with
# the same parameters, else (default) - creates a new one
# @ingroup l3_algos_segmarv
def LengthNearVertex(self, length, vertex=0, UseExisting=0):
import types
store_geom = self.geom
if type(vertex) is types.IntType:
if vertex == 0 or vertex == 1:
vertex = self.mesh.geompyD.SubShapeAllSorted(self.geom, geompyDC.ShapeType["VERTEX"])[vertex]
self.geom = vertex
pass
pass
else:
self.geom = vertex
pass
### 0D algorithm
if self.geom is None:
raise RuntimeError, "Attemp to create SegmentAroundVertex_0D algoritm on None shape"
name = GetName(self.geom)
if name == NO_NAME:
piece = self.mesh.geom
name = self.mesh.geompyD.SubShapeName(self.geom, piece)
self.mesh.geompyD.addToStudyInFather(piece, self.geom, name)
algo = self.FindAlgorithm("SegmentAroundVertex_0D", self.mesh.smeshpyD)
if algo is None:
algo = self.mesh.smeshpyD.CreateHypothesis("SegmentAroundVertex_0D", "libStdMeshersEngine.so")
pass
status = self.mesh.mesh.AddHypothesis(self.geom, algo)
TreatHypoStatus(status, "SegmentAroundVertex_0D", name, True)
###
hyp = self.Hypothesis("SegmentLengthAroundVertex", [length], UseExisting=UseExisting,
CompareMethod=self.CompareLengthNearVertex)
self.geom = store_geom
hyp.SetLength( length )
return hyp
## Checks if the given "LengthNearVertex" hypothesis has the same parameters as the given arguments
# @ingroup l3_algos_segmarv
def CompareLengthNearVertex(self, hyp, args):
return IsEqual(hyp.GetLength(), args[0])
## Defines "QuadraticMesh" hypothesis, forcing construction of quadratic edges.
# If the 2D mesher sees that all boundary edges are quadratic,
# it generates quadratic faces, else it generates linear faces using
# medium nodes as if they are vertices.
# The 3D mesher generates quadratic volumes only if all boundary faces
# are quadratic, else it fails.
#
# @ingroup l3_hypos_additi
def QuadraticMesh(self):
hyp = self.Hypothesis("QuadraticMesh", UseExisting=1, CompareMethod=self.CompareEqualHyp)
return hyp
# Public class: Mesh_CompositeSegment
# --------------------------
## Defines a segment 1D algorithm for discretization
#
# @ingroup l3_algos_basic
class Mesh_CompositeSegment(Mesh_Segment):
## Private constructor.
def __init__(self, mesh, geom=0):
self.Create(mesh, geom, "CompositeSegment_1D")
# Public class: Mesh_Segment_Python
# ---------------------------------
## Defines a segment 1D algorithm for discretization with python function
#
# @ingroup l3_algos_basic
class Mesh_Segment_Python(Mesh_Segment):
## Private constructor.
def __init__(self, mesh, geom=0):
import Python1dPlugin
self.Create(mesh, geom, "Python_1D", "libPython1dEngine.so")
## Defines "PythonSplit1D" hypothesis
# @param n for the number of segments that cut an edge
# @param func for the python function that calculates the length of all segments
# @param UseExisting if ==true - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
# @ingroup l3_hypos_1dhyps
def PythonSplit1D(self, n, func, UseExisting=0):
hyp = self.Hypothesis("PythonSplit1D", [n], "libPython1dEngine.so",
UseExisting=UseExisting, CompareMethod=self.ComparePythonSplit1D)
hyp.SetNumberOfSegments(n)
hyp.SetPythonLog10RatioFunction(func)
return hyp
## Checks if the given "PythonSplit1D" hypothesis has the same parameters as the given arguments
def ComparePythonSplit1D(self, hyp, args):
#if hyp.GetNumberOfSegments() == args[0]:
# if hyp.GetPythonLog10RatioFunction() == args[1]:
# return True
return False
# Public class: Mesh_Triangle
# ---------------------------
## Defines a triangle 2D algorithm
#
# @ingroup l3_algos_basic
class Mesh_Triangle(Mesh_Algorithm):
# default values
algoType = 0
params = 0
_angleMeshS = 8
_gradation = 1.1
## Private constructor.
def __init__(self, mesh, algoType, geom=0):
Mesh_Algorithm.__init__(self)
self.algoType = algoType
if algoType == MEFISTO:
self.Create(mesh, geom, "MEFISTO_2D")
pass
elif algoType == BLSURF:
CheckPlugin(BLSURF)
self.Create(mesh, geom, "BLSURF", "libBLSURFEngine.so")
#self.SetPhysicalMesh() - PAL19680
elif algoType == NETGEN:
CheckPlugin(NETGEN)
self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
pass
elif algoType == NETGEN_2D:
CheckPlugin(NETGEN)
self.Create(mesh, geom, "NETGEN_2D_ONLY", "libNETGENEngine.so")
pass
## Defines "MaxElementArea" hypothesis basing on the definition of the maximum area of each triangle
# @param area for the maximum area of each triangle
# @param UseExisting if ==true - searches for an existing hypothesis created with the
# same parameters, else (default) - creates a new one
#
# Only for algoType == MEFISTO || NETGEN_2D
# @ingroup l3_hypos_2dhyps
def MaxElementArea(self, area, UseExisting=0):
if self.algoType == MEFISTO or self.algoType == NETGEN_2D:
hyp = self.Hypothesis("MaxElementArea", [area], UseExisting=UseExisting,
CompareMethod=self.CompareMaxElementArea)
elif self.algoType == NETGEN:
hyp = self.Parameters(SIMPLE)
hyp.SetMaxElementArea(area)
return hyp
## Checks if the given "MaxElementArea" hypothesis has the same parameters as the given arguments
def CompareMaxElementArea(self, hyp, args):
return IsEqual(hyp.GetMaxElementArea(), args[0])
## Defines "LengthFromEdges" hypothesis to build triangles
# based on the length of the edges taken from the wire
#
# Only for algoType == MEFISTO || NETGEN_2D
# @ingroup l3_hypos_2dhyps
def LengthFromEdges(self):
if self.algoType == MEFISTO or self.algoType == NETGEN_2D:
hyp = self.Hypothesis("LengthFromEdges", UseExisting=1, CompareMethod=self.CompareEqualHyp)
return hyp
elif self.algoType == NETGEN:
hyp = self.Parameters(SIMPLE)
hyp.LengthFromEdges()
return hyp
## Sets a way to define size of mesh elements to generate.
# @param thePhysicalMesh is: DefaultSize or Custom.
# @ingroup l3_hypos_blsurf
def SetPhysicalMesh(self, thePhysicalMesh=DefaultSize):
# Parameter of BLSURF algo
self.Parameters().SetPhysicalMesh(thePhysicalMesh)
## Sets size of mesh elements to generate.
# @ingroup l3_hypos_blsurf
def SetPhySize(self, theVal):
# Parameter of BLSURF algo
self.SetPhysicalMesh(1) #Custom - else why to set the size?
self.Parameters().SetPhySize(theVal)
## Sets lower boundary of mesh element size (PhySize).
# @ingroup l3_hypos_blsurf
def SetPhyMin(self, theVal=-1):
# Parameter of BLSURF algo
self.Parameters().SetPhyMin(theVal)
## Sets upper boundary of mesh element size (PhySize).
# @ingroup l3_hypos_blsurf
def SetPhyMax(self, theVal=-1):
# Parameter of BLSURF algo
self.Parameters().SetPhyMax(theVal)
## Sets a way to define maximum angular deflection of mesh from CAD model.
# @param theGeometricMesh is: DefaultGeom or Custom
# @ingroup l3_hypos_blsurf
def SetGeometricMesh(self, theGeometricMesh=0):
# Parameter of BLSURF algo
if self.Parameters().GetPhysicalMesh() == 0: theGeometricMesh = 1
self.params.SetGeometricMesh(theGeometricMesh)
## Sets angular deflection (in degrees) of a mesh face from CAD surface.
# @ingroup l3_hypos_blsurf
def SetAngleMeshS(self, theVal=_angleMeshS):
# Parameter of BLSURF algo
if self.Parameters().GetGeometricMesh() == 0: theVal = self._angleMeshS
self.params.SetAngleMeshS(theVal)
## Sets angular deflection (in degrees) of a mesh edge from CAD curve.
# @ingroup l3_hypos_blsurf
def SetAngleMeshC(self, theVal=_angleMeshS):
# Parameter of BLSURF algo
if self.Parameters().GetGeometricMesh() == 0: theVal = self._angleMeshS
self.params.SetAngleMeshC(theVal)
## Sets lower boundary of mesh element size computed to respect angular deflection.
# @ingroup l3_hypos_blsurf
def SetGeoMin(self, theVal=-1):
# Parameter of BLSURF algo
self.Parameters().SetGeoMin(theVal)
## Sets upper boundary of mesh element size computed to respect angular deflection.
# @ingroup l3_hypos_blsurf
def SetGeoMax(self, theVal=-1):
# Parameter of BLSURF algo
self.Parameters().SetGeoMax(theVal)
## Sets maximal allowed ratio between the lengths of two adjacent edges.
# @ingroup l3_hypos_blsurf
def SetGradation(self, theVal=_gradation):
# Parameter of BLSURF algo
if self.Parameters().GetGeometricMesh() == 0: theVal = self._gradation
self.params.SetGradation(theVal)
## Sets topology usage way.
# @param way defines how mesh conformity is assured
# - FromCAD - mesh conformity is assured by conformity of a shape
# - PreProcess or PreProcessPlus - by pre-processing a CAD model
# @ingroup l3_hypos_blsurf
def SetTopology(self, way):
# Parameter of BLSURF algo
self.Parameters().SetTopology(way)
## To respect geometrical edges or not.
# @ingroup l3_hypos_blsurf
def SetDecimesh(self, toIgnoreEdges=False):
# Parameter of BLSURF algo
self.Parameters().SetDecimesh(toIgnoreEdges)
## Sets verbosity level in the range 0 to 100.
# @ingroup l3_hypos_blsurf
def SetVerbosity(self, level):
# Parameter of BLSURF algo
self.Parameters().SetVerbosity(level)
## Sets advanced option value.
# @ingroup l3_hypos_blsurf
def SetOptionValue(self, optionName, level):
# Parameter of BLSURF algo
self.Parameters().SetOptionValue(optionName,level)
## Sets QuadAllowed flag.
# Only for algoType == NETGEN || NETGEN_2D || BLSURF
# @ingroup l3_hypos_netgen l3_hypos_blsurf
def SetQuadAllowed(self, toAllow=True):
if self.algoType == NETGEN_2D:
if toAllow: # add QuadranglePreference
self.Hypothesis("QuadranglePreference", UseExisting=1, CompareMethod=self.CompareEqualHyp)
else: # remove QuadranglePreference
for hyp in self.mesh.GetHypothesisList( self.geom ):
if hyp.GetName() == "QuadranglePreference":
self.mesh.RemoveHypothesis( self.geom, hyp )
pass
pass
pass
return
if self.Parameters():
self.params.SetQuadAllowed(toAllow)
return
## Defines hypothesis having several parameters
#
# @ingroup l3_hypos_netgen
def Parameters(self, which=SOLE):
if self.params:
return self.params
if self.algoType == NETGEN:
if which == SIMPLE:
self.params = self.Hypothesis("NETGEN_SimpleParameters_2D", [],
"libNETGENEngine.so", UseExisting=0)
else:
self.params = self.Hypothesis("NETGEN_Parameters_2D", [],
"libNETGENEngine.so", UseExisting=0)
return self.params
elif self.algoType == MEFISTO:
print "Mefisto algo support no multi-parameter hypothesis"
return None
elif self.algoType == NETGEN_2D:
print "NETGEN_2D_ONLY algo support no multi-parameter hypothesis"
print "NETGEN_2D_ONLY uses 'MaxElementArea' and 'LengthFromEdges' ones"
return None
elif self.algoType == BLSURF:
self.params = self.Hypothesis("BLSURF_Parameters", [],
"libBLSURFEngine.so", UseExisting=0)
return self.params
else:
print "Mesh_Triangle with algo type %s does not have such a parameter, check algo type"%self.algoType
return None
## Sets MaxSize
#
# Only for algoType == NETGEN
# @ingroup l3_hypos_netgen
def SetMaxSize(self, theSize):
if self.Parameters():
self.params.SetMaxSize(theSize)
## Sets SecondOrder flag
#
# Only for algoType == NETGEN
# @ingroup l3_hypos_netgen
def SetSecondOrder(self, theVal):
if self.Parameters():
self.params.SetSecondOrder(theVal)
## Sets Optimize flag
#
# Only for algoType == NETGEN
# @ingroup l3_hypos_netgen
def SetOptimize(self, theVal):
if self.Parameters():
self.params.SetOptimize(theVal)
## Sets Fineness
# @param theFineness is:
# VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
#
# Only for algoType == NETGEN
# @ingroup l3_hypos_netgen
def SetFineness(self, theFineness):
if self.Parameters():
self.params.SetFineness(theFineness)
## Sets GrowthRate
#
# Only for algoType == NETGEN
# @ingroup l3_hypos_netgen
def SetGrowthRate(self, theRate):
if self.Parameters():
self.params.SetGrowthRate(theRate)
## Sets NbSegPerEdge
#
# Only for algoType == NETGEN
# @ingroup l3_hypos_netgen
def SetNbSegPerEdge(self, theVal):
if self.Parameters():
self.params.SetNbSegPerEdge(theVal)
## Sets NbSegPerRadius
#
# Only for algoType == NETGEN
# @ingroup l3_hypos_netgen
def SetNbSegPerRadius(self, theVal):
if self.Parameters():
self.params.SetNbSegPerRadius(theVal)
## Sets number of segments overriding value set by SetLocalLength()
#
# Only for algoType == NETGEN
# @ingroup l3_hypos_netgen
def SetNumberOfSegments(self, theVal):
self.Parameters(SIMPLE).SetNumberOfSegments(theVal)
## Sets number of segments overriding value set by SetNumberOfSegments()
#
# Only for algoType == NETGEN
# @ingroup l3_hypos_netgen
def SetLocalLength(self, theVal):
self.Parameters(SIMPLE).SetLocalLength(theVal)
pass
# Public class: Mesh_Quadrangle
# -----------------------------
## Defines a quadrangle 2D algorithm
#
# @ingroup l3_algos_basic
class Mesh_Quadrangle(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, "Quadrangle_2D")
## Defines "QuadranglePreference" hypothesis, forcing construction
# of quadrangles if the number of nodes on the opposite edges is not the same
# while the total number of nodes on edges is even
#
# @ingroup l3_hypos_additi
def QuadranglePreference(self):
hyp = self.Hypothesis("QuadranglePreference", UseExisting=1,
CompareMethod=self.CompareEqualHyp)
return hyp
## Defines "TrianglePreference" hypothesis, forcing construction
# of triangles in the refinement area if the number of nodes
# on the opposite edges is not the same
#
# @ingroup l3_hypos_additi
def TrianglePreference(self):
hyp = self.Hypothesis("TrianglePreference", UseExisting=1,
CompareMethod=self.CompareEqualHyp)
return hyp
# Public class: Mesh_Tetrahedron
# ------------------------------
## Defines a tetrahedron 3D algorithm
#
# @ingroup l3_algos_basic
class Mesh_Tetrahedron(Mesh_Algorithm):
params = 0
algoType = 0
## Private constructor.
def __init__(self, mesh, algoType, geom=0):
Mesh_Algorithm.__init__(self)
if algoType == NETGEN:
CheckPlugin(NETGEN)
self.Create(mesh, geom, "NETGEN_3D", "libNETGENEngine.so")
pass
elif algoType == FULL_NETGEN:
CheckPlugin(NETGEN)
self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
pass
elif algoType == GHS3D:
CheckPlugin(GHS3D)
self.Create(mesh, geom, "GHS3D_3D" , "libGHS3DEngine.so")
pass
elif algoType == GHS3DPRL:
CheckPlugin(GHS3DPRL)
self.Create(mesh, geom, "GHS3DPRL_3D" , "libGHS3DPRLEngine.so")
pass
self.algoType = algoType
## Defines "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedron
# @param vol for the maximum volume of each tetrahedron
# @param UseExisting if ==true - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
# @ingroup l3_hypos_maxvol
def MaxElementVolume(self, vol, UseExisting=0):
if self.algoType == NETGEN:
hyp = self.Hypothesis("MaxElementVolume", [vol], UseExisting=UseExisting,
CompareMethod=self.CompareMaxElementVolume)
hyp.SetMaxElementVolume(vol)
return hyp
elif self.algoType == FULL_NETGEN:
self.Parameters(SIMPLE).SetMaxElementVolume(vol)
return None
## Checks if the given "MaxElementVolume" hypothesis has the same parameters as the given arguments
def CompareMaxElementVolume(self, hyp, args):
return IsEqual(hyp.GetMaxElementVolume(), args[0])
## Defines hypothesis having several parameters
#
# @ingroup l3_hypos_netgen
def Parameters(self, which=SOLE):
if self.params:
return self.params
if self.algoType == FULL_NETGEN:
if which == SIMPLE:
self.params = self.Hypothesis("NETGEN_SimpleParameters_3D", [],
"libNETGENEngine.so", UseExisting=0)
else:
self.params = self.Hypothesis("NETGEN_Parameters", [],
"libNETGENEngine.so", UseExisting=0)
return self.params
if self.algoType == GHS3D:
self.params = self.Hypothesis("GHS3D_Parameters", [],
"libGHS3DEngine.so", UseExisting=0)
return self.params
if self.algoType == GHS3DPRL:
self.params = self.Hypothesis("GHS3DPRL_Parameters", [],
"libGHS3DPRLEngine.so", UseExisting=0)
return self.params
print "Algo supports no multi-parameter hypothesis"
return None
## Sets MaxSize
# Parameter of FULL_NETGEN
# @ingroup l3_hypos_netgen
def SetMaxSize(self, theSize):
self.Parameters().SetMaxSize(theSize)
## Sets SecondOrder flag
# Parameter of FULL_NETGEN
# @ingroup l3_hypos_netgen
def SetSecondOrder(self, theVal):
self.Parameters().SetSecondOrder(theVal)
## Sets Optimize flag
# Parameter of FULL_NETGEN
# @ingroup l3_hypos_netgen
def SetOptimize(self, theVal):
self.Parameters().SetOptimize(theVal)
## Sets Fineness
# @param theFineness is:
# VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
# Parameter of FULL_NETGEN
# @ingroup l3_hypos_netgen
def SetFineness(self, theFineness):
self.Parameters().SetFineness(theFineness)
## Sets GrowthRate
# Parameter of FULL_NETGEN
# @ingroup l3_hypos_netgen
def SetGrowthRate(self, theRate):
self.Parameters().SetGrowthRate(theRate)
## Sets NbSegPerEdge
# Parameter of FULL_NETGEN
# @ingroup l3_hypos_netgen
def SetNbSegPerEdge(self, theVal):
self.Parameters().SetNbSegPerEdge(theVal)
## Sets NbSegPerRadius
# Parameter of FULL_NETGEN
# @ingroup l3_hypos_netgen
def SetNbSegPerRadius(self, theVal):
self.Parameters().SetNbSegPerRadius(theVal)
## Sets number of segments overriding value set by SetLocalLength()
# Only for algoType == NETGEN_FULL
# @ingroup l3_hypos_netgen
def SetNumberOfSegments(self, theVal):
self.Parameters(SIMPLE).SetNumberOfSegments(theVal)
## Sets number of segments overriding value set by SetNumberOfSegments()
# Only for algoType == NETGEN_FULL
# @ingroup l3_hypos_netgen
def SetLocalLength(self, theVal):
self.Parameters(SIMPLE).SetLocalLength(theVal)
## Defines "MaxElementArea" parameter of NETGEN_SimpleParameters_3D hypothesis.
# Overrides value set by LengthFromEdges()
# Only for algoType == NETGEN_FULL
# @ingroup l3_hypos_netgen
def MaxElementArea(self, area):
self.Parameters(SIMPLE).SetMaxElementArea(area)
## Defines "LengthFromEdges" parameter of NETGEN_SimpleParameters_3D hypothesis
# Overrides value set by MaxElementArea()
# Only for algoType == NETGEN_FULL
# @ingroup l3_hypos_netgen
def LengthFromEdges(self):
self.Parameters(SIMPLE).LengthFromEdges()
## Defines "LengthFromFaces" parameter of NETGEN_SimpleParameters_3D hypothesis
# Overrides value set by MaxElementVolume()
# Only for algoType == NETGEN_FULL
# @ingroup l3_hypos_netgen
def LengthFromFaces(self):
self.Parameters(SIMPLE).LengthFromFaces()
## To mesh "holes" in a solid or not. Default is to mesh.
# @ingroup l3_hypos_ghs3dh
def SetToMeshHoles(self, toMesh):
# Parameter of GHS3D
self.Parameters().SetToMeshHoles(toMesh)
## Set Optimization level:
# None_Optimization, Light_Optimization, Standard_Optimization, StandardPlus_Optimization,
# Strong_Optimization.
# Default is Standard_Optimization
# @ingroup l3_hypos_ghs3dh
def SetOptimizationLevel(self, level):
# Parameter of GHS3D
self.Parameters().SetOptimizationLevel(level)
## Maximal size of memory to be used by the algorithm (in Megabytes).
# @ingroup l3_hypos_ghs3dh
def SetMaximumMemory(self, MB):
# Advanced parameter of GHS3D
self.Parameters().SetMaximumMemory(MB)
## Initial size of memory to be used by the algorithm (in Megabytes) in
# automatic memory adjustment mode.
# @ingroup l3_hypos_ghs3dh
def SetInitialMemory(self, MB):
# Advanced parameter of GHS3D
self.Parameters().SetInitialMemory(MB)
## Path to working directory.
# @ingroup l3_hypos_ghs3dh
def SetWorkingDirectory(self, path):
# Advanced parameter of GHS3D
self.Parameters().SetWorkingDirectory(path)
## To keep working files or remove them. Log file remains in case of errors anyway.
# @ingroup l3_hypos_ghs3dh
def SetKeepFiles(self, toKeep):
# Advanced parameter of GHS3D and GHS3DPRL
self.Parameters().SetKeepFiles(toKeep)
## To set verbose level [0-10].
#- 0 - no standard output,
#
- 2 - prints the data, quality statistics of the skin and final meshes and
# indicates when the final mesh is being saved. In addition the software
# gives indication regarding the CPU time.
#
- 10 - same as 2 plus the main steps in the computation, quality statistics
# histogram of the skin mesh, quality statistics histogram together with
# the characteristics of the final mesh.
# @ingroup l3_hypos_ghs3dh
def SetVerboseLevel(self, level):
# Advanced parameter of GHS3D
self.Parameters().SetVerboseLevel(level)
## To create new nodes.
# @ingroup l3_hypos_ghs3dh
def SetToCreateNewNodes(self, toCreate):
# Advanced parameter of GHS3D
self.Parameters().SetToCreateNewNodes(toCreate)
## To use boundary recovery version which tries to create mesh on a very poor
# quality surface mesh.
# @ingroup l3_hypos_ghs3dh
def SetToUseBoundaryRecoveryVersion(self, toUse):
# Advanced parameter of GHS3D
self.Parameters().SetToUseBoundaryRecoveryVersion(toUse)
## Sets command line option as text.
# @ingroup l3_hypos_ghs3dh
def SetTextOption(self, option):
# Advanced parameter of GHS3D
self.Parameters().SetTextOption(option)
## Sets MED files name and path.
def SetMEDName(self, value):
self.Parameters().SetMEDName(value)
## Sets the number of partition of the initial mesh
def SetNbPart(self, value):
self.Parameters().SetNbPart(value)
## When big mesh, start tepal in background
def SetBackground(self, value):
self.Parameters().SetBackground(value)
# Public class: Mesh_Hexahedron
# ------------------------------
## Defines a hexahedron 3D algorithm
#
# @ingroup l3_algos_basic
class Mesh_Hexahedron(Mesh_Algorithm):
params = 0
algoType = 0
## Private constructor.
def __init__(self, mesh, algoType=Hexa, geom=0):
Mesh_Algorithm.__init__(self)
self.algoType = algoType
if algoType == Hexa:
self.Create(mesh, geom, "Hexa_3D")
pass
elif algoType == Hexotic:
CheckPlugin(Hexotic)
self.Create(mesh, geom, "Hexotic_3D", "libHexoticEngine.so")
pass
## Defines "MinMaxQuad" hypothesis to give three hexotic parameters
# @ingroup l3_hypos_hexotic
def MinMaxQuad(self, min=3, max=8, quad=True):
self.params = self.Hypothesis("Hexotic_Parameters", [], "libHexoticEngine.so",
UseExisting=0)
self.params.SetHexesMinLevel(min)
self.params.SetHexesMaxLevel(max)
self.params.SetHexoticQuadrangles(quad)
return self.params
# Deprecated, only for compatibility!
# Public class: Mesh_Netgen
# ------------------------------
## Defines a NETGEN-based 2D or 3D algorithm
# that needs no discrete boundary (i.e. independent)
#
# This class is deprecated, only for compatibility!
#
# More details.
# @ingroup l3_algos_basic
class Mesh_Netgen(Mesh_Algorithm):
is3D = 0
## Private constructor.
def __init__(self, mesh, is3D, geom=0):
Mesh_Algorithm.__init__(self)
CheckPlugin(NETGEN)
self.is3D = is3D
if is3D:
self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
pass
else:
self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
pass
## Defines the hypothesis containing parameters of the algorithm
def Parameters(self):
if self.is3D:
hyp = self.Hypothesis("NETGEN_Parameters", [],
"libNETGENEngine.so", UseExisting=0)
else:
hyp = self.Hypothesis("NETGEN_Parameters_2D", [],
"libNETGENEngine.so", UseExisting=0)
return hyp
# Public class: Mesh_Projection1D
# ------------------------------
## Defines a projection 1D algorithm
# @ingroup l3_algos_proj
#
class Mesh_Projection1D(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, "Projection_1D")
## Defines "Source Edge" hypothesis, specifying a meshed edge, from where
# a mesh pattern is taken, and, optionally, the association of vertices
# between the source edge and a target edge (to which a hypothesis is assigned)
# @param edge from which nodes distribution is taken
# @param mesh from which nodes distribution is taken (optional)
# @param srcV a vertex of \a edge to associate with \a tgtV (optional)
# @param tgtV a vertex of \a the edge to which the algorithm is assigned,
# to associate with \a srcV (optional)
# @param UseExisting if ==true - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
def SourceEdge(self, edge, mesh=None, srcV=None, tgtV=None, UseExisting=0):
hyp = self.Hypothesis("ProjectionSource1D", [edge,mesh,srcV,tgtV],
UseExisting=0)
#UseExisting=UseExisting, CompareMethod=self.CompareSourceEdge)
hyp.SetSourceEdge( edge )
if not mesh is None and isinstance(mesh, Mesh):
mesh = mesh.GetMesh()
hyp.SetSourceMesh( mesh )
hyp.SetVertexAssociation( srcV, tgtV )
return hyp
## Checks if the given "SourceEdge" hypothesis has the same parameters as the given arguments
#def CompareSourceEdge(self, hyp, args):
# # it does not seem to be useful to reuse the existing "SourceEdge" hypothesis
# return False
# Public class: Mesh_Projection2D
# ------------------------------
## Defines a projection 2D algorithm
# @ingroup l3_algos_proj
#
class Mesh_Projection2D(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, "Projection_2D")
## Defines "Source Face" hypothesis, specifying a meshed face, from where
# a mesh pattern is taken, and, optionally, the association of vertices
# between the source face and the target face (to which a hypothesis is assigned)
# @param face from which the mesh pattern is taken
# @param mesh from which the mesh pattern is taken (optional)
# @param srcV1 a vertex of \a face to associate with \a tgtV1 (optional)
# @param tgtV1 a vertex of \a the face to which the algorithm is assigned,
# to associate with \a srcV1 (optional)
# @param srcV2 a vertex of \a face to associate with \a tgtV1 (optional)
# @param tgtV2 a vertex of \a the face to which the algorithm is assigned,
# to associate with \a srcV2 (optional)
# @param UseExisting if ==true - forces the search for the existing hypothesis created with
# the same parameters, else (default) - forces the creation a new one
#
# Note: all association vertices must belong to one edge of a face
def SourceFace(self, face, mesh=None, srcV1=None, tgtV1=None,
srcV2=None, tgtV2=None, UseExisting=0):
hyp = self.Hypothesis("ProjectionSource2D", [face,mesh,srcV1,tgtV1,srcV2,tgtV2],
UseExisting=0)
#UseExisting=UseExisting, CompareMethod=self.CompareSourceFace)
hyp.SetSourceFace( face )
if not mesh is None and isinstance(mesh, Mesh):
mesh = mesh.GetMesh()
hyp.SetSourceMesh( mesh )
hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
return hyp
## Checks if the given "SourceFace" hypothesis has the same parameters as the given arguments
#def CompareSourceFace(self, hyp, args):
# # it does not seem to be useful to reuse the existing "SourceFace" hypothesis
# return False
# Public class: Mesh_Projection3D
# ------------------------------
## Defines a projection 3D algorithm
# @ingroup l3_algos_proj
#
class Mesh_Projection3D(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, "Projection_3D")
## Defines the "Source Shape 3D" hypothesis, specifying a meshed solid, from where
# the mesh pattern is taken, and, optionally, the association of vertices
# between the source and the target solid (to which a hipothesis is assigned)
# @param solid from where the mesh pattern is taken
# @param mesh from where the mesh pattern is taken (optional)
# @param srcV1 a vertex of \a solid to associate with \a tgtV1 (optional)
# @param tgtV1 a vertex of \a the solid where the algorithm is assigned,
# to associate with \a srcV1 (optional)
# @param srcV2 a vertex of \a solid to associate with \a tgtV1 (optional)
# @param tgtV2 a vertex of \a the solid to which the algorithm is assigned,
# to associate with \a srcV2 (optional)
# @param UseExisting - if ==true - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
#
# Note: association vertices must belong to one edge of a solid
def SourceShape3D(self, solid, mesh=0, srcV1=0, tgtV1=0,
srcV2=0, tgtV2=0, UseExisting=0):
hyp = self.Hypothesis("ProjectionSource3D",
[solid,mesh,srcV1,tgtV1,srcV2,tgtV2],
UseExisting=0)
#UseExisting=UseExisting, CompareMethod=self.CompareSourceShape3D)
hyp.SetSource3DShape( solid )
if not mesh is None and isinstance(mesh, Mesh):
mesh = mesh.GetMesh()
hyp.SetSourceMesh( mesh )
if srcV1 and srcV2 and tgtV1 and tgtV2:
hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
#elif srcV1 or srcV2 or tgtV1 or tgtV2:
return hyp
## Checks if the given "SourceShape3D" hypothesis has the same parameters as given arguments
#def CompareSourceShape3D(self, hyp, args):
# # seems to be not really useful to reuse existing "SourceShape3D" hypothesis
# return False
# Public class: Mesh_Prism
# ------------------------
## Defines a 3D extrusion algorithm
# @ingroup l3_algos_3dextr
#
class Mesh_Prism3D(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, "Prism_3D")
# Public class: Mesh_RadialPrism
# -------------------------------
## Defines a Radial Prism 3D algorithm
# @ingroup l3_algos_radialp
#
class Mesh_RadialPrism3D(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, "RadialPrism_3D")
self.distribHyp = self.Hypothesis("LayerDistribution", UseExisting=0)
self.nbLayers = None
## Return 3D hypothesis holding the 1D one
def Get3DHypothesis(self):
return self.distribHyp
## Private method creating a 1D hypothesis and storing it in the LayerDistribution
# hypothesis. Returns the created hypothesis
def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"):
#print "OwnHypothesis",hypType
if not self.nbLayers is None:
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers )
self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp )
study = self.mesh.smeshpyD.GetCurrentStudy() # prevents publishing own 1D hypothesis
hyp = self.mesh.smeshpyD.CreateHypothesis(hypType, so)
self.mesh.smeshpyD.SetCurrentStudy( study ) # enables publishing
self.distribHyp.SetLayerDistribution( hyp )
return hyp
## Defines "NumberOfLayers" hypothesis, specifying the number of layers of
# prisms to build between the inner and outer shells
# @param n number of layers
# @param UseExisting if ==true - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
def NumberOfLayers(self, n, UseExisting=0):
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.distribHyp )
self.nbLayers = self.Hypothesis("NumberOfLayers", [n], UseExisting=UseExisting,
CompareMethod=self.CompareNumberOfLayers)
self.nbLayers.SetNumberOfLayers( n )
return self.nbLayers
## Checks if the given "NumberOfLayers" hypothesis has the same parameters as the given arguments
def CompareNumberOfLayers(self, hyp, args):
return IsEqual(hyp.GetNumberOfLayers(), args[0])
## Defines "LocalLength" hypothesis, specifying the segment length
# to build between the inner and the outer shells
# @param l the length of segments
# @param p the precision of rounding
def LocalLength(self, l, p=1e-07):
hyp = self.OwnHypothesis("LocalLength", [l,p])
hyp.SetLength(l)
hyp.SetPrecision(p)
return hyp
## Defines "NumberOfSegments" hypothesis, specifying the number of layers of
# prisms to build between the inner and the outer shells.
# @param n the number of layers
# @param s the scale factor (optional)
def NumberOfSegments(self, n, s=[]):
if s == []:
hyp = self.OwnHypothesis("NumberOfSegments", [n])
else:
hyp = self.OwnHypothesis("NumberOfSegments", [n,s])
hyp.SetDistrType( 1 )
hyp.SetScaleFactor(s)
hyp.SetNumberOfSegments(n)
return hyp
## Defines "Arithmetic1D" hypothesis, specifying the distribution of segments
# to build between the inner and the outer shells with a length that changes in arithmetic progression
# @param start the length of the first segment
# @param end the length of the last segment
def Arithmetic1D(self, start, end ):
hyp = self.OwnHypothesis("Arithmetic1D", [start, end])
hyp.SetLength(start, 1)
hyp.SetLength(end , 0)
return hyp
## Defines "StartEndLength" hypothesis, specifying distribution of segments
# to build between the inner and the outer shells as geometric length increasing
# @param start for the length of the first segment
# @param end for the length of the last segment
def StartEndLength(self, start, end):
hyp = self.OwnHypothesis("StartEndLength", [start, end])
hyp.SetLength(start, 1)
hyp.SetLength(end , 0)
return hyp
## Defines "AutomaticLength" hypothesis, specifying the number of segments
# to build between the inner and outer shells
# @param fineness defines the quality of the mesh within the range [0-1]
def AutomaticLength(self, fineness=0):
hyp = self.OwnHypothesis("AutomaticLength")
hyp.SetFineness( fineness )
return hyp
# Public class: Mesh_RadialQuadrangle1D2D
# -------------------------------
## Defines a Radial Quadrangle 1D2D algorithm
# @ingroup l2_algos_radialq
#
class Mesh_RadialQuadrangle1D2D(Mesh_Algorithm):
## Private constructor.
def __init__(self, mesh, geom=0):
Mesh_Algorithm.__init__(self)
self.Create(mesh, geom, "RadialQuadrangle_1D2D")
self.distribHyp = self.Hypothesis("LayerDistribution2D", UseExisting=0)
self.nbLayers = None
## Return 2D hypothesis holding the 1D one
def Get2DHypothesis(self):
return self.distribHyp
## Private method creating a 1D hypothesis and storing it in the LayerDistribution
# hypothesis. Returns the created hypothesis
def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"):
#print "OwnHypothesis",hypType
if not self.nbLayers is None:
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers )
self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp )
study = self.mesh.smeshpyD.GetCurrentStudy() # prevents publishing own 1D hypothesis
hyp = self.mesh.smeshpyD.CreateHypothesis(hypType, so)
self.mesh.smeshpyD.SetCurrentStudy( study ) # enables publishing
self.distribHyp.SetLayerDistribution( hyp )
return hyp
## Defines "NumberOfLayers2D" hypothesis, specifying the number of layers
# @param n number of layers
# @param UseExisting if ==true - searches for the existing hypothesis created with
# the same parameters, else (default) - creates a new one
def NumberOfLayers2D(self, n, UseExisting=0):
self.mesh.GetMesh().RemoveHypothesis( self.geom, self.distribHyp )
self.nbLayers = self.Hypothesis("NumberOfLayers2D", [n], UseExisting=UseExisting,
CompareMethod=self.CompareNumberOfLayers)
self.nbLayers.SetNumberOfLayers( n )
return self.nbLayers
## Checks if the given "NumberOfLayers" hypothesis has the same parameters as the given arguments
def CompareNumberOfLayers(self, hyp, args):
return IsEqual(hyp.GetNumberOfLayers(), args[0])
## Defines "LocalLength" hypothesis, specifying the segment length
# @param l the length of segments
# @param p the precision of rounding
def LocalLength(self, l, p=1e-07):
hyp = self.OwnHypothesis("LocalLength", [l,p])
hyp.SetLength(l)
hyp.SetPrecision(p)
return hyp
## Defines "NumberOfSegments" hypothesis, specifying the number of layers
# @param n the number of layers
# @param s the scale factor (optional)
def NumberOfSegments(self, n, s=[]):
if s == []:
hyp = self.OwnHypothesis("NumberOfSegments", [n])
else:
hyp = self.OwnHypothesis("NumberOfSegments", [n,s])
hyp.SetDistrType( 1 )
hyp.SetScaleFactor(s)
hyp.SetNumberOfSegments(n)
return hyp
## Defines "Arithmetic1D" hypothesis, specifying the distribution of segments
# with a length that changes in arithmetic progression
# @param start the length of the first segment
# @param end the length of the last segment
def Arithmetic1D(self, start, end ):
hyp = self.OwnHypothesis("Arithmetic1D", [start, end])
hyp.SetLength(start, 1)
hyp.SetLength(end , 0)
return hyp
## Defines "StartEndLength" hypothesis, specifying distribution of segments
# as geometric length increasing
# @param start for the length of the first segment
# @param end for the length of the last segment
def StartEndLength(self, start, end):
hyp = self.OwnHypothesis("StartEndLength", [start, end])
hyp.SetLength(start, 1)
hyp.SetLength(end , 0)
return hyp
## Defines "AutomaticLength" hypothesis, specifying the number of segments
# @param fineness defines the quality of the mesh within the range [0-1]
def AutomaticLength(self, fineness=0):
hyp = self.OwnHypothesis("AutomaticLength")
hyp.SetFineness( fineness )
return hyp
# Private class: Mesh_UseExisting
# -------------------------------
class Mesh_UseExisting(Mesh_Algorithm):
def __init__(self, dim, mesh, geom=0):
if dim == 1:
self.Create(mesh, geom, "UseExisting_1D")
else:
self.Create(mesh, geom, "UseExisting_2D")
import salome_notebook
notebook = salome_notebook.notebook
##Return values of the notebook variables
def ParseParameters(last, nbParams,nbParam, value):
result = None
strResult = ""
counter = 0
listSize = len(last)
for n in range(0,nbParams):
if n+1 != nbParam:
if counter < listSize:
strResult = strResult + last[counter]
else:
strResult = strResult + ""
else:
if isinstance(value, str):
if notebook.isVariable(value):
result = notebook.get(value)
strResult=strResult+value
else:
raise RuntimeError, "Variable with name '" + value + "' doesn't exist!!!"
else:
strResult=strResult+str(value)
result = value
if nbParams - 1 != counter:
strResult=strResult+var_separator #":"
counter = counter+1
return result, strResult
#Wrapper class for StdMeshers_LocalLength hypothesis
class LocalLength(StdMeshers._objref_StdMeshers_LocalLength):
## Set Length parameter value
# @param length numerical value or name of variable from notebook
def SetLength(self, length):
length,parameters = ParseParameters(StdMeshers._objref_StdMeshers_LocalLength.GetLastParameters(self),2,1,length)
StdMeshers._objref_StdMeshers_LocalLength.SetParameters(self,parameters)
StdMeshers._objref_StdMeshers_LocalLength.SetLength(self,length)
## Set Precision parameter value
# @param precision numerical value or name of variable from notebook
def SetPrecision(self, precision):
precision,parameters = ParseParameters(StdMeshers._objref_StdMeshers_LocalLength.GetLastParameters(self),2,2,precision)
StdMeshers._objref_StdMeshers_LocalLength.SetParameters(self,parameters)
StdMeshers._objref_StdMeshers_LocalLength.SetPrecision(self, precision)
#Registering the new proxy for LocalLength
omniORB.registerObjref(StdMeshers._objref_StdMeshers_LocalLength._NP_RepositoryId, LocalLength)
#Wrapper class for StdMeshers_LayerDistribution hypothesis
class LayerDistribution(StdMeshers._objref_StdMeshers_LayerDistribution):
def SetLayerDistribution(self, hypo):
StdMeshers._objref_StdMeshers_LayerDistribution.SetParameters(self,hypo.GetParameters())
hypo.ClearParameters();
StdMeshers._objref_StdMeshers_LayerDistribution.SetLayerDistribution(self,hypo)
#Registering the new proxy for LayerDistribution
omniORB.registerObjref(StdMeshers._objref_StdMeshers_LayerDistribution._NP_RepositoryId, LayerDistribution)
#Wrapper class for StdMeshers_SegmentLengthAroundVertex hypothesis
class SegmentLengthAroundVertex(StdMeshers._objref_StdMeshers_SegmentLengthAroundVertex):
## Set Length parameter value
# @param length numerical value or name of variable from notebook
def SetLength(self, length):
length,parameters = ParseParameters(StdMeshers._objref_StdMeshers_SegmentLengthAroundVertex.GetLastParameters(self),1,1,length)
StdMeshers._objref_StdMeshers_SegmentLengthAroundVertex.SetParameters(self,parameters)
StdMeshers._objref_StdMeshers_SegmentLengthAroundVertex.SetLength(self,length)
#Registering the new proxy for SegmentLengthAroundVertex
omniORB.registerObjref(StdMeshers._objref_StdMeshers_SegmentLengthAroundVertex._NP_RepositoryId, SegmentLengthAroundVertex)
#Wrapper class for StdMeshers_Arithmetic1D hypothesis
class Arithmetic1D(StdMeshers._objref_StdMeshers_Arithmetic1D):
## Set Length parameter value
# @param length numerical value or name of variable from notebook
# @param isStart true is length is Start Length, otherwise false
def SetLength(self, length, isStart):
nb = 2
if isStart:
nb = 1
length,parameters = ParseParameters(StdMeshers._objref_StdMeshers_Arithmetic1D.GetLastParameters(self),2,nb,length)
StdMeshers._objref_StdMeshers_Arithmetic1D.SetParameters(self,parameters)
StdMeshers._objref_StdMeshers_Arithmetic1D.SetLength(self,length,isStart)
#Registering the new proxy for Arithmetic1D
omniORB.registerObjref(StdMeshers._objref_StdMeshers_Arithmetic1D._NP_RepositoryId, Arithmetic1D)
#Wrapper class for StdMeshers_Deflection1D hypothesis
class Deflection1D(StdMeshers._objref_StdMeshers_Deflection1D):
## Set Deflection parameter value
# @param deflection numerical value or name of variable from notebook
def SetDeflection(self, deflection):
deflection,parameters = ParseParameters(StdMeshers._objref_StdMeshers_Deflection1D.GetLastParameters(self),1,1,deflection)
StdMeshers._objref_StdMeshers_Deflection1D.SetParameters(self,parameters)
StdMeshers._objref_StdMeshers_Deflection1D.SetDeflection(self,deflection)
#Registering the new proxy for Deflection1D
omniORB.registerObjref(StdMeshers._objref_StdMeshers_Deflection1D._NP_RepositoryId, Deflection1D)
#Wrapper class for StdMeshers_StartEndLength hypothesis
class StartEndLength(StdMeshers._objref_StdMeshers_StartEndLength):
## Set Length parameter value
# @param length numerical value or name of variable from notebook
# @param isStart true is length is Start Length, otherwise false
def SetLength(self, length, isStart):
nb = 2
if isStart:
nb = 1
length,parameters = ParseParameters(StdMeshers._objref_StdMeshers_StartEndLength.GetLastParameters(self),2,nb,length)
StdMeshers._objref_StdMeshers_StartEndLength.SetParameters(self,parameters)
StdMeshers._objref_StdMeshers_StartEndLength.SetLength(self,length,isStart)
#Registering the new proxy for StartEndLength
omniORB.registerObjref(StdMeshers._objref_StdMeshers_StartEndLength._NP_RepositoryId, StartEndLength)
#Wrapper class for StdMeshers_MaxElementArea hypothesis
class MaxElementArea(StdMeshers._objref_StdMeshers_MaxElementArea):
## Set Max Element Area parameter value
# @param area numerical value or name of variable from notebook
def SetMaxElementArea(self, area):
area ,parameters = ParseParameters(StdMeshers._objref_StdMeshers_MaxElementArea.GetLastParameters(self),1,1,area)
StdMeshers._objref_StdMeshers_MaxElementArea.SetParameters(self,parameters)
StdMeshers._objref_StdMeshers_MaxElementArea.SetMaxElementArea(self,area)
#Registering the new proxy for MaxElementArea
omniORB.registerObjref(StdMeshers._objref_StdMeshers_MaxElementArea._NP_RepositoryId, MaxElementArea)
#Wrapper class for StdMeshers_MaxElementVolume hypothesis
class MaxElementVolume(StdMeshers._objref_StdMeshers_MaxElementVolume):
## Set Max Element Volume parameter value
# @param volume numerical value or name of variable from notebook
def SetMaxElementVolume(self, volume):
volume ,parameters = ParseParameters(StdMeshers._objref_StdMeshers_MaxElementVolume.GetLastParameters(self),1,1,volume)
StdMeshers._objref_StdMeshers_MaxElementVolume.SetParameters(self,parameters)
StdMeshers._objref_StdMeshers_MaxElementVolume.SetMaxElementVolume(self,volume)
#Registering the new proxy for MaxElementVolume
omniORB.registerObjref(StdMeshers._objref_StdMeshers_MaxElementVolume._NP_RepositoryId, MaxElementVolume)
#Wrapper class for StdMeshers_NumberOfLayers hypothesis
class NumberOfLayers(StdMeshers._objref_StdMeshers_NumberOfLayers):
## Set Number Of Layers parameter value
# @param nbLayers numerical value or name of variable from notebook
def SetNumberOfLayers(self, nbLayers):
nbLayers ,parameters = ParseParameters(StdMeshers._objref_StdMeshers_NumberOfLayers.GetLastParameters(self),1,1,nbLayers)
StdMeshers._objref_StdMeshers_NumberOfLayers.SetParameters(self,parameters)
StdMeshers._objref_StdMeshers_NumberOfLayers.SetNumberOfLayers(self,nbLayers)
#Registering the new proxy for NumberOfLayers
omniORB.registerObjref(StdMeshers._objref_StdMeshers_NumberOfLayers._NP_RepositoryId, NumberOfLayers)
#Wrapper class for StdMeshers_NumberOfSegments hypothesis
class NumberOfSegments(StdMeshers._objref_StdMeshers_NumberOfSegments):
## Set Number Of Segments parameter value
# @param nbSeg numerical value or name of variable from notebook
def SetNumberOfSegments(self, nbSeg):
lastParameters = StdMeshers._objref_StdMeshers_NumberOfSegments.GetLastParameters(self)
nbSeg , parameters = ParseParameters(lastParameters,1,1,nbSeg)
StdMeshers._objref_StdMeshers_NumberOfSegments.SetParameters(self,parameters)
StdMeshers._objref_StdMeshers_NumberOfSegments.SetNumberOfSegments(self,nbSeg)
## Set Scale Factor parameter value
# @param factor numerical value or name of variable from notebook
def SetScaleFactor(self, factor):
factor, parameters = ParseParameters(StdMeshers._objref_StdMeshers_NumberOfSegments.GetLastParameters(self),2,2,factor)
StdMeshers._objref_StdMeshers_NumberOfSegments.SetParameters(self,parameters)
StdMeshers._objref_StdMeshers_NumberOfSegments.SetScaleFactor(self,factor)
#Registering the new proxy for NumberOfSegments
omniORB.registerObjref(StdMeshers._objref_StdMeshers_NumberOfSegments._NP_RepositoryId, NumberOfSegments)
if not noNETGENPlugin:
#Wrapper class for NETGENPlugin_Hypothesis hypothesis
class NETGENPlugin_Hypothesis(NETGENPlugin._objref_NETGENPlugin_Hypothesis):
## Set Max Size parameter value
# @param maxsize numerical value or name of variable from notebook
def SetMaxSize(self, maxsize):
lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
maxsize, parameters = ParseParameters(lastParameters,4,1,maxsize)
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetMaxSize(self,maxsize)
## Set Growth Rate parameter value
# @param value numerical value or name of variable from notebook
def SetGrowthRate(self, value):
lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
value, parameters = ParseParameters(lastParameters,4,2,value)
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetGrowthRate(self,value)
## Set Number of Segments per Edge parameter value
# @param value numerical value or name of variable from notebook
def SetNbSegPerEdge(self, value):
lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
value, parameters = ParseParameters(lastParameters,4,3,value)
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetNbSegPerEdge(self,value)
## Set Number of Segments per Radius parameter value
# @param value numerical value or name of variable from notebook
def SetNbSegPerRadius(self, value):
lastParameters = NETGENPlugin._objref_NETGENPlugin_Hypothesis.GetLastParameters(self)
value, parameters = ParseParameters(lastParameters,4,4,value)
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetParameters(self,parameters)
NETGENPlugin._objref_NETGENPlugin_Hypothesis.SetNbSegPerRadius(self,value)
#Registering the new proxy for NETGENPlugin_Hypothesis
omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_Hypothesis._NP_RepositoryId, NETGENPlugin_Hypothesis)
#Wrapper class for NETGENPlugin_Hypothesis_2D hypothesis
class NETGENPlugin_Hypothesis_2D(NETGENPlugin_Hypothesis,NETGENPlugin._objref_NETGENPlugin_Hypothesis_2D):
pass
#Registering the new proxy for NETGENPlugin_Hypothesis_2D
omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_Hypothesis_2D._NP_RepositoryId, NETGENPlugin_Hypothesis_2D)
#Wrapper class for NETGENPlugin_SimpleHypothesis_2D hypothesis
class NETGEN_SimpleParameters_2D(NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D):
## Set Number of Segments parameter value
# @param nbSeg numerical value or name of variable from notebook
def SetNumberOfSegments(self, nbSeg):
lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
nbSeg, parameters = ParseParameters(lastParameters,2,1,nbSeg)
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetNumberOfSegments(self, nbSeg)
## Set Local Length parameter value
# @param length numerical value or name of variable from notebook
def SetLocalLength(self, length):
lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
length, parameters = ParseParameters(lastParameters,2,1,length)
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetLocalLength(self, length)
## Set Max Element Area parameter value
# @param area numerical value or name of variable from notebook
def SetMaxElementArea(self, area):
lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
area, parameters = ParseParameters(lastParameters,2,2,area)
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetMaxElementArea(self, area)
def LengthFromEdges(self):
lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.GetLastParameters(self)
value = 0;
value, parameters = ParseParameters(lastParameters,2,2,value)
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.SetParameters(self,parameters)
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D.LengthFromEdges(self)
#Registering the new proxy for NETGEN_SimpleParameters_2D
omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_2D._NP_RepositoryId, NETGEN_SimpleParameters_2D)
#Wrapper class for NETGENPlugin_SimpleHypothesis_3D hypothesis
class NETGEN_SimpleParameters_3D(NETGEN_SimpleParameters_2D,NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D):
## Set Max Element Volume parameter value
# @param volume numerical value or name of variable from notebook
def SetMaxElementVolume(self, volume):
lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.GetLastParameters(self)
volume, parameters = ParseParameters(lastParameters,3,3,volume)
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.SetParameters(self,parameters)
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.SetMaxElementVolume(self, volume)
def LengthFromFaces(self):
lastParameters = NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.GetLastParameters(self)
value = 0;
value, parameters = ParseParameters(lastParameters,3,3,value)
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.SetParameters(self,parameters)
NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D.LengthFromFaces(self)
#Registering the new proxy for NETGEN_SimpleParameters_3D
omniORB.registerObjref(NETGENPlugin._objref_NETGENPlugin_SimpleHypothesis_3D._NP_RepositoryId, NETGEN_SimpleParameters_3D)
pass # if not noNETGENPlugin:
class Pattern(SMESH._objref_SMESH_Pattern):
def ApplyToMeshFaces(self, theMesh, theFacesIDs, theNodeIndexOnKeyPoint1, theReverse):
flag = False
if isinstance(theNodeIndexOnKeyPoint1,str):
flag = True
theNodeIndexOnKeyPoint1,Parameters = geompyDC.ParseParameters(theNodeIndexOnKeyPoint1)
if flag:
theNodeIndexOnKeyPoint1 -= 1
theMesh.SetParameters(Parameters)
return SMESH._objref_SMESH_Pattern.ApplyToMeshFaces( self, theMesh, theFacesIDs, theNodeIndexOnKeyPoint1, theReverse )
def ApplyToHexahedrons(self, theMesh, theVolumesIDs, theNode000Index, theNode001Index):
flag0 = False
flag1 = False
if isinstance(theNode000Index,str):
flag0 = True
if isinstance(theNode001Index,str):
flag1 = True
theNode000Index,theNode001Index,Parameters = geompyDC.ParseParameters(theNode000Index,theNode001Index)
if flag0:
theNode000Index -= 1
if flag1:
theNode001Index -= 1
theMesh.SetParameters(Parameters)
return SMESH._objref_SMESH_Pattern.ApplyToHexahedrons( self, theMesh, theVolumesIDs, theNode000Index, theNode001Index )
#Registering the new proxy for Pattern
omniORB.registerObjref(SMESH._objref_SMESH_Pattern._NP_RepositoryId, Pattern)