// Copyright (C) 2007-2012 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // SMESH SMESH : implementaion of SMESH idl descriptions // File : StdMeshers_Hexa_3D.cxx // Moved here from SMESH_Hexa_3D.cxx // Author : Paul RASCLE, EDF // Module : SMESH // #include "StdMeshers_Hexa_3D.hxx" #include "StdMeshers_CompositeHexa_3D.hxx" #include "StdMeshers_FaceSide.hxx" #include "StdMeshers_HexaFromSkin_3D.hxx" #include "StdMeshers_Penta_3D.hxx" #include "StdMeshers_Prism_3D.hxx" #include "StdMeshers_Quadrangle_2D.hxx" #include "StdMeshers_ViscousLayers.hxx" #include "SMESH_Comment.hxx" #include "SMESH_Gen.hxx" #include "SMESH_Mesh.hxx" #include "SMESH_MesherHelper.hxx" #include "SMESH_subMesh.hxx" #include "SMDS_MeshNode.hxx" #include #include #include #include #include #include "utilities.h" #include "Utils_ExceptHandlers.hxx" typedef SMESH_Comment TComm; using namespace std; static SMESH_ComputeErrorPtr ComputePentahedralMesh(SMESH_Mesh &, const TopoDS_Shape &, SMESH_ProxyMesh* proxyMesh=0); static bool EvaluatePentahedralMesh(SMESH_Mesh &, const TopoDS_Shape &, MapShapeNbElems &); //============================================================================= /*! * Constructor */ //============================================================================= StdMeshers_Hexa_3D::StdMeshers_Hexa_3D(int hypId, int studyId, SMESH_Gen * gen) :SMESH_3D_Algo(hypId, studyId, gen) { MESSAGE("StdMeshers_Hexa_3D::StdMeshers_Hexa_3D"); _name = "Hexa_3D"; _shapeType = (1 << TopAbs_SHELL) | (1 << TopAbs_SOLID); // 1 bit /shape type _requireShape = false; _compatibleHypothesis.push_back("ViscousLayers"); } //============================================================================= /*! * Destructor */ //============================================================================= StdMeshers_Hexa_3D::~StdMeshers_Hexa_3D() { MESSAGE("StdMeshers_Hexa_3D::~StdMeshers_Hexa_3D"); } //============================================================================= /*! * Retrieves defined hypotheses */ //============================================================================= bool StdMeshers_Hexa_3D::CheckHypothesis (SMESH_Mesh& aMesh, const TopoDS_Shape& aShape, SMESH_Hypothesis::Hypothesis_Status& aStatus) { // check nb of faces in the shape /* PAL16229 aStatus = SMESH_Hypothesis::HYP_BAD_GEOMETRY; int nbFaces = 0; for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next()) if ( ++nbFaces > 6 ) break; if ( nbFaces != 6 ) return false; */ _viscousLayersHyp = NULL; const list& hyps = GetUsedHypothesis(aMesh, aShape, /*ignoreAuxiliary=*/false); list ::const_iterator h = hyps.begin(); if ( h == hyps.end()) { aStatus = SMESH_Hypothesis::HYP_OK; return true; } aStatus = HYP_OK; for ( ; h != hyps.end(); ++h ) { string hypName = (*h)->GetName(); if ( find( _compatibleHypothesis.begin(),_compatibleHypothesis.end(),hypName ) != _compatibleHypothesis.end() ) { _viscousLayersHyp = dynamic_cast< const StdMeshers_ViscousLayers*> ( *h ); } else { aStatus = HYP_INCOMPATIBLE; } } if ( !_viscousLayersHyp ) aStatus = HYP_INCOMPATIBLE; return aStatus == HYP_OK; } namespace { //============================================================================= typedef boost::shared_ptr< FaceQuadStruct > FaceQuadStructPtr; // symbolic names of box sides enum EBoxSides{ B_BOTTOM=0, B_RIGHT, B_TOP, B_LEFT, B_FRONT, B_BACK, B_NB_SIDES }; // symbolic names of sides of quadrangle enum EQuadSides{ Q_BOTTOM=0, Q_RIGHT, Q_TOP, Q_LEFT, Q_NB_SIDES }; //============================================================================= /*! * \brief Container of nodes of structured mesh on a qudrangular geom FACE */ struct _FaceGrid { // face sides FaceQuadStructPtr _quad; // map of (node parameter on EDGE) to (column (vector) of nodes) TParam2ColumnMap _u2nodesMap; // node column's taken form _u2nodesMap taking into account sub-shape orientation vector _columns; // geometry of a cube side TopoDS_Face _sideF; const SMDS_MeshNode* GetNode(int iCol, int iRow) const { return _columns[iCol][iRow]; } gp_XYZ GetXYZ(int iCol, int iRow) const { return SMESH_TNodeXYZ( GetNode( iCol, iRow )); } }; //================================================================================ /*! * \brief Convertor of a pair of integers to a sole index */ struct _Indexer { int _xSize, _ySize; _Indexer( int xSize, int ySize ): _xSize(xSize), _ySize(ySize) {} int size() const { return _xSize * _ySize; } int operator()(const int x, const int y) const { return y * _xSize + x; } }; //================================================================================ /*! * \brief Appends a range of node columns from a map to another map */ template< class TMapIterator > void append( TParam2ColumnMap& toMap, TMapIterator from, TMapIterator to ) { const SMDS_MeshNode* lastNode = toMap.rbegin()->second[0]; const SMDS_MeshNode* firstNode = from->second[0]; if ( lastNode == firstNode ) from++; double u = toMap.rbegin()->first; for (; from != to; ++from ) { u += 1; TParam2ColumnMap::iterator u2nn = toMap.insert( toMap.end(), make_pair ( u, TNodeColumn())); u2nn->second.swap( from->second ); } } //================================================================================ /*! * \brief Finds FaceQuadStruct having a side equal to a given one and rearranges * the found FaceQuadStruct::side to have the given side at a Q_BOTTOM place */ FaceQuadStructPtr getQuadWithBottom( StdMeshers_FaceSide* side, FaceQuadStructPtr quad[ 6 ]) { FaceQuadStructPtr foundQuad; for ( int i = 1; i < 6; ++i ) { if ( !quad[i] ) continue; for ( unsigned iS = 0; iS < quad[i]->side.size(); ++iS ) { const StdMeshers_FaceSide* side2 = quad[i]->side[iS]; if (( side->FirstVertex().IsSame( side2->FirstVertex() ) || side->FirstVertex().IsSame( side2->LastVertex() )) && ( side->LastVertex().IsSame( side2->FirstVertex() ) || side->LastVertex().IsSame( side2->LastVertex() )) ) { if ( iS != Q_BOTTOM ) { vector< StdMeshers_FaceSide*> newSides; for ( unsigned j = iS; j < quad[i]->side.size(); ++j ) newSides.push_back( quad[i]->side[j] ); for ( unsigned j = 0; j < iS; ++j ) newSides.push_back( quad[i]->side[j] ); quad[i]->side.swap( newSides ); } foundQuad.swap(quad[i]); return foundQuad; } } } return foundQuad; } //================================================================================ /*! * \brief Returns true if the 1st base node of sideGrid1 belongs to sideGrid2 */ //================================================================================ bool beginsAtSide( const _FaceGrid& sideGrid1, const _FaceGrid& sideGrid2, SMESH_ProxyMesh::Ptr proxymesh ) { const TNodeColumn& col0 = sideGrid2._u2nodesMap.begin()->second; const TNodeColumn& col1 = sideGrid2._u2nodesMap.rbegin()->second; const SMDS_MeshNode* n00 = col0.front(); const SMDS_MeshNode* n01 = col0.back(); const SMDS_MeshNode* n10 = col1.front(); const SMDS_MeshNode* n11 = col1.back(); const SMDS_MeshNode* n = (sideGrid1._u2nodesMap.begin()->second)[0]; if ( proxymesh ) { n00 = proxymesh->GetProxyNode( n00 ); n10 = proxymesh->GetProxyNode( n10 ); n01 = proxymesh->GetProxyNode( n01 ); n11 = proxymesh->GetProxyNode( n11 ); n = proxymesh->GetProxyNode( n ); } return ( n == n00 || n == n01 || n == n10 || n == n11 ); } } //============================================================================= /*! * Generates hexahedron mesh on hexaedron like form using algorithm from * "Application de l'interpolation transfinie à la création de maillages * C0 ou G1 continus sur des triangles, quadrangles, tetraedres, pentaedres * et hexaedres déformés." * Alain PERONNET - 8 janvier 1999 */ //============================================================================= bool StdMeshers_Hexa_3D::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape)// throw(SALOME_Exception) { // PAL14921. Enable catching std::bad_alloc and Standard_OutOfMemory outside //Unexpect aCatch(SalomeException); MESSAGE("StdMeshers_Hexa_3D::Compute"); SMESHDS_Mesh * meshDS = aMesh.GetMeshDS(); // Shape verification // ---------------------- // shape must be a solid (or a shell) with 6 faces TopExp_Explorer exp(aShape,TopAbs_SHELL); if ( !exp.More() ) return error(COMPERR_BAD_SHAPE, "No SHELL in the geometry"); if ( exp.Next(), exp.More() ) return error(COMPERR_BAD_SHAPE, "More than one SHELL in the geometry"); TopTools_IndexedMapOfShape FF; TopExp::MapShapes( aShape, TopAbs_FACE, FF); if ( FF.Extent() != 6) { static StdMeshers_CompositeHexa_3D compositeHexa(_gen->GetANewId(), 0, _gen); if ( !compositeHexa.Compute( aMesh, aShape )) return error( compositeHexa.GetComputeError() ); return true; } // Find sides of a cube // --------------------- FaceQuadStructPtr quad[ 6 ]; StdMeshers_Quadrangle_2D quadAlgo( _gen->GetANewId(), GetStudyId(), _gen); for ( int i = 0; i < 6; ++i ) { if ( !( quad[i] = FaceQuadStructPtr( quadAlgo.CheckNbEdges( aMesh, FF( i+1 ))))) return error( quadAlgo.GetComputeError() ); if ( quad[i]->side.size() != 4 ) return error( COMPERR_BAD_SHAPE, "Not a quadrangular box side" ); } _FaceGrid aCubeSide[ 6 ]; swap( aCubeSide[B_BOTTOM]._quad, quad[0] ); swap( aCubeSide[B_BOTTOM]._quad->side[ Q_RIGHT],// direct the normal of bottom quad inside cube aCubeSide[B_BOTTOM]._quad->side[ Q_LEFT ] ); aCubeSide[B_FRONT]._quad = getQuadWithBottom( aCubeSide[B_BOTTOM]._quad->side[Q_BOTTOM], quad ); aCubeSide[B_RIGHT]._quad = getQuadWithBottom( aCubeSide[B_BOTTOM]._quad->side[Q_RIGHT ], quad ); aCubeSide[B_BACK ]._quad = getQuadWithBottom( aCubeSide[B_BOTTOM]._quad->side[Q_TOP ], quad ); aCubeSide[B_LEFT ]._quad = getQuadWithBottom( aCubeSide[B_BOTTOM]._quad->side[Q_LEFT ], quad ); if ( aCubeSide[B_FRONT ]._quad ) aCubeSide[B_TOP]._quad = getQuadWithBottom( aCubeSide[B_FRONT ]._quad->side[Q_TOP ], quad ); for ( int i = 1; i < 6; ++i ) if ( !aCubeSide[i]._quad ) return error( COMPERR_BAD_SHAPE ); // Make viscous layers // -------------------- SMESH_ProxyMesh::Ptr proxymesh; if ( _viscousLayersHyp ) { proxymesh = _viscousLayersHyp->Compute( aMesh, aShape, /*makeN2NMap=*/ true ); if ( !proxymesh ) return false; } // Check if there are triangles on cube sides // ------------------------------------------- if ( aMesh.NbTriangles() > 0 ) { for ( int i = 0; i < 6; ++i ) { const TopoDS_Face& sideF = aCubeSide[i]._quad->face; if ( SMESHDS_SubMesh* smDS = meshDS->MeshElements( sideF )) { bool isAllQuad = true; SMDS_ElemIteratorPtr fIt = smDS->GetElements(); while ( fIt->more() && isAllQuad ) { const SMDS_MeshElement* f = fIt->next(); isAllQuad = ( f->NbCornerNodes() == 4 ); } if ( !isAllQuad ) { SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape, proxymesh.get()); return error( err ); } } } } // Check presence of regular grid mesh on FACEs of the cube // ------------------------------------------------------------ // tool creating quadratic elements if needed SMESH_MesherHelper helper (aMesh); _quadraticMesh = helper.IsQuadraticSubMesh(aShape); for ( int i = 0; i < 6; ++i ) { const TopoDS_Face& F = aCubeSide[i]._quad->face; StdMeshers_FaceSide* baseQuadSide = aCubeSide[i]._quad->side[ Q_BOTTOM ]; list baseEdges( baseQuadSide->Edges().begin(), baseQuadSide->Edges().end() ); // assure correctness of node positions on baseE: // helper.GetNodeU() will fix positions if they are wrong helper.ToFixNodeParameters( true ); for ( int iE = 0; iE < baseQuadSide->NbEdges(); ++iE ) { const TopoDS_Edge& baseE = baseQuadSide->Edge( iE ); if ( SMESHDS_SubMesh* smDS = meshDS->MeshElements( baseE )) { bool ok; helper.SetSubShape( baseE ); SMDS_ElemIteratorPtr eIt = smDS->GetElements(); while ( eIt->more() ) { const SMDS_MeshElement* e = eIt->next(); // expect problems on a composite side try { helper.GetNodeU( baseE, e->GetNode(0), e->GetNode(1), &ok); } catch (...) {} try { helper.GetNodeU( baseE, e->GetNode(1), e->GetNode(0), &ok); } catch (...) {} } } } // load grid bool ok = helper.LoadNodeColumns( aCubeSide[i]._u2nodesMap, F, baseEdges, meshDS, proxymesh.get()); if ( ok ) { // check if the loaded grid corresponds to nb of quadrangles on the FACE const SMESHDS_SubMesh* faceSubMesh = proxymesh ? proxymesh->GetSubMesh( F ) : meshDS->MeshElements( F ); const int nbQuads = faceSubMesh->NbElements(); const int nbHor = aCubeSide[i]._u2nodesMap.size() - 1; const int nbVer = aCubeSide[i]._u2nodesMap.begin()->second.size() - 1; ok = ( nbQuads == nbHor * nbVer ); } if ( !ok ) { SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape, proxymesh.get()); return error( err ); } } // Orient loaded grids of cube sides along axis of the unitary cube coord system bool isReverse[6]; isReverse[B_BOTTOM] = beginsAtSide( aCubeSide[B_BOTTOM], aCubeSide[B_RIGHT ], proxymesh ); isReverse[B_TOP ] = beginsAtSide( aCubeSide[B_TOP ], aCubeSide[B_RIGHT ], proxymesh ); isReverse[B_FRONT ] = beginsAtSide( aCubeSide[B_FRONT ], aCubeSide[B_RIGHT ], proxymesh ); isReverse[B_BACK ] = beginsAtSide( aCubeSide[B_BACK ], aCubeSide[B_RIGHT ], proxymesh ); isReverse[B_LEFT ] = beginsAtSide( aCubeSide[B_LEFT ], aCubeSide[B_BACK ], proxymesh ); isReverse[B_RIGHT ] = beginsAtSide( aCubeSide[B_RIGHT ], aCubeSide[B_BACK ], proxymesh ); for ( int i = 0; i < 6; ++i ) { aCubeSide[i]._columns.resize( aCubeSide[i]._u2nodesMap.size() ); int iFwd = 0, iRev = aCubeSide[i]._columns.size()-1; int* pi = isReverse[i] ? &iRev : &iFwd; TParam2ColumnMap::iterator u2nn = aCubeSide[i]._u2nodesMap.begin(); for ( ; iFwd < aCubeSide[i]._columns.size(); --iRev, ++iFwd, ++u2nn ) aCubeSide[i]._columns[ *pi ].swap( u2nn->second ); aCubeSide[i]._u2nodesMap.clear(); } if ( proxymesh ) for ( int i = 0; i < 6; ++i ) for ( unsigned j = 0; j < aCubeSide[i]._columns.size(); ++j) for ( unsigned k = 0; k < aCubeSide[i]._columns[j].size(); ++k) { const SMDS_MeshNode* & n = aCubeSide[i]._columns[j][k]; n = proxymesh->GetProxyNode( n ); } // 4) Create internal nodes of the cube // ------------------------------------- helper.SetSubShape( aShape ); helper.SetElementsOnShape(true); // shortcuts to sides _FaceGrid* fBottom = & aCubeSide[ B_BOTTOM ]; _FaceGrid* fRight = & aCubeSide[ B_RIGHT ]; _FaceGrid* fTop = & aCubeSide[ B_TOP ]; _FaceGrid* fLeft = & aCubeSide[ B_LEFT ]; _FaceGrid* fFront = & aCubeSide[ B_FRONT ]; _FaceGrid* fBack = & aCubeSide[ B_BACK ]; // cube size measured in nb of nodes int x, xSize = fBottom->_columns.size() , X = xSize - 1; int y, ySize = fLeft->_columns.size() , Y = ySize - 1; int z, zSize = fLeft->_columns[0].size(), Z = zSize - 1; // columns of internal nodes "rising" from nodes of fBottom _Indexer colIndex( xSize, ySize ); vector< vector< const SMDS_MeshNode* > > columns( colIndex.size() ); // fill node columns by front and back box sides for ( x = 0; x < xSize; ++x ) { vector< const SMDS_MeshNode* >& column0 = columns[ colIndex( x, 0 )]; vector< const SMDS_MeshNode* >& column1 = columns[ colIndex( x, Y )]; column0.resize( zSize ); column1.resize( zSize ); for ( z = 0; z < zSize; ++z ) { column0[ z ] = fFront->GetNode( x, z ); column1[ z ] = fBack ->GetNode( x, z ); } } // fill node columns by left and right box sides for ( y = 1; y < ySize-1; ++y ) { vector< const SMDS_MeshNode* >& column0 = columns[ colIndex( 0, y )]; vector< const SMDS_MeshNode* >& column1 = columns[ colIndex( X, y )]; column0.resize( zSize ); column1.resize( zSize ); for ( z = 0; z < zSize; ++z ) { column0[ z ] = fLeft ->GetNode( y, z ); column1[ z ] = fRight->GetNode( y, z ); } } // get nodes from top and bottom box sides for ( x = 1; x < xSize-1; ++x ) { for ( y = 1; y < ySize-1; ++y ) { vector< const SMDS_MeshNode* >& column = columns[ colIndex( x, y )]; column.resize( zSize ); column.front() = fBottom->GetNode( x, y ); column.back() = fTop ->GetNode( x, y ); } } // projection points of the internal node on cube sub-shapes by which // coordinates of the internal node are computed vector pointsOnShapes( SMESH_Block::ID_Shell ); // projections on vertices are constant pointsOnShapes[ SMESH_Block::ID_V000 ] = fBottom->GetXYZ( 0, 0 ); pointsOnShapes[ SMESH_Block::ID_V100 ] = fBottom->GetXYZ( X, 0 ); pointsOnShapes[ SMESH_Block::ID_V010 ] = fBottom->GetXYZ( 0, Y ); pointsOnShapes[ SMESH_Block::ID_V110 ] = fBottom->GetXYZ( X, Y ); pointsOnShapes[ SMESH_Block::ID_V001 ] = fTop->GetXYZ( 0, 0 ); pointsOnShapes[ SMESH_Block::ID_V101 ] = fTop->GetXYZ( X, 0 ); pointsOnShapes[ SMESH_Block::ID_V011 ] = fTop->GetXYZ( 0, Y ); pointsOnShapes[ SMESH_Block::ID_V111 ] = fTop->GetXYZ( X, Y ); for ( x = 1; x < xSize-1; ++x ) { gp_XYZ params; // normalized parameters of internal node within a unit box params.SetCoord( 1, x / double(X) ); for ( y = 1; y < ySize-1; ++y ) { params.SetCoord( 2, y / double(Y) ); // a column to fill in during z loop vector< const SMDS_MeshNode* >& column = columns[ colIndex( x, y )]; // projection points on horizontal edges pointsOnShapes[ SMESH_Block::ID_Ex00 ] = fBottom->GetXYZ( x, 0 ); pointsOnShapes[ SMESH_Block::ID_Ex10 ] = fBottom->GetXYZ( x, Y ); pointsOnShapes[ SMESH_Block::ID_E0y0 ] = fBottom->GetXYZ( 0, y ); pointsOnShapes[ SMESH_Block::ID_E1y0 ] = fBottom->GetXYZ( X, y ); pointsOnShapes[ SMESH_Block::ID_Ex01 ] = fTop->GetXYZ( x, 0 ); pointsOnShapes[ SMESH_Block::ID_Ex11 ] = fTop->GetXYZ( x, Y ); pointsOnShapes[ SMESH_Block::ID_E0y1 ] = fTop->GetXYZ( 0, y ); pointsOnShapes[ SMESH_Block::ID_E1y1 ] = fTop->GetXYZ( X, y ); // projection points on horizontal faces pointsOnShapes[ SMESH_Block::ID_Fxy0 ] = fBottom->GetXYZ( x, y ); pointsOnShapes[ SMESH_Block::ID_Fxy1 ] = fTop ->GetXYZ( x, y ); for ( z = 1; z < zSize-1; ++z ) // z loop { params.SetCoord( 3, z / double(Z) ); // projection points on vertical edges pointsOnShapes[ SMESH_Block::ID_E00z ] = fFront->GetXYZ( 0, z ); pointsOnShapes[ SMESH_Block::ID_E10z ] = fFront->GetXYZ( X, z ); pointsOnShapes[ SMESH_Block::ID_E01z ] = fBack->GetXYZ( 0, z ); pointsOnShapes[ SMESH_Block::ID_E11z ] = fBack->GetXYZ( X, z ); // projection points on vertical faces pointsOnShapes[ SMESH_Block::ID_Fx0z ] = fFront->GetXYZ( x, z ); pointsOnShapes[ SMESH_Block::ID_Fx1z ] = fBack ->GetXYZ( x, z ); pointsOnShapes[ SMESH_Block::ID_F0yz ] = fLeft ->GetXYZ( y, z ); pointsOnShapes[ SMESH_Block::ID_F1yz ] = fRight->GetXYZ( y, z ); // compute internal node coordinates gp_XYZ coords; SMESH_Block::ShellPoint( params, pointsOnShapes, coords ); column[ z ] = helper.AddNode( coords.X(), coords.Y(), coords.Z() ); } } } // side data no more needed, free memory for ( int i = 0; i < 6; ++i ) aCubeSide[i]._columns.clear(); // 5) Create hexahedrons // --------------------- for ( x = 0; x < xSize-1; ++x ) { for ( y = 0; y < ySize-1; ++y ) { vector< const SMDS_MeshNode* >& col00 = columns[ colIndex( x, y )]; vector< const SMDS_MeshNode* >& col10 = columns[ colIndex( x+1, y )]; vector< const SMDS_MeshNode* >& col01 = columns[ colIndex( x, y+1 )]; vector< const SMDS_MeshNode* >& col11 = columns[ colIndex( x+1, y+1 )]; for ( z = 0; z < zSize-1; ++z ) { // bottom face normal of a hexa mush point outside the volume helper.AddVolume(col00[z], col01[z], col11[z], col10[z], col00[z+1], col01[z+1], col11[z+1], col10[z+1]); } } } return true; } //============================================================================= /*! * Evaluate */ //============================================================================= bool StdMeshers_Hexa_3D::Evaluate(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, MapShapeNbElems& aResMap) { vector < SMESH_subMesh * >meshFaces; TopTools_SequenceOfShape aFaces; for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next()) { aFaces.Append(exp.Current()); SMESH_subMesh *aSubMesh = aMesh.GetSubMeshContaining(exp.Current()); ASSERT(aSubMesh); meshFaces.push_back(aSubMesh); } if (meshFaces.size() != 6) { //return error(COMPERR_BAD_SHAPE, TComm(meshFaces.size())<<" instead of 6 faces in a block"); static StdMeshers_CompositeHexa_3D compositeHexa(-10, 0, aMesh.GetGen()); return compositeHexa.Evaluate(aMesh, aShape, aResMap); } int i = 0; for(; i<6; i++) { //TopoDS_Shape aFace = meshFaces[i]->GetSubShape(); TopoDS_Shape aFace = aFaces.Value(i+1); SMESH_Algo *algo = _gen->GetAlgo(aMesh, aFace); if( !algo ) { std::vector aResVec(SMDSEntity_Last); for(int i=SMDSEntity_Node; iGetComputeError(); smError.reset( new SMESH_ComputeError(COMPERR_ALGO_FAILED,"Submesh can not be evaluated",this)); return false; } string algoName = algo->GetName(); bool isAllQuad = false; if (algoName == "Quadrangle_2D") { MapShapeNbElemsItr anIt = aResMap.find(meshFaces[i]); if( anIt == aResMap.end() ) continue; std::vector aVec = (*anIt).second; int nbtri = Max(aVec[SMDSEntity_Triangle],aVec[SMDSEntity_Quad_Triangle]); if( nbtri == 0 ) isAllQuad = true; } if ( ! isAllQuad ) { return EvaluatePentahedralMesh(aMesh, aShape, aResMap); } } // find number of 1d elems for 1 face int nb1d = 0; TopTools_MapOfShape Edges1; bool IsQuadratic = false; bool IsFirst = true; for (TopExp_Explorer exp(aFaces.Value(1), TopAbs_EDGE); exp.More(); exp.Next()) { Edges1.Add(exp.Current()); SMESH_subMesh *sm = aMesh.GetSubMesh(exp.Current()); if( sm ) { MapShapeNbElemsItr anIt = aResMap.find(sm); if( anIt == aResMap.end() ) continue; std::vector aVec = (*anIt).second; nb1d += Max(aVec[SMDSEntity_Edge],aVec[SMDSEntity_Quad_Edge]); if(IsFirst) { IsQuadratic = (aVec[SMDSEntity_Quad_Edge] > aVec[SMDSEntity_Edge]); IsFirst = false; } } } // find face opposite to 1 face int OppNum = 0; for(i=2; i<=6; i++) { bool IsOpposite = true; for(TopExp_Explorer exp(aFaces.Value(i), TopAbs_EDGE); exp.More(); exp.Next()) { if( Edges1.Contains(exp.Current()) ) { IsOpposite = false; break; } } if(IsOpposite) { OppNum = i; break; } } // find number of 2d elems on side faces int nb2d = 0; for(i=2; i<=6; i++) { if( i == OppNum ) continue; MapShapeNbElemsItr anIt = aResMap.find( meshFaces[i-1] ); if( anIt == aResMap.end() ) continue; std::vector aVec = (*anIt).second; nb2d += Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]); } MapShapeNbElemsItr anIt = aResMap.find( meshFaces[0] ); std::vector aVec = (*anIt).second; int nb2d_face0 = Max(aVec[SMDSEntity_Quadrangle],aVec[SMDSEntity_Quad_Quadrangle]); int nb0d_face0 = aVec[SMDSEntity_Node]; std::vector aResVec(SMDSEntity_Last); for(int i=SMDSEntity_Node; iGetANewId(), 0, gen ); } algo->InitComputeError(); algo->Compute( aMesh, aHelper ); return error( algo->GetComputeError()); } //======================================================================= //function : ComputePentahedralMesh //purpose : //======================================================================= SMESH_ComputeErrorPtr ComputePentahedralMesh(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, SMESH_ProxyMesh* proxyMesh) { SMESH_ComputeErrorPtr err = SMESH_ComputeError::New(); if ( proxyMesh ) { err->myName = COMPERR_BAD_INPUT_MESH; err->myComment = "Can't build pentahedral mesh on viscous layers"; return err; } bool bOK; StdMeshers_Penta_3D anAlgo; // bOK=anAlgo.Compute(aMesh, aShape); // err = anAlgo.GetComputeError(); // if ( !bOK && anAlgo.ErrorStatus() == 5 ) { static StdMeshers_Prism_3D * aPrism3D = 0; if ( !aPrism3D ) { SMESH_Gen* gen = aMesh.GetGen(); aPrism3D = new StdMeshers_Prism_3D( gen->GetANewId(), 0, gen ); } SMESH_Hypothesis::Hypothesis_Status aStatus; if ( aPrism3D->CheckHypothesis( aMesh, aShape, aStatus ) ) { aPrism3D->InitComputeError(); bOK = aPrism3D->Compute( aMesh, aShape ); err = aPrism3D->GetComputeError(); } } return err; } //======================================================================= //function : EvaluatePentahedralMesh //purpose : //======================================================================= bool EvaluatePentahedralMesh(SMESH_Mesh & aMesh, const TopoDS_Shape & aShape, MapShapeNbElems& aResMap) { StdMeshers_Penta_3D anAlgo; bool bOK = anAlgo.Evaluate(aMesh, aShape, aResMap); //err = anAlgo.GetComputeError(); //if ( !bOK && anAlgo.ErrorStatus() == 5 ) if( !bOK ) { static StdMeshers_Prism_3D * aPrism3D = 0; if ( !aPrism3D ) { SMESH_Gen* gen = aMesh.GetGen(); aPrism3D = new StdMeshers_Prism_3D( gen->GetANewId(), 0, gen ); } SMESH_Hypothesis::Hypothesis_Status aStatus; if ( aPrism3D->CheckHypothesis( aMesh, aShape, aStatus ) ) { return aPrism3D->Evaluate(aMesh, aShape, aResMap); } } return bOK; }