/*! \page smeshpy_interface_page Python interface Python API for SALOME %Mesh module defines several classes that can be used for easy mesh creation and edition. Documentation for SALOME %Mesh module Python API is available in two forms: - Structured documentation, where all methods and classes are grouped by their functionality, like it is done in the GUI documentation - Linear documentation grouped only by classes, declared in the \ref smeshBuilder and \ref StdMeshersBuilder Python packages. \n With SALOME 7.2, the Python interface for %Mesh has been slightly modified to offer new functionality, \n You may have to modify your scripts generated with SALOME 6 or older versions. \n Please see \ref smesh_migration_page The SMESH python package contains helper functions to manipulate mesh elements and interact with these elements. Note that these functions either encapsulate the python programming interface of SMESH core (the CORBA or SWIG interface for example) or extend existing utilities as the smesh.py module. The functions are distributed in the python package \b salome.smesh. \note The main package \b salome contains other sub-packages that are distributed with the other SALOME modules. For example, the KERNEL module provides the python package \b salome.kernel and GEOM the package \b salome.geom. Class \ref smeshBuilder.smeshBuilder "smeshBuilder" provides an interface to create and handle meshes. It can be used to create an empty mesh or to import mesh from the data file. Class \ref smeshstudytools.SMeshStudyTools "SMeshStudyTools" provides several methods to manipulate mesh objects in Salome study. As soon as mesh is created, it is possible to manage it via its own methods, described in class \ref smeshBuilder.Mesh "Mesh" documentation. Class \ref smeshBuilder.Mesh "Mesh" allows assigning algorithms to a mesh. Please note that some algorithms, included in the standard SALOME distribution are always available. Python package \ref StdMeshersBuilder "StdMeshersBuilder" provides an interface for standard meshing algorithms included into the SALOME %Mesh module distribution, like: - REGULAR (1D) - COMPOSITE (1D) - MEFISTO (2D) - Quadrangle (2D) - Hexa(3D) - etc ... To add meshing hypotheses, it is possible to use the functions provided by the algorithms interfaces. An example below demonstrates usage of the Python API for 3d mesh generation. \anchor example_3d_mesh