# # Tetrahedrization of the geometry generated by the Python script GEOM_Partition1.py # Hypothesis and algorithms for the mesh generation are global # #%Make geometry (like CEA script (A1)) using Partition algorithm% from OCC # -- Rayon de la bariere import salome import geompy from math import sqrt import StdMeshers import NETGENPlugin smesh = salome.lcc.FindOrLoadComponent("FactoryServer", "SMESH") smesh.SetCurrentStudy(salome.myStudy) smeshgui = salome.ImportComponentGUI("SMESH") smeshgui.Init(salome.myStudyId) #--------------------------------------------------------------- barier_height = 7.0 barier_radius = 5.6 / 2 # Rayon de la bariere colis_radius = 1.0 / 2 # Rayon du colis colis_step = 2.0 # Distance s‰parant deux colis cc_width = 0.11 # Epaisseur du complement de colisage # -- cc_radius = colis_radius + cc_width colis_center = sqrt(2.0)*colis_step/2 # -- boolean_common = 1 boolean_cut = 2 boolean_fuse = 3 boolean_section = 4 # -- p0 = geompy.MakeVertex(0.,0.,0.) vz = geompy.MakeVectorDXDYDZ(0.,0.,1.) # -- barier = geompy.MakeCylinder(p0, vz, barier_radius, barier_height) # -- colis = geompy.MakeCylinder(p0, vz, colis_radius, barier_height) cc = geompy.MakeCylinder(p0, vz, cc_radius, barier_height) colis_cc = geompy.MakeCompound([colis, cc]) colis_cc = geompy.MakeTranslation(colis_cc, colis_center, 0.0, 0.0) colis_cc_multi = geompy.MultiRotate1D(colis_cc, vz, 4) # -- alveole = geompy.MakePartition([colis_cc_multi, barier]) print "Analysis of the geometry to mesh (right after the Partition) :" subShellList = geompy.SubShapeAll(alveole, geompy.ShapeType["SHELL"]) subFaceList = geompy.SubShapeAll(alveole, geompy.ShapeType["FACE"]) subEdgeList = geompy.SubShapeAll(alveole, geompy.ShapeType["EDGE"]) print "number of Shells in alveole : ", len(subShellList) print "number of Faces in alveole : ", len(subFaceList) print "number of Edges in alveole : ", len(subEdgeList) subshapes = geompy.SubShapeAll(alveole, geompy.ShapeType["SHAPE"]) ## there are 9 subshapes comp1 = geompy.MakeCompound( [ subshapes[0], subshapes[1] ] ) comp2 = geompy.MakeCompound( [ subshapes[2], subshapes[3] ] ) comp3 = geompy.MakeCompound( [ subshapes[4], subshapes[5] ] ) comp4 = geompy.MakeCompound( [ subshapes[6], subshapes[7] ] ) compGOs = [] compGOs.append( comp1 ) compGOs.append( comp2 ) compGOs.append( comp3 ) compGOs.append( comp4 ) comp = geompy.MakeCompound( compGOs ) alveole = geompy.MakeCompound( [ comp, subshapes[8] ]) idalveole = geompy.addToStudy(alveole, "alveole") print "Analysis of the geometry to mesh (right after the MakeCompound) :" subShellList = geompy.SubShapeAll(alveole, geompy.ShapeType["SHELL"]) subFaceList = geompy.SubShapeAll(alveole, geompy.ShapeType["FACE"]) subEdgeList = geompy.SubShapeAll(alveole, geompy.ShapeType["EDGE"]) print "number of Shells in alveole : ", len(subShellList) print "number of Faces in alveole : ", len(subFaceList) print "number of Edges in alveole : ", len(subEdgeList) status = geompy.CheckShape(alveole) print " check status ", status # ---- launch SMESH print "-------------------------- create Hypothesis (In this case global hypothesis are used)" print "-------------------------- NumberOfSegments" numberOfSegments = 10 hypNbSeg = smesh.CreateHypothesis("NumberOfSegments", "libStdMeshersEngine.so") hypNbSeg.SetNumberOfSegments(numberOfSegments) print hypNbSeg.GetName() print hypNbSeg.GetId() print hypNbSeg.GetNumberOfSegments() smeshgui.SetName(salome.ObjectToID(hypNbSeg), "NumberOfSegments_10") print "-------------------------- MaxElementArea" maxElementArea = 0.1 hypArea = smesh.CreateHypothesis("MaxElementArea", "libStdMeshersEngine.so") hypArea.SetMaxElementArea(maxElementArea) print hypArea.GetName() print hypArea.GetId() print hypArea.GetMaxElementArea() smeshgui.SetName(salome.ObjectToID(hypArea), "MaxElementArea_0.1") print "-------------------------- MaxElementVolume" maxElementVolume = 0.5 hypVolume = smesh.CreateHypothesis("MaxElementVolume", "libStdMeshersEngine.so") hypVolume.SetMaxElementVolume(maxElementVolume) print hypVolume.GetName() print hypVolume.GetId() print hypVolume.GetMaxElementVolume() smeshgui.SetName(salome.ObjectToID(hypVolume), "MaxElementVolume_0.5") print "-------------------------- create Algorithms" print "-------------------------- Regular_1D" regular1D = smesh.CreateHypothesis("Regular_1D", "libStdMeshersEngine.so") smeshgui.SetName(salome.ObjectToID(regular1D), "Wire Discretisation") print "-------------------------- MEFISTO_2D" mefisto2D = smesh.CreateHypothesis("MEFISTO_2D", "libStdMeshersEngine.so") smeshgui.SetName(salome.ObjectToID(mefisto2D), "MEFISTO_2D") print "-------------------------- NETGEN_3D" netgen3D = smesh.CreateHypothesis("NETGEN_3D", "libNETGENEngine.so") smeshgui.SetName(salome.ObjectToID(netgen3D), "NETGEN_3D") # ---- init a Mesh with the alveole shape_mesh = salome.IDToObject( idalveole ) mesh = smesh.CreateMesh(shape_mesh) smeshgui.SetName(salome.ObjectToID(mesh), "MeshAlveole") # ---- add hypothesis to alveole print "-------------------------- add hypothesis to alveole" mesh.AddHypothesis(shape_mesh,regular1D) mesh.AddHypothesis(shape_mesh,hypNbSeg) mesh.AddHypothesis(shape_mesh,mefisto2D) mesh.AddHypothesis(shape_mesh,hypArea) mesh.AddHypothesis(shape_mesh,netgen3D) mesh.AddHypothesis(shape_mesh,hypVolume) print "-------------------------- compute the mesh of alveole " ret = smesh.Compute(mesh,shape_mesh) if ret != 0: log=mesh.GetLog(0) # no erase trace for linelog in log: print linelog print "Information about the Mesh_mechanic:" print "Number of nodes : ", mesh.NbNodes() print "Number of edges : ", mesh.NbEdges() print "Number of faces : ", mesh.NbFaces() print "Number of triangles : ", mesh.NbTriangles() print "Number of volumes : ", mesh.NbVolumes() print "Number of tetrahedrons: ", mesh.NbTetras() else: print "problem when computing the mesh" salome.sg.updateObjBrowser(1)